Two-Level Schwarz Preconditioners for Super Penalty Discontinuous Galerkin Methods

Paola F. Antonietti ${ }^{1}$ and Blanca Ayuso ${ }^{2, *}$
${ }^{1}$ MOX - Laboratory for Modeling and Scientific Computing, Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy.
${ }^{2}$ Departamento de Matemàticas, Universidad Autònoma de Madrid, Campus de Cantoblanco, Ctra. de Colmenar Viejo, 28049 Madrid, Spain.

Received 30 September 2007; Accepted (in revised version) 18 December 2007
Available online 1 August 2008

Abstract

We extend the construction and analysis of the non-overlapping Schwarz preconditioners proposed in $[2,3]$ to the (non-consistent) super penalty discontinuous Galerkin methods introduced in [5] and [8]. We show that the resulting preconditioners are scalable, and we provide the convergence estimates. We also present numerical experiments confirming the sharpness of the theoretical results.

AMS subject classifications: 65F10, 65N55, 65N30
Key words: Schwarz preconditioners, super penalty discontinuous Galerkin methods.

1 Introduction

Discontinuous Galerkin (DG) finite element methods have experienced a huge development in recent years. Although they have proved to enjoy many advantages in a number of circumstances, their practical utility is still limited by the much larger number of degrees of freedom they require compared to other classical discretization methods. To handle this possible limitation, some domain decomposition preconditioners have been proposed and analyzed in the past five years for strongly consistent and stable DG approximations of second order elliptic problems (cf. [2,3,12]).

In this paper we turn our attention to the non-consistent super penalty DG methods, namely the Babuška-Zlámal [5] and the Brezzi et al. [8] formulations. Although the idea of over-penalizing goes back to the early stage of the development of DG methods, this idea,

[^0]together with the design of efficient solvers for the resulting schemes, have recently received a renewed interest (cf. [6,7]). Because of a non-consistency in the Babuška-Zlámal and Brezzi et al. formulations, a super penalty procedure has to be applied in order to achieve optimal approximation properties. The over-penalization has dramatic effects on the condition number of the resulting linear system of equations. In fact, if on a given quasi uniform mesh \mathcal{T}_{h} with granularity h, polynomials of degrees ℓ_{h} are used for the approximation, the condition number of the resulting stiffness matrix is of order $\mathcal{O}\left(h^{-2 \ell_{h}-2}\right)$ (cf. [10]). In [2], it was numerically observed that the proposed non-overlapping Schwarz methods applied to the super penalty DG approximations result in a dramatic reduction on the condition number of the preconditioned linear systems of equations. However, the observed convergence rates differ considerably with respect to the ones exhibited by consistent DG discretizations. In this paper, we present the theoretical analysis that justifies those observed rates. We follow the theory developed in $[2,12]$ but using the natural norm for the super penalty schemes; i.e., the norm induced by the bilinear form defining the scheme which does not scale as the energy norm of stable and consistent DG methods. As a consequence, some auxiliary results required in our analysis need to be reformulated and extended. The sharpness of our theoretical results is confirmed by some numerical experiments.

2 Super penalty discontinuous Galerkin discretizations

In this section, we set up some notation, introduce the model problem we will consider, and recall the variational formulation of super penalty DG methods. Throughout the paper, we shall use standard notation for Sobolev spaces (cf. [1]), and $x \lesssim y$ will mean that there exists a generic constant $C>0$ (that may not be the same at different occurrences but is always mesh independent) so that $x \leq C y$.

Let $\Omega \subset \mathbb{R}^{d}, d=2,3$, be a convex bounded Lipschitz polygonal or polyhedral domain and $f \in L^{2}(\Omega)$. To ease the presentation, we consider the following model (toy) problem

$$
\begin{equation*}
-\Delta u=f \text { in } \Omega, u=0 \text { on } \partial \Omega . \tag{2.1}
\end{equation*}
$$

Meshes. Let \mathcal{T}_{h} be a shape-regular and quasi-uniform conforming partition of the domain Ω into disjoint open elements T, where each T is the affine image of a fixed master element \widehat{T}, i.e., $T=F_{T}(\widehat{T})$, and where \widehat{T} is either the open unit d-simplex or the d-hypercube in \mathbb{R}^{d}, $d=2,3$. Letting h_{T} be the diameter of the element $T \in \mathcal{T}_{h}$, we define the mesh size h by $h=\max _{T \in \mathcal{T}_{h}} h_{T}$, and assume, for simplicity, that $h<1$. We denote by \mathcal{F}_{h}^{I} and \mathcal{F}_{h}^{B} the sets of all interior and boundary faces of \mathcal{T}_{h}, respectively, and set $\mathcal{F}_{h}=\mathcal{F}_{h}^{I} \cup \mathcal{F}_{h}^{B}$.

Remark 2.1. All the theory we present in this paper can be applied, with minor changes, to the case of non-matching grids, under suitable additional assumptions on \mathcal{T}_{h}; cf. [3].

Trace operators. Let $F \in \mathcal{F}_{h}^{I}$ be an interior face shared by two elements T^{+}and T^{-}with outward normal unit vectors $n^{ \pm}$. For piecewise smooth vector-valued and scalar func-
tions τ and v, respectively, we define the jump and average operators on $F \in \mathcal{F}_{h}^{I}$ by

$$
\begin{align*}
& {[[\boldsymbol{\tau}]]=\boldsymbol{\tau}^{+} \cdot \boldsymbol{n}^{+}+\boldsymbol{\tau}^{-} \cdot \boldsymbol{n}^{-}, \quad[[v]]=v^{+} \boldsymbol{n}^{+}+v^{-} \boldsymbol{n}^{-}, \quad \text { on } F \in \mathcal{F}_{h}^{I},} \\
& \{\{\boldsymbol{\tau}\}\}=\left(\boldsymbol{\tau}^{+}+\boldsymbol{\tau}^{-}\right) / 2, \quad\{\{v\}\}=\left(v^{+}+v^{-}\right) / 2, \quad \text { on } F \in \mathcal{F}_{h}^{I}, \tag{2.2}
\end{align*}
$$

where $\tau^{ \pm}$and $v^{ \pm}$denote the traces of τ and v on $\partial T^{ \pm}$taken from within $T^{ \pm}$, respectively. On a boundary face $F \in \mathcal{F}_{h}^{B}$ we set, analogously,

$$
\begin{equation*}
[[\boldsymbol{\tau}]]=\boldsymbol{\tau} \cdot n, \quad[[v]]=v n, \quad\{\{\boldsymbol{\tau}\}\}=\boldsymbol{\tau}, \quad\{\{v\}\}=v, \quad \text { on } F \in \mathcal{F}_{h}^{B} . \tag{2.3}
\end{equation*}
$$

DG finite element space. For a given (integer) $\ell_{h} \geq 1$, the DG finite element space V_{h} is defined by

$$
V_{h}=\left\{v \in L^{2}(\Omega):\left.v\right|_{T} \circ F_{T} \in \mathcal{M}^{\ell_{h}}(\widehat{T}) \forall T \in \mathcal{T}_{h}\right\},
$$

where $\mathcal{M}^{\ell_{h}}(\widehat{T})$ is either the space of polynomials of degree less or equal to ℓ_{h} on \widehat{T}, if \widehat{T} is the reference d-simplex, or the space of polynomials of degree at most ℓ_{h} in each variable on \widehat{T}, if \widehat{T} is the reference d-hypercube.
The super penalty DG methods. For the discretization of the model problem (2.1), we consider the Babuška-Zlàmal (BZ) [5] and the Brezzi et al. (BMMPR) [8] super penalty methods. More precisely, we consider the following class of DG methods:

$$
\begin{equation*}
\text { Find } u \in V_{h} \text { s.t. } \quad A_{h}(u, v)=(f, v) \quad \forall v \in V_{h} . \tag{2.4}
\end{equation*}
$$

Here the DG bilinear form $A_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
A_{h}(u, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla u \cdot \nabla v \mathrm{~d} x+\mathcal{S}_{h}(u, v) \quad \forall u, v \in V_{h}, \tag{2.5}
\end{equation*}
$$

where the stabilization term $\mathcal{S}_{h}(\cdot, \cdot)$ is defined by

$$
\begin{aligned}
& \mathcal{S}_{h}(u, v)=\sum_{F \in \mathcal{F}_{h}} \int_{F} \alpha h_{F}^{-2 \ell_{h}-1}[[u]] \cdot[[v]] \mathrm{d} s, \\
& \mathcal{S}_{h}(u, v)=\sum_{F \in \mathcal{F}_{h}} \int_{F} \alpha h_{F}^{-2 \ell_{h}} r_{F}([[u]]) \cdot r_{F}([[v]]) \mathrm{d} s,
\end{aligned}
$$

for the BZ method and for the BMMPR method, respectively. In the above expressions, h_{F} denotes the diameter of $F \in \mathcal{F}_{h}, \alpha>0$ is a parameter (at our disposal) independent of the mesh size, and $r_{F}:\left[L^{1}(F)\right]^{d} \rightarrow\left[V_{h}\right]^{d}$ is defined by

$$
\begin{equation*}
\int_{\Omega} r_{F}(\boldsymbol{\varphi}) \cdot \boldsymbol{\tau} \mathrm{d} x=-\int_{F} \boldsymbol{\varphi} \cdot\{\{\boldsymbol{\tau}\}\} \mathrm{d} s \quad \forall \boldsymbol{\tau} \in\left[V_{h}\right]^{d} . \tag{2.6}
\end{equation*}
$$

For simplicity, we assume $\alpha \geq 1$.

3 Main properties and theoretical tools

We briefly review the basic tools we shall require in the analysis of our Schwarz methods.
We refer to [11] for a local inverse inequality that holds true for piecewise polynomials of a given order, and to [4] for a trace inequality that holds true for (regular enough) piecewise functions. We also recall the following equivalence (see [8] for details),

$$
\begin{equation*}
C_{1} h_{F}^{-2 \ell_{h}-1}\|[[v]]\|_{0, F}^{2} \leq h_{F}^{-2 \ell_{h}}\left\|r_{F}([[v]])\right\|_{0, \Omega}^{2} \leq C_{2} h_{F}^{-2 \ell_{h}-1}\|[[v]]\|_{0, F}^{2} \quad \forall F \in \mathcal{F}_{h} \quad \forall v \in V_{h}, \tag{3.1}
\end{equation*}
$$

where C_{1} and C_{2} are positive constants.
For the analysis of our Schwarz methods we consider the (mesh dependent) norm induced by the bilinear form $A_{h}(\cdot, \cdot)$, i.e., $\|v\|_{A}^{2}=A_{h}(v, v)$ for all $v \in V_{h}$ (recall that $A_{h}(\cdot, \cdot)$ is coercive provided that $\alpha>0$). The continuity of $A_{h}(\cdot, \cdot)$ with respect to the norm $\|\cdot\|_{A}$ easily follows from the Cauchy-Schwarz inequality, i.e.,

$$
A_{h}(u, v) \lesssim\|u\|_{A}\|v\|_{A} \quad \text { for all } u, v \in V_{h} .
$$

For an open connected polyhedral domain $D \subseteq \Omega$ that can be covered by the union of some elements in \mathcal{T}_{h}, we introduce the broken Sobolev space

$$
H^{s}\left(D, \mathcal{T}_{h}\right)=\left\{v \in L^{2}(\Omega):\left.v\right|_{T} \in H^{s}(T) \forall T \in \mathcal{T}_{h}, T \subset D\right\}, \quad s \geq 1
$$

An important tool in the analysis of Schwarz methods is represented by a FriedrichsPoincaré type inequality valid for broken Sobolev spaces. The next result is a small modification of the well-known result proved in [4,12].

Lemma 3.1 (Friedrichs-Poincaré inequality). Let $D \subset \Omega \subset \mathbb{R}^{d}, d=2,3$, be a convex polygonal or polyhedral domain that can be covered by the union of some elements in \mathcal{T}_{h}. Then, there exists a positive constant C_{λ}, such that, for all $u \in H^{1}\left(D, \mathcal{T}_{h}\right)$ with zero average over D, it holds:

$$
\begin{equation*}
\left.\|u\|_{0, D}^{2} \leq C_{\lambda}(\operatorname{diam}(D))^{2}\left(\sum_{\substack{T \in \mathcal{T}_{h} \\ T \subset D}}|u|_{1, T}^{2}+\sum_{\substack{F \in \mathcal{F}_{h} \\ F \subset D}} h_{F}^{-1} \|[u]\right] \|_{0, F}^{2}\right) \leq C_{\lambda}(\operatorname{diam}(D))^{2}\|u\|_{A}^{2}, \tag{3.2}
\end{equation*}
$$

where $C_{\lambda}=C^{\prime} C_{P}$, with C_{P} the Poincaré constant, and C^{\prime} depending only on the shape regularity of \mathcal{T}_{h}.

The proof goes along the lines of that in [4]. For completeness we briefly sketch it.
Proof. It is sufficient to assume that D has unit diameter; the general case follows from a standard scaling argument. Let $u \in H^{1}\left(D, \mathcal{T}_{h}\right)$ with $\int_{D} u \mathrm{~d} x=0$, we consider the auxiliary Neumann problem

$$
-\Delta \phi=u \text { in } D, \quad \frac{\partial \phi}{\partial n}=0 \text { on } \partial D .
$$

The above problem has a unique solution (up to an additive constant) $\phi \in H^{2}(D)$ that satisfies the elliptic regularity estimate $\|\phi\|_{2, D} \lesssim\|u\|_{0, D}$. Integration by parts, the CauchySchwarz inequality and the trace inequality $h_{F}\|\nabla \phi \cdot n\|_{0, F}^{2} \lesssim\|\phi\|_{2, T}^{2}$ give

$$
\begin{aligned}
\|u\|_{0, D}^{2} & =\left|-\int_{D} u \Delta \phi \mathrm{~d} x\right|=\left|\sum_{\substack{T \in \mathcal{T}_{h} \\
T \subset D}} \int_{T} \nabla u \cdot \nabla \phi \mathrm{~d} x-\sum_{\substack{F \in \mathcal{F}_{h}^{I} \\
F \subset D}} \int_{F}[[u]] \cdot \nabla \phi \mathrm{d} s\right| \\
& \lesssim\left(\sum_{\substack{T \in \mathcal{F}_{h} \\
T \subset D}}|u|_{1, T}^{2}\right)^{\frac{1}{2}}\left(\sum_{\substack{T \in \mathcal{T}_{h} \\
T \subset D}}|\phi|_{1, T}^{2}\right)^{\frac{1}{2}}+\left(\sum_{\substack{F \in \mathcal{F}_{h}^{I} \\
F \subset D}} h_{F}^{-\left(2 \ell_{h}+1\right)}\|[[u]]\|_{0, F}^{2}\right)^{\frac{1}{2}}\left(\sum_{\substack{T \in \mathcal{T}_{F} \\
T \subset D}} h_{F}^{2 \ell_{h}}\|\phi\|_{2, T}^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Then, by using the elliptic regularity of the dual problem, inequality (3.2) follows.
Proceeding similarly as in the proof of Lemma 3.1, it can be proved the following variant of the trace inequality shown in [12]:

$$
\begin{equation*}
\|u\|_{0, \partial D}^{2} \lesssim H_{D}^{-1}\|u\|_{0, D}^{2}+H_{D}\left(\sum_{\substack{T \in \mathcal{T}_{h} \\ T \subset D}}|u|_{1, T}^{2}+\sum_{\substack{F \in \mathcal{F}_{h} \\ F \subset D}} h_{F}^{-\left(2 \ell_{h}+1\right)}\|[[u]]\|_{0, F}^{2}\right) \quad \forall u \in H^{1}\left(D, \mathcal{T}_{h}\right) . \tag{3.3}
\end{equation*}
$$

Condition number estimate. We recall that, given a basis of V_{h}, any function $u \in V_{h}$ is uniquely determined by a set of degrees of freedom. Here and in the following, we use the bold notation to denote the spaces of degrees of freedom (vectors in \mathbb{R}^{n}) and discrete linear operators (matrices in $\mathbb{R}^{n} \times \mathbb{R}^{n}$). If \mathbf{A} is the stiffness matrix associated to the bilinear form $A_{h}(\cdot, \cdot)$ and the given basis, the problem (2.4) can be rewritten as the linear system of equations $\mathbf{A u}=\mathbf{f}$, with \mathbf{A} symmetric, positive definite and sparse. It is a simple matter to check that the matrix \mathbf{A} is ill-conditioned. In fact, in [10] it is shown that the spectral condition number of the stiffness matrix \mathbf{A} arising from the BZ discretization, $\kappa(\mathbf{A})$, can be bounded by

$$
\begin{equation*}
\kappa(\mathbf{A}) \lesssim \frac{\alpha}{h^{2} \ell_{h}+2} . \tag{3.4}
\end{equation*}
$$

For the BMMPR method the proof can be easily adapted and we omit the details. In practical applications such a bad condition number implies an extremely slow convergence, for example, of the conjugate gradient iterative solver.

4 Schwarz preconditioners for super penalty DG methods

In this section we present the non-overlapping Schwarz preconditioners for the super penalty DG approximations introduced before.
Non-overlapping partitions. We consider three level of nested partitions of the domain Ω, all satisfying the previous assumptions: a subdomain partition \mathcal{I}_{N} made of N nonoverlapping subdomains, a coarse partition \mathcal{T}_{H} (with mesh size H), and a fine partition
\mathcal{T}_{h} (with mesh size h). For each subdomain $\Omega_{i} \in \mathcal{T}_{N}$, we denote by $\mathcal{F}_{h, i}$ the set of all faces of \mathcal{F}_{h} belonging to $\bar{\Omega}_{i}$, and set

$$
\mathcal{F}_{h, i}^{I}=\left\{F \in \mathcal{F}_{h, i}: F \subset \Omega_{i}\right\}, \quad \mathcal{F}_{h, i}^{B}=\left\{F \in \mathcal{F}_{h, i}: F \subset \partial \Omega_{i} \cap \partial \Omega\right\}
$$

The set of all (internal) faces belonging to the skeleton of the subdomain partition will be denoted by Γ, i.e., $\Gamma=\bigcup_{i=1}^{N} \Gamma_{i}$ with $\Gamma_{i}=\left\{F \in \mathcal{F}_{h, i}: F \subset \partial \Omega_{i}\right\}$.
Local spaces and prolongation operators. For each $i=1, \cdots, N$, we define the local DG spaces

$$
V_{h}^{i}=\left\{u \in L^{2}\left(\Omega_{i}\right):\left.v\right|_{T} \circ F_{T} \in \mathcal{M}^{\ell_{h}}(\widehat{T}) \forall T \in \mathcal{T}_{h}, T \subset \Omega_{i}\right\}
$$

and we denote by $R_{i}^{T}: V_{h}^{i} \longrightarrow V_{h}$ the classical inclusion operator from V_{h}^{i} to V_{h}, and by R_{i} its transpose with respect to the L^{2}-inner product. We observe that $V_{h}=R_{1}^{T} V_{h}^{1} \oplus \cdots \oplus R_{N}^{T} V_{h}^{N}$. Local solvers. We consider the super penalty DG approximation of the problem:

$$
-\Delta u_{i}=\left.f\right|_{\Omega_{i}} \text { in } \Omega_{i}, \quad u_{i}=0 \text { on } \partial \Omega_{i}, \quad i=1, \cdots, N
$$

In view of (2.5), the local bilinear forms $A_{i}: V_{h}^{i} \times V_{h}^{i} \longrightarrow \mathbb{R}$ are given by

$$
\begin{equation*}
A_{i}\left(u_{i}, v_{i}\right)=\int_{\Omega_{i}} \nabla_{h} u_{i} \cdot \nabla_{h} v_{i} \mathrm{~d} x+\mathcal{S}_{i}\left(u_{i}, v_{i}\right) \tag{4.1}
\end{equation*}
$$

Here, the local stabilization forms $\mathcal{S}_{i}(\cdot, \cdot)$ are defined as

$$
\begin{aligned}
& \mathcal{S}_{i}\left(u_{i}, v_{i}\right)=\sum_{F \in \mathcal{F}_{h, i}} \int_{F} \alpha h_{F}^{-2 \ell_{h}-1}\left[\left[u_{i}\right]\right] \cdot\left[\left[v_{i}\right]\right] \mathrm{d} s, \\
& \mathcal{S}_{i}\left(u_{i}, v_{i}\right)=\sum_{F \in \mathcal{F}_{h, i}} \int_{F} \alpha h_{F}^{-2 \ell_{h}} r_{F}^{i}\left(\left[\left[u_{i}\right]\right]\right) \cdot r_{F}^{i}\left(\left[\left[v_{i}\right]\right]\right) \mathrm{d} s,
\end{aligned}
$$

for the BZ and the BMMPR methods, respectively, with $r_{F}^{i}:\left[L^{1}(F)\right]^{d} \rightarrow\left[V_{h}^{i}\right]^{d}$ defined as

$$
\begin{equation*}
\int_{\Omega_{i}} r_{F}^{i}\left(\boldsymbol{\varphi}_{i}\right) \cdot \boldsymbol{\tau}_{i} \mathrm{~d} x=-\int_{F} \boldsymbol{\varphi}_{i} \cdot\left\{\left\{\boldsymbol{\tau}_{i}\right\}\right\} \mathrm{d} s \quad \forall \boldsymbol{\tau}_{i} \in\left[V_{h}^{i}\right]^{d} . \tag{4.2}
\end{equation*}
$$

Remark 4.1. The approximation properties of the local solvers enter directly into the analysis of the Schwarz methods. From our definition of the local solvers, it can be easily verified that, for the BZ method, $A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right)=A_{i}\left(u_{i}, u_{i}\right)$; that is, the local solvers are exact. For the BMMPR method, the local solvers turn out to be approximate in the sense that $A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right) \neq A_{i}\left(u_{i}, u_{i}\right)$. Indeed, this follows by taking into account the definition of the local and global lifting operators (4.2) and (2.6), respectively, and by noting that $F \in \Gamma_{i}$ is a boundary face for the local bilinear form, hence $\left\{\left\{v_{i}\right\}\right\}=v_{i}$ on $F \in \Gamma_{i}$, but an interior face for the global bilinear form, hence $\left\{\left\{R_{i}^{T} v_{i}\right\}\right\}=\frac{1}{2} v_{i}$ on $F \in \Gamma_{i}$ (cf. the definition of the average operator on interior and boundary faces (2.2)-(2.3), respectively).

Coarse solver. For a given integer $\ell_{H}, 0 \leq \ell_{H} \leq \ell_{h}$, the coarse space is given by

$$
V_{H} \equiv V_{h}^{0}=\left\{v_{H} \in L^{2}(\Omega):\left.v_{H}\right|_{T} \circ F_{T} \in \mathcal{M}^{\ell_{H}}(\widehat{T}) \forall T \in \mathcal{T}_{H}\right\} .
$$

The coarse solver $A_{0}: V_{h}^{0} \times V_{h}^{0} \longrightarrow \mathbb{R}$ is defined by

$$
A_{0}\left(u_{0}, v_{0}\right)=A_{h}\left(R_{0}^{T} u_{0}, R_{0}^{T} v_{0}\right) \quad \forall u_{0}, v_{0} \in V_{h}^{0},
$$

where $R_{0}^{T}: V_{h}^{0} \longrightarrow V_{h}$ is the classical injection operator from V_{h}^{0} to V_{h}.
Schwarz methods: variational and algebraic formulation. We are now ready to define the Schwarz operators. For $i=0, \cdots, N$, we set

$$
\begin{equation*}
\widetilde{P}_{i}: V_{h} \longrightarrow V_{h}^{i} \quad A_{i}\left(\widetilde{P}_{i} u, v_{i}\right)=A_{h}\left(u, R_{i}^{T} v_{i}\right) \quad \forall v_{i} \in V_{h^{\prime}}^{i} \tag{4.3}
\end{equation*}
$$

and define $P_{i}=R_{i}^{T} \widetilde{P}_{i}: V_{h} \longrightarrow V_{h}$. The additive and multiplicative Schwarz operators are defined by

$$
P_{a d}=\sum_{i=0}^{N} P_{i}, \quad P_{m u}=I-\left(I-P_{N}\right)\left(I-P_{N-1}\right) \cdots\left(I-P_{1}\right)\left(I-P_{0}\right),
$$

respectively, where $I: V_{h} \longrightarrow V_{h}$ is the identity operator. We also define the error propagation operator $E_{N}=\left(I-P_{N}\right)\left(I-P_{N-1}\right) \cdots\left(I-P_{0}\right)$, and observe that $P_{m u}=I-E_{N}$.

The Schwarz methods can be written as the product of suitable preconditioners, namely $\mathbf{B}_{a d}$, or $\mathbf{B}_{m u}$, and \mathbf{A}. In fact, the matrix representation of the operators P_{i} is given by

$$
\mathbf{P}_{i}=\mathbf{R}_{i}^{T} \mathbf{A}_{i}^{-1} \mathbf{R}_{i} \mathbf{A}, \quad i=0, \cdots, N .
$$

Then,

$$
\mathbf{P}_{a d}=\sum_{i=0}^{N} \mathbf{P}_{i}=\sum_{i=0}^{N} \mathbf{R}_{i}^{T} \mathbf{A}_{i}^{-1} \mathbf{R}_{i} \mathbf{A}=\mathbf{B}_{a d} \mathbf{A}, \quad \mathbf{P}_{m u}=\mathbf{I}-\left(\mathbf{I}-\mathbf{P}_{N}\right) \cdots\left(\mathbf{I}-\mathbf{P}_{0}\right)=\mathbf{B}_{m u} \mathbf{A} .
$$

The additive Schwarz operator $P_{a d}$ is self adjoint with respect to the $A_{h}(\cdot, \cdot)$ inner product, whereas, the multiplicative operator $P_{m u}$ is non symmetric. Therefore, to solve the resulting algebraic linear systems of equations, we use the conjugate gradient (CG) method for the former, and the generalized minimal residual (GMRES) linear solver for the latter.

5 Convergence analysis

In this section we present the convergence analysis for the proposed two-level methods. We follow the abstract convergence theory of Schwarz methods (see, e.g., [9, 13]).

Since the additive operator $P_{a d}$ is self-adjoint with respect to $A_{h}(\cdot, \cdot)$, we can use the Rayleigh quotient characterization of the extreme eigenvalues:

$$
\lambda_{\min }\left(P_{a d}\right)=\min _{\substack{u \in V_{h} \\ u \neq 0}} \frac{A_{h}\left(P_{a d} u, u\right)}{A_{h}(u, u)}, \quad \lambda_{\max }\left(P_{a d}\right)=\max _{\substack{u \in V_{h} \\ u \neq 0}} \frac{A_{h}\left(P_{a d} u, u\right)}{A_{h}(u, u)} .
$$

In Theorem 5.1 we provide a bound for the spectral condition number of $P_{a d}$ given by $\kappa\left(P_{a d}\right)=\lambda_{\max }\left(P_{a d}\right) / \lambda_{\min }\left(P_{a d}\right)$. For the multiplicative operator $P_{m u}$, following the abstract theory [9], we prove that a simple Richardson iteration applied to the preconditioned linear system of equations converges. This result also guarantees that our preconditioner can indeed be accelerated with the GMRES iterative solver (cf. [13], for example). We remark that, the convergence result stated in Theorem 5.2 applies only to the BZ method (see, however, Remark 5.2 and the numerical experiments in Section 6).

A common step in the analysis of the additive and multiplicative Schwarz methods consists in verifying the following set of assumptions:
(A1) stable decomposition: there exists $C_{0}>0$ such that every $u \in V_{h}$ admits a decomposition

$$
u=\sum_{i=0}^{N} R_{i}^{T} u_{i} \quad \text { with } u_{i} \in V_{i}, \quad i=0, \cdots, N, \quad \text { s.t. } \quad \sum_{i=0}^{N} A_{i}\left(u_{i}, u_{i}\right) \leq C_{0}^{2} A_{h}(u, u) \text {; }
$$

(A2) local stability: there exists $\omega>0$ such that

$$
\begin{equation*}
A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right) \leq \omega A_{i}\left(u_{i}, u_{i}\right) \quad \forall u_{i} \in V_{h}^{i}, \quad i=1, \cdots, N ; \tag{5.1}
\end{equation*}
$$

(A3) strengthened Cauchy-Schwarz inequalities: there exist $0 \leq \varepsilon_{i j} \leq 1,1 \leq i, j \leq N$, such that

$$
\left|A_{h}\left(R_{i}^{T} u_{i}, R_{j}^{T} u_{j}\right)\right| \leq \varepsilon_{i j} A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right)^{1 / 2} A_{h}\left(R_{j}^{T} u_{j}, R_{j}^{T} u_{j}\right)^{1 / 2} \quad \forall v_{i} \in V_{h}^{i}, \forall u_{j} \in V_{h}^{j} .
$$

We start proving that the above assumptions hold for the proposed Schwarz preconditioners arising from both the BZ and BMMPR super penalty discretizations.
(A1) Stable decomposition. The next result guarantees that a stable splitting can be found for the family of subspaces and the corresponding bilinear forms of the super penalty DG discretizations.

Proposition 5.1 (Stable decomposition). Let $A_{h}(\cdot, \cdot)$ be the bilinear form of the BZ or the BMMPR super penalty methods. For any $u \in V_{h}$, let

$$
u=\sum_{i=0}^{N} R_{i}^{T} u_{i}, \quad u_{i} \in V_{h}^{i}, \quad i=0, \cdots, N,
$$

where $u_{0} \in V_{h}^{0} \equiv V_{H}$ is defined by

$$
\begin{equation*}
\left.u_{0}\right|_{D}=\frac{1}{\operatorname{meas}(D)} \int_{D} u \mathrm{~d} x, \quad D \in \mathcal{T}_{H}, \tag{5.2}
\end{equation*}
$$

and u_{1}, \cdots, u_{N} are (uniquely) determined as $u-R_{0}^{T} u_{0}=R_{1}^{T} u_{1}+\cdots+R_{N}^{T} u_{N}$. Then,

$$
\sum_{i=0}^{N} A_{i}\left(u_{i}, u_{i}\right) \leq \alpha C_{0}^{2} A_{h}(u, u), \quad \text { with } C_{0}^{2}=\mathcal{O}\left(\frac{H}{h^{2 \ell_{h}+1}}\right) .
$$

Proof. Given $u \in V_{h}$, let $u_{0} \in V_{h}^{0}$ be defined as in (5.2). Setting, for simplicity, $\widetilde{u}_{0}=R_{0}^{T} u_{0}$, we decompose $u-\widetilde{u}_{0}$ as $\sum_{i=1}^{N} R_{i}^{T} u_{i}$. Then,

$$
\begin{equation*}
\sum_{i=0}^{N} A_{i}\left(u_{i}, u_{i}\right)=A_{h}\left(u-\widetilde{u}_{0}, u-\widetilde{u}_{0}\right)+A_{0}\left(u_{0}, u_{0}\right)-\mathcal{I}_{h}\left(u-\widetilde{u}_{0}, u-\widetilde{u}_{0}\right), \tag{5.3}
\end{equation*}
$$

where, for the BZ method, $\mathcal{I}_{h}(\cdot, \cdot)$ is given by

$$
\mathcal{I}_{h}(u, v)=\sum_{F \in \Gamma} \alpha h_{F}^{-2 \ell_{h}-1} \int_{F}\left(u_{i} \boldsymbol{n}_{i} \cdot v_{j} \boldsymbol{n}_{j}+u_{j} \boldsymbol{n}_{j} \cdot v_{i} \boldsymbol{n}_{i}\right) \mathrm{d} s,
$$

and, for the BMMPR method, $\mathcal{I}_{h}(\cdot, \cdot)$ is defined as

$$
\begin{aligned}
\mathcal{I}_{h}(u, v)=\sum_{F \in \Gamma} \alpha h_{F}^{2 \ell_{h}} & {\left[\int_{\Omega} r_{F}([[u]]) \cdot r_{F}([[v]]) \mathrm{d} s-\int_{\Omega_{i}} r_{F}^{i}\left(\left[\left[u_{i}\right]\right]\right) \cdot r_{F}^{i}\left(\left[\left[v_{i}\right]\right]\right) \mathrm{d} s\right.} \\
& \left.-\int_{\Omega_{j}} r_{F}^{j}\left(\left[\left[u_{j}\right]\right]\right) \cdot r_{F}^{j}\left(\left[\left[v_{j}\right]\right]\right) \mathrm{d} s\right] .
\end{aligned}
$$

We start by providing a bound for the bilinear form $\mathcal{I}_{h}(\cdot, \cdot)$. For the BZ method, the Cauchy-Schwarz inequality and the arithmetic-geometric mean inequality yield

$$
\left|\mathcal{I}_{h}(u, u)\right| \leq \sum_{F \in \Gamma} \alpha h_{F}^{-2 \ell_{h}-1}\left(\left\|u_{i}\right\|_{0, F}^{2}+\left\|u_{j}\right\|_{0, F}^{2}\right) .
$$

Since the partitions are assumed to be nested, each subdomain Ω_{i} is the union of some elements $D \in \mathcal{T}_{H}$ and so, by setting $\Gamma_{i j}=\left\{F \in \Gamma: F \subset \partial \Omega_{i} \cap \partial \Omega_{j}\right\}$ and denoting by E the faces of the elements $D \in \mathcal{T}_{H}$, we have

$$
\begin{equation*}
\sum_{\Gamma_{i j} \in \Gamma} \sum_{F \in \Gamma_{i j}} h_{F}^{-2 \ell_{h}-1}\left\|u_{i}\right\|_{0, F}^{2} \lesssim \sum_{D \in \mathcal{T}_{H}} \sum_{E \subset \partial D} h^{-2 \ell_{h}-1}\|u\|_{0, E}^{2} \tag{5.4}
\end{equation*}
$$

where we have used the shape regularity and quasi-uniformity of the mesh \mathcal{T}_{h}. Therefore, we get

$$
\left|\mathcal{I}_{h}(u, u)\right| \lesssim \sum_{D \in \mathcal{T}_{H}} \sum_{E \subset \partial D} \alpha h^{-2 \ell_{h}-1}\|u\|_{0, E}^{2} .
$$

Analogously, for the BMMPR method, by using (3.1), recalling that on each $F \in \Gamma$,

$$
\left.\|\left[u_{i}\right]\right]\left\|_{0, F}=\right\| u_{i}\left\|_{0, F}, \quad\right\|\left[[u] \| _ { 0 , F } ^ { 2 } = \| \left[\left[R_{i}^{T} u_{i}+R_{j}^{T} u_{j}\right] \|_{0, F}^{2},\right.\right.
$$

we obtain

$$
\begin{aligned}
\left|\mathcal{I}_{h}(u, u)\right| & \lesssim \sum_{F \in \Gamma} \alpha h_{F}^{-2 \ell_{h}-1}\left(\left\|\left[\left[R_{i}^{T} u_{i}+R_{j}^{T} u_{j}\right]\right]\right\|_{0, F}^{2}+\left\|u_{i}\right\|_{0, F}^{2}+\left\|u_{j}\right\|_{0, F}^{2}\right) \\
& \lesssim \sum_{F \in \Gamma} \alpha h_{F}^{-2 \ell_{h}-1}\left(\left\|u_{i}\right\|_{0, F}^{2}+\left\|u_{j}\right\|_{0, F}^{2}\right) \lesssim \sum_{D \in \mathcal{T}_{H} E \subset \partial D} \sum \alpha h^{-2 \ell_{h}-1}\|u\|_{0, E}^{2}
\end{aligned}
$$

where we have also used that

$$
\|\left[\left[R_{i}^{T} u_{i}\right]\left\|_{0, F}^{2}=\right\| u_{i} \boldsymbol{n}_{i}\left\|_{0, F}^{2}=\right\| u_{i} \|_{0, F}^{2} \quad \text { on each } F \in \Gamma\right. \text {, }
$$

and the inequality (5.4). Therefore, for both the DG discretizations, by using the trace inequality (3.3) and the Friedrichs-Poincaré inequality (3.2), we find

$$
\left|\mathcal{I}_{h}\left(u-\widetilde{u}_{0}, u-\widetilde{u}_{0}\right)\right| \lesssim \alpha h^{-\left(2 \ell_{h}+1\right)} \sum_{D \in \mathcal{T}_{H}}\left\|u-\widetilde{u}_{0}\right\|_{0, \partial D}^{2} \lesssim \alpha \frac{H}{h^{2 \ell_{h}+1}} A_{h}(u, u) .
$$

We now estimate the term $A_{0}\left(u_{0}, u_{0}\right)$ (see (5.3)). Notice that, since u_{0} is piecewise constant on \mathcal{T}_{H}, all the terms in $A_{h}\left(\widetilde{u}_{0}, \widetilde{u}_{0}\right)$ vanish except for the stability term $\mathcal{S}_{h}\left(\widetilde{u}_{0}, \widetilde{u}_{0}\right)$. Furthermore, in view of the equivalence (3.1), it is enough to bound the term appearing from the BZ method. Proceeding as in [2, Lemma 4.3], we obtain

$$
A_{h}\left(\widetilde{u}_{0}, \widetilde{u}_{0}\right) \lesssim \alpha\left(1+\frac{H}{h^{2 \ell_{h}+1}}\right) A_{h}(u, u) .
$$

Finally, the first term on the right-hand side in (5.3), $A_{h}\left(u-\widetilde{u}_{0}, u-\widetilde{u}_{0}\right)$, can be bounded by using the Cauchy-Schwarz inequality and the above estimate

$$
A_{h}\left(u-\widetilde{u}_{0}, u-\widetilde{u}_{0}\right) \leq 2\left(A_{h}(u, u)+A_{h}\left(\widetilde{u}_{0}, \widetilde{u}_{0}\right)\right) \lesssim \alpha\left(1+\frac{H}{h^{2 \ell_{h}+1}}\right) A_{h}(u, u) .
$$

Summarizing, we get

$$
\sum_{i=0}^{N} A_{i}\left(u_{i}, u_{i}\right) \lesssim \alpha \frac{H}{h^{2 \ell_{h}+1}} A_{h}(u, u)
$$

and so the proof is complete.
(A2) Local stability. As mentioned in Remark 4.1, for the BZ method, the local solvers are exact, hence inequality (5.1) is actually an identity with $\omega=1$. For the BMMPR method, we next show the following result which provides a one-sided measure of the approximation properties of the local bilinear forms.

Lemma 5.1 (Local stability). Let $A_{h}(\cdot, \cdot)$ be the bilinear form of the BMMPR method, and let $A_{i}(\cdot, \cdot), i=1, \cdots, N$, be the corresponding local bilinear forms. Then, there exists $\omega>0$ such that

$$
\begin{equation*}
A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right) \leq \omega A_{i}\left(u_{i}, u_{i}\right) \quad \forall u_{i} \in V_{h}^{i}, \quad i=1, \cdots, N . \tag{5.5}
\end{equation*}
$$

Proof. The proof easily follows by writing $A_{h}\left(R_{i}^{T} u_{i}, R_{i}^{T} u_{i}\right)=A_{i}\left(u_{i}, u_{i}\right)+\mathcal{G}_{i, 1}\left(u_{i}, u_{i}\right)+$ $\mathcal{G}_{i, 2}\left(u_{i}, u_{i}\right)$ with

$$
\begin{aligned}
& \mathcal{G}_{i, 1}\left(u_{i}, u_{i}\right)=\sum_{F \in \Gamma_{i}} \int_{F} \alpha h_{F}^{-2 \ell_{h}}\left\{\left\{r_{F}\left(\left[\left[R_{i}^{T} u_{i}\right]\right]\right)\right\}\right\} \cdot \boldsymbol{n}_{i} u_{i} \mathrm{~d} s, \\
& \mathcal{G}_{i, 2}\left(u_{i}, u_{i}\right)=\sum_{F \in \Gamma_{i}} \int_{F} \alpha h_{F}^{-2 \ell_{h}} r_{F}^{i}\left(u_{i} \boldsymbol{n}_{i}\right) \cdot \boldsymbol{n}_{i} u_{i} \mathrm{~d} s .
\end{aligned}
$$

Equivalence (3.1) leads to

$$
\begin{aligned}
\left|\mathcal{G}_{i, 1}\left(u_{i}, u_{i}\right)\right| & =\sum_{F \in \Gamma_{i}} \alpha h_{F}^{-2 \ell_{h}}\left\|r_{F}\left(\left[\left[R_{i}^{T} u_{i}\right]\right]\right)\right\|_{0, \Omega}^{2} \\
& \leq C_{2} \sum_{F \in \Gamma_{i}} \alpha h_{F}^{-2 \ell_{h}-1}\left\|u_{i} n_{i}\right\|_{0, F}^{2} \leq C_{2} C_{1}^{-1} A_{i}\left(u_{i}, u_{i}\right)
\end{aligned}
$$

For the term $\mathcal{G}_{i, 2}$, reasoning in the same way and taking into account that each $F \in \Gamma_{i}$ is a boundary face for the local bilinear form, we obtain

$$
\begin{aligned}
\left|\mathcal{G}_{i, 2}\left(u_{i}, u_{i}\right)\right| & =\sum_{F \in \Gamma_{i}} \alpha h_{F}^{-2 \ell_{h}}\left\|r_{F}^{i}\left(u_{i} n_{i}\right)\right\|_{0, \Omega_{i}}^{2} \\
& \leq C_{2} \sum_{F \in \Gamma_{i}} \alpha h_{F}^{-2 \ell_{h}-1}\left\|u_{i} n_{i}\right\|_{0, F}^{2} \leq C_{2} C_{1}^{-1} A_{i}\left(u_{i}, u_{i}\right)
\end{aligned}
$$

The above bounds and standard triangle inequality give (5.5), with $\omega=1+2 C_{2} C_{1}^{-1}$.
Remark 5.1. From Lemma 5.1 it follows that, in general, we cannot guarantee $\omega<2$.
(A3) Strengthened Cauchy-Schwarz inequalities. From our definition of the local solvers and local subspaces, it is straightforward to see that $\varepsilon_{i i}=1$ for $i=1, \cdots, N$. For $i \neq j$, we note that $A_{h}\left(R_{i}^{T} u_{i}, R_{j}^{T} u_{j}\right) \neq 0$ only if $\partial \Omega_{i} \cap \partial \Omega_{j} \neq \varnothing$, so $\varepsilon_{i j}=1$ in those cases, and $\varepsilon_{i j}=0$ otherwise. Then, by setting $\mathcal{E}=\left\{\varepsilon_{i j}\right\}_{1 \leq i, j \leq N}$, the spectral radius of \mathcal{E}, $\rho(\mathcal{E})$, can be bounded by

$$
\rho(\mathcal{E}) \leq \max _{i} \sum_{j}\left|\varepsilon_{i j}\right| \leq 1+N_{c}
$$

where N_{c} is the maximum number of adjacent subdomains that a given subdomain might have.

We have now all ingredients to show the main results of this section.
Theorem 5.1. Let $P_{a d}$ be the additive Schwarz operator corresponding to the $B Z$ or the $B M M P R$ super penalty DG methods. Then, its condition number $\kappa\left(P_{a d}\right)$ satisfies

$$
\begin{equation*}
\kappa\left(P_{a d}\right) \lesssim \alpha\left(1+\omega\left[1+N_{c}\right]\right) \frac{H}{h^{2 C_{n}+1}} \tag{5.6}
\end{equation*}
$$

where ω is the local stability constant in (A2) and N_{c} denotes the maximum number of adjacent subdomains a given subdomain can have.
Proof. Proposition 5.1 implies that $\lambda_{\min }\left(P_{a d}\right)$ is bounded from below by $C_{0}^{-2}=\alpha^{-1} H^{-1} h^{2 \ell_{h}+1}$. In fact, the definition (4.3) of \widetilde{P}_{i} and Cauchy-Schwarz inequality yield

$$
\begin{aligned}
A_{h}(u, u) & =\sum_{i=0}^{N} A_{h}\left(u, R_{i}^{T} u_{i}\right)=\sum_{i=0}^{N} A_{i}\left(\widetilde{P}_{i} u, u_{i}\right) \leq\left(\sum_{i=0}^{N} A_{i}\left(\widetilde{P}_{i} u, \widetilde{P}_{i} u\right)\right)^{1 / 2}\left(\sum_{i=0}^{N} A_{i}\left(u_{i}, u_{i}\right)\right)^{1 / 2} \\
& \leq C_{0}\left(\sum_{i=0}^{N} A_{h}\left(u, R_{i}^{T} \widetilde{P}_{i} u\right)\right)^{1 / 2} A_{h}(u, u)^{1 / 2}=C_{0} A_{h}\left(u, P_{a d} u\right)^{1 / 2} A_{h}(u, u)^{1 / 2}
\end{aligned}
$$

The local stability property and the strengthened Cauchy-Schwarz inequalities imply that $\lambda_{\max }\left(P_{a d}\right)$ is bounded from above by $\omega \rho(\mathcal{E})+1$. In fact,

$$
\begin{aligned}
& A_{h}\left(P_{0} u, u\right) \leq A_{h}\left(P_{0} u, P_{0} u\right)^{1 / 2} A_{h}(u, u)^{1 / 2} \leq A_{h}\left(u, P_{0} u\right)^{1 / 2} A_{h}(u, u)^{1 / 2}, \\
& A_{h}\left(\sum_{i=1}^{N} P_{i} u, u\right) \leq \omega \rho(\mathcal{E}) A_{h}(u, u),
\end{aligned}
$$

from which the desired upper bound for $\lambda_{\max }\left(P_{a d}\right)$ follows by definition. The proof is complete by recalling that $\rho(\mathcal{E}) \leq 1+N_{c}$ where N_{c} is the maximum number of adjacent subdomains that a given subdomain can have.

The multiplicative operator is non-symmetric, and in Theorem 5.2, we show that the energy norm of the error propagation operator E_{N} is strictly less than one. Hence, the spectral radius of E_{N} is strictly less than one, and a simple Richardson iteration applied to the preconditioned system converges.

Theorem 5.2. Let $A_{h}(\cdot, \cdot)$ be the bilinear form of the $B Z$ super penalty $D G$ method, and let $P_{m u}$ be its multiplicative Schwarz operator. Then,

$$
\left\|E_{N}\right\|_{A}^{2}=\sup _{\substack{u \in V_{h} \\ u \neq 0}} \frac{A_{h}\left(E_{N} u, E_{N} u\right)}{A_{h}(u, u)} \leq 1-\frac{1}{C \alpha\left(1+2\left(N_{c}+1\right)^{2}\right)} \frac{h^{2 \ell_{h}+1}}{H}<1 .
$$

For the sake of conciseness we omit the proof. We note however that, once the properties (A1), (A2) and (A3) are shown, the proof follows by proceeding as in [3].

Remark 5.2. The classical Schwarz theory for multiplicative methods relies upon the hypothesis that the local stability constant $\omega<2$. In view of Remark 5.1 (see also Lemma 5.1), for the BMMPR method our convergence analysis can not be applied to theoretically explain the optimal performance numerically observed.

Remark 5.3. Theorem 5.1 guarantees that the additive Schwarz preconditioner can be successfully accelerated with the CG iterative solver. Analogously, thanks to Theorem 5.2 the multiplicative Schwarz method can indeed be accelerated with the GMRES linear solver (see [9] for details).

6 Numerical results

We take $d=2, \Omega=(0,1) \times(0,1)$, and we choose f so that the exact solution of the Poisson problem with non-homogeneous boundary conditions is given by $u(x, y)=\exp (x y)$. We consider subdomain partitions made of $N=4,16$ squares. The initial coarse and fine refinements consist of 2^{4} and 2^{8} squares, respectively, with corresponding initial mesh sizes given by $H_{0}=1 / 2^{2}$ and $h_{0}=1 / 2^{4}$. For $n=1,2,3$, we consider n successive global uniform

Table 1: BZ method $(\alpha=1), \ell_{h}=\ell_{H}=1$.

	$\kappa\left(\mathbf{B}_{a d} \mathbf{A}\right), N=4$			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	$7.4360 \mathrm{e}+01$	$6.5867 \mathrm{e}+02$	$5.4275 \mathrm{e}+03$	$4.3961 \mathrm{e}+04$
$H_{0} / 2$	-	$2.9770 \mathrm{e}+02$	$2.6825 \mathrm{e}+03$	$2.2254 \mathrm{e}+04$
$H_{0} / 4$	-	-	$1.1944 \mathrm{e}+03$	$1.0771 \mathrm{e}+04$
$H_{0} / 8$	-	-	-	$4.7526 \mathrm{e}+03$
$\kappa(\mathbf{A})$	$1.7321 \mathrm{e}+03$	$2.6835 \mathrm{e}+04$	$4.2604 \mathrm{e}+05$	$6.8037 \mathrm{e}+06$

	$\kappa\left(\mathbf{B}_{a d} \mathbf{A}\right), N=16$			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	$8.1843 \mathrm{e}+01$	$7.4657 \mathrm{e}+02$	$6.1084 \mathrm{e}+03$	$4.8324 \mathrm{e}+04$
$H_{0} / 2$	-	$2.9355 \mathrm{e}+02$	$2.6374 \mathrm{e}+03$	$2.1707 \mathrm{e}+04$
$H_{0} / 4$	-	-	$1.1828 \mathrm{e}+03$	$1.0770 \mathrm{e}+04$
$H_{0} / 8$	-	-	-	$4.7833 \mathrm{e}+03$
$\kappa(\mathbf{A})$	$1.7321 \mathrm{e}+03$	$2.6835 \mathrm{e}+04$	$4.2604 \mathrm{e}+05$	$6.8037 \mathrm{e}+06$

refinements of these initial grids. For the sake of brevity we only report results obtained on Cartesian grids; analogous experiments were run on structured and unstructured triangular refinements, and the same orders have been observed. The preconditioned linear systems of equations have been solved with the CG and GMRES iterative solvers for the additive and multiplicative methods, respectively. The (relative) tolerance is set to 10^{-12}.

We first address the scalability of the additive Schwarz method, i.e., the independence of the convergence rate of the number of subdomains. In Table 1, for the BZ method ($\alpha=1$), we compare the condition number estimates obtained with $N=4,16$, and $\ell_{h}=$ $\ell_{H}=1$. The dashes mean that the coarse partition is not strictly included in the fine one, and in those cases it is meaningless to build the preconditioner. The condition number estimates for the non preconditioned systems are shown in the last row. As stated in Theorem 5.1, our preconditioner seems to be insensitive on the number of subdomains, and, as expected, a convergence rate of order $\mathcal{O}\left(H / h^{3}\right)$ is clearly observed.

In Table 2, with $N=16$ and $\ell_{h}=\ell_{H}=2$, we show the condition number estimates and the CG iteration counts (between parenthesis) of the additive Schwarz method for the BZ discretization $(\alpha=1)$. The cross in the last row of Table 2 means that we were not able to solve the non preconditioned system due to excessive computational requirements. Observe that, in agreement with Theorem 5.1, the condition number grows as $\mathcal{O}\left(H / h^{5}\right)$.

Next, we show the GMRES iteration counts computed by using the multiplicative preconditioner ($N=16, \alpha=1$ and $\ell_{H}=\ell_{H}=1$). For the BZ method (Table 3, left) the result reported confirm the convergence result given in Theorem 5.2. For the BMMPR method (Table 3, right) our numerical results indicate that the multiplicative preconditioner can be indeed efficiently accelerated with the GMRES iterative solver. A theoretical justification of this behavior is still an open question.

Table 2: BZ method $(\alpha=1), N=16, \ell_{h}=\ell_{H}=2$.

	$\kappa\left(\mathbf{B}_{a d} \mathbf{A}\right)$ and CG iteration counts			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	$1.2018 \mathrm{e}+04(\mathbf{8 8})$	$3.8554 \mathrm{e}+05(\mathbf{1 7 6})$	$1.1731 \mathrm{e}+07(\mathbf{2 5 9})$	$4.7145 \mathrm{e}+07(\mathbf{3 3 9})$
$H_{0} / 2$	-	$1.9072 \mathrm{e}+05(\mathbf{1 1 0})$	$5.9690 \mathrm{e}+06(\mathbf{1 9 3})$	$7.2780 \mathrm{e}+07(\mathbf{2 6 4)}$
$H_{0} / 4$	-	-	$2.8401 \mathrm{e}+06(\mathbf{1 3 3})$	$5.9919 \mathrm{e}+07(\mathbf{1 9 8)}$
$H_{0} / 8$	-	-	-	$3.4564 \mathrm{e}+07(\mathbf{1 1 9)}$
$\kappa(\mathbf{A})$	$5.6358 \mathrm{e}+05(739)$	$3.5640 \mathrm{e}+07(\mathbf{1 9 2 2})$	$2.2742 \mathrm{e}+09(4409)$	x

Table 3: BZ and BMMPR methods $(\alpha=1), \mathbf{B}_{m u} \mathbf{A}$, GMRES iteration counts, $N=16, \ell_{h}=\ell_{H}=1$.

	BZ method				BMMPR method			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	23	39	56	63	11	44	55	55
$H_{0} / 2$	-	21	31	38	-	23	32	25
$H_{0} / 4$	-	-	17	22	-	-	16	17
$H_{0} / 8$	-	-	-	11	-	-	-	10
$\#$ iter(A)	129	363	848	1841	129	363	848	1841

Table 4: BZ method, $N=16, \ell_{h}=\ell_{H}=1$.

	$\kappa\left(\mathbf{B}_{a d} \mathbf{A}\right), \alpha=2$			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	$1.6051 \mathrm{e}+02$	$1.4882 \mathrm{e}+03$	$1.2346 \mathrm{e}+04$	$9.6452 \mathrm{e}+04$
$H_{0} / 2$	-	$5.8421 \mathrm{e}+02$	$5.2702 \mathrm{e}+03$	$4.3160 \mathrm{e}+04$
$H_{0} / 4$	-	-	$2.3627 \mathrm{e}+03$	$2.1537 \mathrm{e}+0$
$H_{0} / 8$	-	-	-	$9.5636 \mathrm{e}+03$
$\kappa(\mathbf{A})$	$3.4334 \mathrm{e}+03$	$5.3555 \mathrm{e}+04$	$8.5163 \mathrm{e}+05$	$1.3606 \mathrm{e}+07$

	$\kappa\left(\mathbf{B}_{a d} \mathbf{A}\right), \alpha=10$			
$H \downarrow h \rightarrow$	h_{0}	$h_{0} / 2$	$h_{0} / 4$	$h_{0} / 8$
H_{0}	$7.8989 \mathrm{e}+02$	$7.3904 \mathrm{e}+03$	$5.9308 \mathrm{e}+04$	$4.7884 \mathrm{e}+05$
$H_{0} / 2$	-	$2.8889 \mathrm{e}+03$	$2.6060 \mathrm{e}+04$	$2.1566 \mathrm{e}+05$
$H_{0} / 4$	-	-	$1.1730 \mathrm{e}+04$	$1.0735 \mathrm{e}+05$
$H_{0} / 8$	-	-	-	$4.6917 \mathrm{e}+04$
$\kappa(\mathbf{A})$	$1.7045 \mathrm{e}+04$	$2.6731 \mathrm{e}+05$	$4.2564 \mathrm{e}+06$	$6.8022 \mathrm{e}+07$

Finally, always with $N=16$, we compare the condition number estimates of the additive Schwarz operator obtained for the BZ method with $\ell_{h}=\ell_{H}=1$, and by choosing $\alpha=2$ (Table 4, top) and $\alpha=10$ (Table 4, bottom). From the results in Table 4 (see also Table 1 (bottom)) it is clear that, as predicted in Theorem 5.1, the condition number of the preconditioned system linearly depends on the value of the penalty parameter.

Acknowledgments

The work was carried out while the second author was visiting the Istituto di Matematica Applicata e Tecnologie Informatiche of the CNR in Pavia. She thanks the Institute for the kind hospitality. The first author has been supported by ADIGMA project within the 3rd Call of the 6th European Research Framework Programme. The second author has been supported by MTM2005-00714 of the Spanish MEC and by SIMUMAT of CAM.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
[2] P. F. Antonietti and B. Ayuso, Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case, Math. Model. Numer. Anal., 41(1) (2007), 21-54.
[3] P. F. Antonietti and B. Ayuso, Multiplicative Schwarz methods for discontinuous Galerkin approximations of elliptic problems, Math. Model. Numer. Anal., 42(3) (2008), 443-469.
[4] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19(4) (1982), 742-760.
[5] I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 10 (1973), 863-875.
[6] S. C. Brenner and L. Owens, A W-cycle algorithm for a weakly over-penalized interior penalty method, Comput. Methods Appl. Mech. Engrg., 196(37-40) (2007), 3823-3832.
[7] S. C. Brenner and L. Owens, A weakly over-penalized non-symmetric interior penalty method, JNAIAM J. Numer. Anal. Ind. Appl. Math., 2(1-2) (2007), 35-48.
[8] F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Part. Diff. Eq., 16(4) (2000), 365-378.
[9] X.-C. Cai and O. B. Widlund, Multiplicative Schwarz algorithms for some nonsymmetric and indefinite problems, SIAM J. Numer. Anal., 30(4) (1993), 936-952.
[10] P. Castillo, Performance of discontinuous Galerkin methods for elliptic PDEs, SIAM J. Sci. Comput., 24(2) (2002), 524-547 (electronic).
[11] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Co., Amsterdam, 1978.
[12] X. Feng and O. A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal., 39(4) (2001), 1343-1365 (electronic).
[13] A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory, Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005.

[^0]: *Corresponding author. Email addresses: paola.antonietti@polimi.it (P. F. Antonietti), blanca.ayuso@ uam.es (B. Ayuso)

