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Abstract. An application of recent uncertainty quantification techniques to Wind En-
gineering is presented. In particular, the study of the effects of small geometric changes
in the Sunshine Skyway Bridge deck on its aerodynamic behavior is addressed. This
results in the numerical solution of a proper PDE posed in a domain affected by ran-
domness, which is handled through a mapping approach. A non-intrusive Polyno-
mial Chaos expansion allows to transform the stochastic problem into a deterministic
one, in which a commercial code is used as a black-box for the solution of a number
of Reynolds-Averaged Navier-Stokes simulations. The use of proper Gauss-Patterson
nested quadrature formulas with respect to a Truncated Weibull probability density
function permits to limit the number of these computationally expensive simulations,
though maintaining a sufficient accuracy. Polynomial Chaos approximations, statisti-
cal moments and probability density functions of time-independent quantities of in-
terest for the engineering applications are obtained.
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1 Introduction

Wind Engineering models incorporate various parameters which are or potentially may
be affected by uncertainty; they concern both the fluid-dynamic and the structural com-
ponents of each model. The study of the wind field has indeed been approached over the
years by statistical models based on observation data. On the other hand, until recently,
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the study of the aerodynamic and aeroelastic behavior of structures has been mostly ac-
complished by deterministic approaches. Yet, geometric uncertainties may dramatically
influence the reliability of the model. For instance, as in Aerospace Engineering [11], ran-
dom discrepancies between the ideal geometries conceived in the design phase and their
actual realization tested in wind tunnels may lead to significant variations in the result-
ing flow field. The development of efficient tools for the uncertainty quantification of the
response of structures is therefore an important task for Wind Engineering.

From the mathematical point of view, geometric uncertainties lead to the formula-
tion of boundary value problems in random domains. As an alternative to expensive
Monte-Carlo techniques, the transformation of such problems into deterministic ones by
an appropriate change of unknowns allows their discretization by standard numerical
methods. Karhunen-Loeve (KL) and Polynomial Chaos (PC) expansions [9, 19] provide
the mathematical ground for these transformations. Different methodologies have been
explored in the recent literature for handling the randomness of the domain; they include
the mapping of each random domain to a reference domain [4,11,14,20], the inclusion of
the random domains into a fictitious domain to which the PDE is extended [3], the solu-
tion of the deterministic PDEs satisfied by the moments of the variables of interest [10]. In
the Wind Engineering applications the number of the random variables is usually fairly
small (thus the use of sparse methods is not mandatory). On the other hand, the compu-
tational cost of a single simulation on a given realization of the random domain is so high
that non-intrusive/collocation methods are practically unavoidable. Within them, the se-
lection of the interpolation/collocation grids is critical to achieve an acceptable balance
between cost and accuracy.

This paper is a step of an ongoing project aiming at describing a set of stochastic
effects on bridges [6]. Here we isolate a single input random variable related to the bridge
deck cross-section (the curvature radius of the lower surface’s corners) and we investigate
its effects on the statistics of some relevant time-averaged integral quantities of the flow.

We compute the approximate PC with respect to a Truncated Weibull probability den-
sity function, and the associated family of nested Gauss-Patterson formulas. They are
used in the reconstruction of finite PC expansions from the outputs of a limited number
of Reynolds-Averaged Navier-Stokes simulations.

We give an application to the case study of the Sunshine Skyway Bridge deck. Two
incident turbulence regimes give rise to two different patterns of the PC expansion. In
both cases, sufficiently accurate PC approximations are obtained.

2 Mathematical setting

In order to present the mathematical setting that will be used in the Wind Engineering
application, we first consider a linear scalar model, which is representative of some of the
relevant features of the subsequent model without being affected by its complications.

Let (Ω,F ,P) be a probability space, where Ω is the state space, F is the σ-algebra of
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the events and P is the probability measure. For any ω ∈ Ω, let D̃(ω)⊆ D∗ ⊂ R
d be a

given bounded domain, whose Lipschitz boundary ∂D̃(ω) depends on ω; D∗ is a fixed
domain. We assume that Γ̃(ω) depends on ω through the values yq = Yq(ω), 1 ≤ q ≤
Q, of Q independent random variables with zero mean and unit variance, distributed
according to density functions ρq(yq) defined in intervals Iq ⊆R and strictly positive in
their interiors. Setting

y=(yq)1≤q≤Q, I =
Q

∏
q=1

Iq, ρ(y)=
Q

∏
q=1

ρk(yq),

the random domains D̃(ω), ω ∈ Ω, can be parametrized by y ∈ I: thus, from now on
we will set D(y) = D̃(ω) if y = (Y1(ω),··· ,YQ(ω)). Similarly, a function ũ = ũ(D̃(ω))
depending on D̃(ω) will be denoted by u(y).

Let us fix y∈ I and set D = D(y) for shortness. Assume that its boundary Γ = ∂D be
divided into a non-empty Dirichlet part ΓDir and a complementary Neumann part ΓNeu.
We consider the time-periodic advection-diffusion problem















ut−∆u+β·∇u= f in D, t∈R,

u=0 on ΓDir,
∂u

∂n
=0 on ΓNeu, t∈R,

u(t+T)=u(t), t∈R.

(2.1)

Here, T>0 is a fixed period, β and f are T-periodic time-dependent functions defined on
D∗ (hence, independent of y) such that β∈L∞(0,T;(W1,∞(D∗))d) and f ∈L2(0,T;L2(D∗)).
We assume that a.e. in time

∇·β=0 in D and β·n≥0 on ΓNeu,

where n denotes the outward unit normal vector to Γ. Setting

H1
Dir(D)={v∈D : v=0 on ΓDir},

the existence and uniqueness of a time-periodic variational solution u satisfying u ∈
L2(0,T;H1

Dir(D)) and ut ∈ L2(0,T;(H1
Dir(D))′) follows from the uniform (in t) continuity

and coercivity of the bilinear form

a(t;w,v)=
∫

D
(∇w ·∇v+β(t)·∇w v) in H1

Dir(D)

(see [12], Thm. 6.1). We denote such solution by u(y) and we assume that its dependence
on y is sufficiently smooth (see below).

We are interested in computing statistics of time averages of functions or functionals
derived from u(y): For instance, if L(y):H1

Dir(D(y))→R is a linear continuous functional,
we consider the variable η : I→R defined as

η(y)=
1

T

∫ T

0
L(y)u(t,y)dt. (2.2)
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2.1 The mapping approach

Mapping each problem (2.1) defined in D(y) onto an equivalent problem defined in a
fixed domain D̂ may help the theoretical analysis of the PC approximation, as well as
the computation of statistical quantities. We stress, however, that we invariably solve
numerically the problems on the physical domains.

Let D̂⊂R
d be a bounded domain with Lipschitz boundary Γ̂ partitioned into a non-

empty Dirichlet part Γ̂Dir and a complementary Neumann part Γ̂Neu. For any y ∈ I,
let γ(y) : Γ̂ → Γ(y) be a smooth invertible mapping, such that γ(y)(Γ̂Dir) = ΓDir(y) and
γ(y)(Γ̂Neu)= ΓNeu(y). Let us extend γ(y) to the interior of D̂, getting a mapping Φ(y) :

D̂→D(y), i.e.,
Φ(x̂,y)= x, such that Φ(y)|Γ̂ =γ(y).

We assume that Φ(y) is an invertible C1-mapping in D̂, such that the determinant |JΦ(x̂,y)|
of its Jacobian matrix JΦ(x̂,y)= Dx̂Φ(x̂,y) satisfies

0< c1 ≤|JΦ(x̂,y)|≤ c2 <+∞ ∀x̂∈ D̂, (2.3)

for constants c1 and c2 independent of y∈ I. Let Ψ(y) : D(y)→ D̂ be the inverse mapping
Ψ(y)=(Φ(y))−1, which enjoys similar properties.

It is easily seen that Problem (2.1) in D(y) is equivalent to the following problem in
D̂:















ût−∇̂· Â∇̂û+ β̂·∇̂û= f̂ in D̂, t∈R,

û=0 on Γ̂Dir,
∂û

∂n̂A
=0 on Γ̂Neu, t∈R,

û(t+T)= û(t), t∈R,

(2.4)

where ∇̂ is the gradient with respect to the variable x̂,

Â(x̂,y)= |JΦ(x̂,y)| JΨ(x,y)JΨ(x,y)T

with

x=Φ(x̂,y), β̂(x̂,t,y)= |JΦ(x̂,y)| JΨ(x,y)β(x,t),

f̂ (x̂,t,y)= |JΦ(x̂,y)| f (x,t),
∂û

∂n̂A
= n̂· Â∇̂û.

The two solutions are related by the identity u(x,t,y)= û(x̂,t,y).
Under the above assumptions, one has ‖û(y)‖X̂ ≤C for all y∈ I, where

X̂ ={v̂∈L2(0,T;H1
Dir(D̂)) : v̂t∈L2(0,T;(H1

Dir(D̂))′)}

equipped with the graph norm. In particular, this implies

û∈L2
ρ(I;X̂)={v̂ : I→ X̂ :

∫

I
‖v̂(y)‖2

X̂
ρ(y)dy<∞}.
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Furthermore, averages like (2.2) belong to L2
ρ(I)= L2

ρ(I;R).

If Φ(y) depends smoothly upon y∈ I in the C1(D̂)-norm, then the coefficients and the
right-hand side which appear in (2.4) depend smoothly upon y in the appropriate norms.
In turn, this implies (see [1,3,17] for similar results) that û(y) inherits the same degree of
smoothness in y as Φ(y), with respect to the X̂-norm.

2.2 Non-intrusive Polynomial Chaos approximations

We now introduce the Polynomial Chaos expansion of such variables as û(y) or η(y)
defined above, as well as certain non-intrusive approximations of them.

Let us assume that, for each q = 1,··· ,Q, the space L2
ρ(I) contains all the algebraic

polynomials on I. Then, by the assumptions on the densities ρq(yq), there exists a family

of polynomials {ϕ
(q)
k }k∈N which is orthonormal with respect to the inner product

(u,v)ρq =
∫

Iq

u(yq)v(yq)ρq(yq)dyq

and complete in L2
ρq

(Iq); in addition, degϕ
(q)
k = k for all k. By tensorization, we obtain

an orthonormal and complete family {ϕk}k∈K of multivariate polynomials in L2
ρ(I); here,

K=N
Q. Thus, we have the Polynomial Chaos expansions

û(y)= ∑
k∈K

ûk ϕk(y), or η(y)= ∑
k∈K

η̂k ϕk(y),

with ûk = ûk(x,t)=(û,ϕk)ρ ∈ X̂, or η̂k =(η,ϕk)ρ ∈R. With no loss of generality, the subse-
quent discussion will be focussed on the function η(y) only.

In order to obtain easily computable approximations of η, let us introduce M distinct
points yj∈ I, with j∈JM (a set of indices of cardinality M). We assume that there exists an
M-dimensional space SM=span{ϕk : k∈KM⊂K} for which the set {yj}j∈JM

is unisolvent,
i.e., the matrix (ϕk(yj))k∈KM,j∈JM

is nonsingular. Then, after computing the quantities
η(yj), j∈JM, in a non-intrusive way, i.e., by solving M independent problems (2.1) and
applying (2.2), we can approximate η by its interpolant

IMη(y)= ∑
k∈KM

η̃k ϕk(y), defined by IMη(yj)=η(yj) ∀j∈JM . (2.5)

This can be viewed as a particular form of collocation method. An equivalent point of
view is as follows: let us choose weights ρj >0, j∈JM, and let us define the bilinear form

(u,v)ρ,M = ∑
j∈JM

u(yj)v(yj)ρj,

which is indeed an inner product on SM. Then, IMη satisfies (IMη,λ)ρ,M =(η,λ)ρ,M for all
λ∈SM, i.e., IMη is the orthogonal projection of η upon SM with respect to such discrete
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inner product, and the coefficients η̃k are the solutions of the linear system

∑
k∈KM

η̃k(ϕk,ϕl)ρ,M =(η,ϕl)ρ,M ∀l∈KM. (2.6)

A common way to select the nodes and weights yj, ρj is to require that they define a
quadrature formula for the measure ρ(y)dy with sufficiently high polynomial exactness.
So we can assume that there exists a nonempty maximal subset K′

M ⊆ KM such that
(ϕk,ϕl)ρ,M =(ϕk,ϕl)ρ =0 for all k,l∈K′

M , k 6= l. Setting

S′
M =span{ϕk : k∈K′

M}⊆SM,

we can define the orthogonal projection P′
M upon S′

M with respect to the discrete inner
product, i.e.,

P′
Mη(y)= ∑

k∈K′
M

η̌k ϕk(y), with η̌k =
(η,ϕk)ρ,M

(ϕk,ϕk)ρ,M
. (2.7)

P′
Mη is again a computable approximation of η, possibly different from IMη. The set K′

M

contains the subset

K′′
M ={l∈KM : (ϕk,ϕl)ρ,M =0 ∀k∈KM , k 6= l}.

The linear system (2.6) has a diagonal block corresponding to K′′
M, i.e.,

η̃l =
(η,ϕl)ρ,M

(ϕl,ϕl)ρ,M
= η̌l , ∀l∈K′′

M, (2.8)

whereas in general the block corresponding to KM\K′′
M is non-diagonal.

The approximation properties of the operators IM and P′
M as M→∞ depend on the

specific choice of the space SM and the nodes
{

yj

}

j∈JM
.

3 Application and results

The case study of the Sunshine Skyway Bridge (Fig. 1) deck is addressed in this section.
Large differences between the time-averaged forces acting on the design deck section
(with sharp edges, Fig. 2) and the wind tunnel model (with rounded edges, due to the
manufacturing technology) have been observed, both by experimental tests and compu-
tational simulations [13, 16].

The aim of the work is to introduce a suitable random variable in order to describe
this geometric uncertainty and to apply the techniques of Section 2 to the quantification
of its effects on some engineering relevant parameters. Wind tunnel section models can
be realized by bending aluminum sheets to replicate a bridge deck segment. This may
lead to rounded edges instead of ideal project sharp edges. Rounded edges in the lower
surface are considered in the following (Fig. 2). A curvature radius 0.01B< R∗

<0.05B is
studied, where B is the chord of the deck cross section.
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Figure 1: The Sunshine Skyway Bridge (Tampa, Florida).

r.v.: bending

2R
∗

Figure 2: Actual Sunshine Skyway Bridge deck cross section (from [16]) and rounded corner involved by the
bending of the aluminum sheet.

3.1 Flow modelling

The turbulent flowfield around the 2D section is modeled by the classical time-dependent
Navier-Stokes equations, along with the k−ω turbulence model, posed in a random do-
main D(R∗). The Reynolds number is considered to be Re=UB/ν=5.76e5, where U is the
incoming flow velocity and ν the kinematic viscosity, accordingly with the experimental
setups. Dirichlet conditions on the velocity field and on the turbulence characteristic
quantities (k and ω) are imposed at the inlet boundaries. Neumann conditions involving
the velocity field and the pressure (null normal component of the stress tensor) as well
as the same Dirichlet conditions on k and ω are imposed at the outlet boundaries. No-
slip conditions are imposed at the section surface. The values of k and ω can be more
easily determined throughout two other quantities to which usually experimental setups
refer to, turbulence intensity It and turbulence characteristic length scale Lt. The value
It = 0.01 is fixed for the first, while two different values Lt = 1 and Lt = 0.001 will be
considered in the following for the second. Impulsive initial conditions are introduced.

Bearing in mind that the non-intrusive approach allows every collocation subproblem
to be evaluated on the physical domain (see Section 2), a commercial software can be
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Figure 3: Different realizations of the lower surface corner, from the maximal value R∗=0.05B (on the left) to
the minimal value R∗=0.01B (on the right) of the curvature radius R∗.

used as a black-box in order to solve the above equations for every required realization
of D(R∗). Some of these realizations are shown in Fig. 3.

The commercial Finite Volume solver Fluent R© is used in the following to numerically
evaluate the flowfield. A description of the numerical method can be found for instance
in [5]. A hybrid quadrilateral/triangular grid is employed. The cell-center values of
the variables are interpolated at face locations using a second order Central Difference
Scheme for the diffusive terms on all the elements and Quadratic Upwind Interpolation
for Convective Kinematics (QUICK) and second-order Upwind Scheme (2UPW) for the
convection terms on quadrilateral and triangular cells, respectively. Advancement in
time is accomplished by the two-step Backward Differentiation Formulae (BDF) method.

The flowfield is characterized by an unsteady vortex shedding in the wake, along
with possible separation and reattachment of the boundary layer on the upper and lower
surfaces of the section. A numerical and physical transitory has to be simulated for every
domain realization, until a time-periodic behavior is reached. Then, the corresponding
flowfield has to be simulated for a sufficient time in order to compute the time statistics of
interest for engineering applications, such as time statistics of pointwise (time-averaged
pressure coefficient) or integral (Strouhal number, time-averaged forces) parameters.

Computations were carried out on a single Intel Xeon X5355 2.66GHz CPU with 2GB
of memory. Every computational grid consists of about 243.000 cells. The timestep
needed for an accurate advancement in time is ∆t = 0.01. The transient and periodic
parts are then sufficiently covered with 6000 timesteps, thus resulting in about 60 hours
of CPU time for each realization.

In this paper, the only parameter of stochastic interest will be R∗. A more complete
investigation of the set of uncertain parameters will be presented in [6].

3.2 Polynomial Chaos characterization of time independent quantities

We consider the normalized radius R=R∗/B as our input random variable. Precisely, we
introduce a random variable Y which is distributed according to the following probability
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Figure 4: Truncated Weibull probability density function (on the left) and corresponding Gaussian quadrature
nodes (on the right). The vertical dashed line confines the interval of truncation.

density function (pdf):

ρ(y|α,β)= cβα−β xβ−1e−(x/α)β
χ[0,0.04](y), (3.1)

which is a truncation of the classical Weibull density to the interval I = [0,0.04]. The
truncation is motivated by the subsequent interest in using collocation nodes only in the
interval of variation of R. The parameters are chosen to be α=0.0186 and β=2, whereas c
is the normalization coefficient relative to I. The pdf for such a choice of the parameters is
plotted in Fig. 4 (on the left). The curvature radius R of the lower surface corners is then
assumed to be the random variable R=0.01+Y. Its values depend on y as R(y)=0.01+y.

A family of orthonormal polynomials {ϕk(y)} , k≥0, w.r.t. ρ(y) exists, as mentioned in
Section 2; the coefficients of the three-term recursive relation, as well as the corresponding
n-point Gaussian quadrature formulas can be constructed, following [7]. An example of
Gaussian nodes w.r.t. the truncated pdf is shown in Fig. 4 (on the right), compared with
the nodes of the Gaussian formula w.r.t. the classical Weibull pdf. Note that already
for n = 5 the rightmost node of the latter formula is outside the interval of interest. The
approximation properties of the polynomials {ϕk(y)}k≥0 are similar to those of the Jacobi

polynomials
{

P
(0,1)
k (y)

}

k≥0
. In particular, truncation and interpolation yield spectrally

accurate approximations of smooth functions (see [2, 19]).
However, bearing in mind the cost of a single node evaluation, i.e., about 60 hours, a

family of less accurate, but nested, quadrature formulas is indeed preferred when subse-
quent levels of approximation are required. A family of nested quasi-Gaussian formulas
w.r.t. the Truncated Weibull density ρ has been constructed using the classical Patterson
algorithm [15], starting from the Gaussian 3-point formula. Such quadrature formulas
represent the optimal extension of a n-point rule to a 2n+1-point one. The 2n+1-point
rule is 3n+1 precise. The corresponding quadrature nodes are plotted in Fig. 5. The
flowfield evaluation is then performed for one set of such quadrature nodes.

Among the output random variables of interest, we first consider the time-averaged
Lift Coefficient CL = CL(R) and the Strouhal number St = St(R). The Lift Coefficient CL
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0 0.0063 0.0181 0.0323 0.04

3

7
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n

Gauss−Patterson−Weibull quadrature nodes

Figure 5: Gauss-Patterson quadrature nodes w.r.t. the Truncated Weibull probability density function.

is defined as the non-dimensional force acting on the bridge deck cross section in the
vertical direction and is obtained by integration of the vertical component of the stress
tensor

T=−pI+
1

Re
∇u

along the section’s wall Σ:

CL(t)=
1

1
2 ρU2B

∫

Σ
T(x,t)· ĵ dσ, (3.2)

where ρ is the density of the fluid, U is the horizontal incident velocity and ĵ is the unit
vector in the vertical direction.

The Strouhal number is defined as St= fsD/U, where fs is the main frequency of the
vortex shedding. The latter can be identified from CL by a frequency analysis, defining it
as the frequency corresponding to the maximum of the power spectrum of CL.

The values of the random variable CL(R) are given by CL(R(y)), y ∈ [0,0.04]. For
simplicity we will denote by CL(y) the function y 7→CL(R(y)). Similarly, St(y) will denote
the function y 7→ St(R(y)). We now resort to a Polynomial Chaos expansion of these
variables, i.e., we write

CL(y)=
∞

∑
k=0

ĉk ϕk(y), St(y)=
∞

∑
k=0

ŝk ϕk(y). (3.3)

Note that CL and St are obtained by time-averages, i.e., they do not depend on time. A
Polynomial Chaos description of the time dependent variables is therefore not needed
for the aim of the present work.

We compute the values of CL and St at the nodes of one of the Gauss-Patterson for-
mulas mentioned above. Let M= N+1 be the number of nodes, i.e., with the notation of
Section 2, we set KM =KN+1 = {0,··· ,N}. Then, we replace (3.3) by their interpolants at
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Figure 6: Physics of the flow at Lt=1. Vortical structures in the wake.

these nodes, i.e., we compute

IN+1CL(y)=
N

∑
k=0

c̃k ϕk(y), IN+1St(y)=
N

∑
k=0

s̃k ϕk(y), (3.4)

as introduced in (2.5). Let 2P= 3
2 N+1 (which is always an even integer, since N is twice

an odd integer) be the order of precision of the N+1-point quadrature formula; then, let
K′

N+1 ={0,··· ,P}. Approximate truncated Polynomial Chaoses of order P can be defined
by the orthogonal projection P′

N+1 with respect to the discrete scalar product (see (2.7)) as

P′
N+1CL(y)=

P

∑
k=0

čk ϕk(y), P′
N+1St(y)=

P

∑
k=0

šk ϕk(y). (3.5)

At last, we have K′′
N+1={0,··· ,L}, with L=2P−N= 1

2 N+1, i.e., c̃l = čl, s̃l = šl, for 0≤ l≤L.

3.3 High incoming turbulence length scale

The flowfield around the bridge deck cross section shows slightly different characteristics
at varying R in the Lt =1 case, as shown in Fig. 6. Vortices are shed from the upper sur-
face only, for both large and small corner curvature radius. The distance L between the
vortices’ centers is proportional to fs, i.e., St ∝ 1/L. For larger R this distance decreases,
thus leading to a higher St.

A regular decay of about 30% takes place for the computed time-averaged lift coeffi-
cient CL, when passing from R=0.012 to R=0.048 (Fig. 7, on the left), making an analysis
of these variations of great interest for Engineering. Polynomial Chaos approximations
for N =6 are shown in the same figure, concerning both the interpolant I7CL∈P6(I) and
the projection P′

7CL∈P5(I). The overall dependence on R is smooth, although small high-
frequency oscillations are present, probably due to model and numerical errors in the
evaluations of the flowfields. This is reflected by the behavior of the Polynomial Chaos
coefficients, reported in Fig. 7, on the right: the first four coefficients decay at an expo-
nential rate, whereas the last ones indicate the presence of non-negligible high-frequency
components.
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7CL (left) and their

coefficients c̃k (circles) and čk (crosses) (right).
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Figure 8: Strouhal number St at Lt=1. PC approximations I7St and P′
7St (left) and their coefficients s̃k (circles)

and šk (crosses) (right).

Similarly, the Strouhal number increases of about 20% from the smallest considered
radius to the highest (Fig. 8, on the left). High frequency oscillations are still present
(although less pronounced than for the previous quantity), as evidenced by the values of
the coefficients of the higher order terms (Fig. 8, on the right).

Mapping the physical domain, or at least a portion of it, on a reference domain is
essential in the case of physical space dependent quantities, such as the time-averaged
pressure coefficient Cp=2(p−p∞)/qU2. For instance, the lower surface of the bridge deck
cross section in the case R=0.05 is chosen as reference frame in the following. Mean and
variance for the time-averaged Cp on the lower surface (actually a curve) are shown in
Fig. 9. Note that the abscissa s/B is a spatial parametrization of this curve, not a random
variable.

Finally, the probability density function of some quantity of interest can be obtained
from the Polynomial Chaos expansion. One possible way to accomplish this goal is the
simulation technique: a set of realizations of the random variables Yi is generated using
an appropriate method. Then a statistical density for the corresponding values of the PC



C. Canuto and D. Fransos / Commun. Comput. Phys., 5 (2009), pp. 515-531 527

1.4 1.45 1.5 1.55 1.6 1.65 1.7
−3

−2.5

−2

−1.5

−1

−0.5

0

s/B

m
ea

n
Time−averaged Cp at the wall, Lower Surface

I
7

1.4 1.45 1.5 1.55 1.6 1.65 1.7
0

0.02

0.04

0.06

0.08

0.1

0.12

s/B

va
ria

nc
e

Time−averaged Cp at the wall, Lower Surface

I
7

Figure 9: Time-averaged pressure coefficient Cp at Lt = 1. Mean (left) and variance (right) obtained by the

Polynomial Chaos interpolation I7Cp on a reference lower surface.
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CL (left) and Strouhal number St (right).

expansion is estimated. In the case of the Truncated Weibull random variables, a rejection
method is applied in order to accomplish the random number generation. The resulting
pdfs for the Strouhal number and the Lift Coefficient are plotted in Fig. 10.

3.4 Low incoming turbulence length scale

Two completely different flow regimes are put in evidence in the Lt = 0.001 case. Sepa-
ration of the boundary layer early occurs at the lower surface for small values of R, no
reattachment is present and a large wake is shown. On the contrary, separation does not
take place at all for large curvature, thus a thin wake with smaller but more frequent
vortices is present. Vortices are shed from both the upper and lower surfaces, but when
separation at the lower surface occurs, the characteristic size of this vortices is much
greater, leading to a wider wake and a lower St (about one half).
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Figure 11: Physics of the flow at Lt=1. Vortical structures in the wake.

In terms of lift coefficient, the two flow regimes appear as two ranges in which CL is
almost constant. Between the two ranges, a discontinuity seems to appear. If a steep gra-
dient is present, it should be searched to a smaller scale in terms of differences of R. The
apparent discontinuity causes a classical Gibbs phenomenon to appear in the Polynomial
Chaos projection P′

15CL ∈P11(I), as plotted in Fig. 12 (on the left). Poor convergence of
the Polynomial Chaos is evidenced by the slow decay of the PC coefficient, which are
shown in Fig. 13 (on the left). Smarter techniques should be employed in this case in
order to handle the non-regularity of the stochastic solution. An interesting possibility is
the use of adaptive methods, such as the Multi-Element generalized Polynomial Chaos
introduced in [18]. An application of adaptive methods to the Skyway Bridge problem
with two input random variables will be presented in [6].

In this paper, we present a post-processing discontinuity reconstruction approach (see
[8] for different approaches and more references on the argument). The time-averaged
Lift Coefficient CL(y) is expressed as the sum of a regular function G(y), which will be
expanded in terms of Polynomial Chaos, and a known piecewise linear function:

CL(y)=G(y)+Heavyside(y−ydisc)(p0+p1(y−ydisc)), (3.6)

where the parameters p0 and p1 are evaluated through an optimization process, in order
to maximize the rate of decay of the PC coefficients ǧk of P′

15G∈P11(I). Precisely, for any
choice of p0 and p1, the coefficients’ decay is least-square fitted by the law

|ǧk|∼λk−µ,

yielding λ=λ(p0,p1) and µ=µ(p0,p1). The optimal values of p0 and p1 are then obtained
as (p0,p1)=argmax(µ(p0,p1)). The corresponding approximation of the data shows the
elimination of the Gibbs phenomenon, as depicted in Fig. 12 (on the right), again for the
choice N =14. The decay of the approximate PC coefficients of the regular part results to
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discontinuity tracking (right).
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Figure 13: Time-averaged lift coefficient at Lt=0.001. PC coefficients of P′
15CL (left) and of P′
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be much faster, as shown in Fig. 13 (on the right). Once these coefficients are computed,
statistical quantities of CL can be obtained from (3.6) in a straightforward manner. A
similar approach can be applied to derive statistics of the Strouhal number St.

4 Conclusion

An application of generalized Polynomial Chaos techniques to a complex Wind Engi-
neering problem is given in the paper. Randomness in the geometry of a bridge deck
section generates uncertainty in the aerodynamic parameters of the section itself; among
them, the Strouhal number and the time-averaged Lift Coefficient have been investigated.
Gauss-Patterson nested quadrature rules have been employed in order to obtain subse-
quent levels of approximation. Two different inflow conditions have been considered.
A smooth dependence on the input random variable has been shown in the first case,
and an accurate gPC representation on the parameters of interest has been achieved. A
shock has been observed in the second case, and a shock-subtraction approach has been
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successfully employed to overcome the Gibbs phenomenon appearing from a naive ap-
proach; once again, a sufficiently accurate chaos representation has been obtained. The
investigation of the combined effects of uncertainty in both the geometry and the inflow
conditions is planned for future research. The complexity of the dependency of the ran-
dom output on the two different input random variables suggests the use of adaptive
techniques, such as Multi Element generalized Polynomial Chaos. A complete analysis
of the problem and an adaptive solution method will be given in [6].
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