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Abstract. In this paper, we consider the application of the local discontinuous Galerkin
method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends
the local discontinuous Galerkin method in [10] to the more general application sys-
tem which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar en-
ergy stability result as that in [10] is presented. Numerical results for the nonlinear
problems which include the Allen-Cahn/Cahn-Hilliard system for one-dimensional
and two-dimensional cases demonstrate the accuracy and capability of the numerical
method.
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1 Introduction

In this paper, we consider the extension of the local discontinuous Galerkin (LDG) method
in [10] for the more general Allen-Cahn/Cahn-Hilliard (AC/CH) system in Ω∈R

d (d≤3)
{

ut =∇·[b(u,v)∇(Ψu(u,v)−γ∆u)],

ρvt =−b(u,v)[Ψv(u,v)−γ∆v],
(1.1)

where γ, ρ are given constants. The mobility, b(u,v), is assumed to be nonnegative and
to vanish at the “pure phases” (i.e., u = 0 or u = 1). This assumption, which reflects
divergence of the time scale in a minimal entropy completely ordered system, implies
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degeneracy of the parabolic system (1.1). The homogeneous free energy, Ψ, will be as-
sumed to contain two terms, one which reflects entropy contribution and another which
accounts for the energy of mixing.

In [10], we developed the LDG methods for the Cahn-Hilliard equations which use
the discontinuous, piecewise polynomial as the solution and test functions. In this pa-
per, we extend the techniques in [10] to devise an LDG method for the AC/CH system
(1.1) and state similar energy stability result as that in [10]. The Cahn-Hilliard equations
considered in [10] is a special case of the AC/CH system (1.1) when we set the initial
condition with v=0. Numerical simulation results demonstrate that the LDG method is
a very powerful method for solving this type of fully nonlinear problems.

A systematic derivation of the system (2.1) has been given by Cahn and Novick-
Cohen [3], based on energetic exchange probabilities for a Fe-Al binary alloy system on a
large but finite BCC lattice. The conserved and non-conserved order parameters u and v
may be defined as

u(n)=
1

2N ∑
a∈A

c(n+a)+c(n), v(n)=
1

2N ∑
a∈A

c(n+a)−c(n),

where c(n) represents the probability of finding an Fe atom at site n of a given lattice
segments and A represents the set of nearest neighbors with N = |A|. Thus the u and v of
the system (2.1) satisfy the constrains

u∈ [0,1], v∈ [−
1

2
,
1

2
], (u±v)∈ [0,1]. (1.2)

In [1,2], mixed finite element methods have been developed to approximate the AC/CH
system and C0 basis functions are used.

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite
element methods using completely discontinuous piecewise polynomial space for the
numerical solution and the test functions in the spatial variables. DG methods are well
suited for parallel computing and hp-adaptation, which consists of local mesh refinement
and/or the adjustment of the polynomial order in individual elements. More general
information about DG methods can be found in [4, 6–8].

The main motivation for the algorithm discussed in [10] and generalized in this paper
originates from the LDG techniques which have been developed for convection diffusion
equations (containing second derivatives) [5] and nonlinear wave equations with high
order derivatives (e.g. in [9, 11–13]). In these papers, stable LDG methods for quite gen-
eral nonlinear wave equations including multi-dimensional and system cases have been
developed. The proof of the nonlinear L2 stability of these methods are usually given
and successful numerical experiments demonstrate their capability. These results indi-
cate that the LDG method is a good tool for solving nonlinear equations in mathematical
physics.

The outline of this paper is as follows. In Section 2, we review the properties of the
AC/CH system and important application areas for this system. In Section 3, we present



Y. Xia, Y. Xu and C.-W. Shu / Commun. Comput. Phys., 5 (2009), pp. 821-835 823

and analyze the LDG methods for the AC/CH system. Section 4 contains numerical re-
sults for the nonlinear problems which include the AC/CH system for one-dimensional
and two-dimensional cases. The numerical results demonstrate the accuracy and capa-
bility of the LDG methods. Concluding remarks are given in Section 5.

2 The AC/CH system

The Allen-Cahn/Cahn-Hilliard system was developed in [3] to model simultaneous phase
separation and ordering in binary alloys. The AC/CH system on a bounded domain
Ω∈Rd (d≤3) is

ut =∇·(b(u,v)∇
δE

δu
), (2.1a)

ρvt =−b(u,v)
δE

δv
, (2.1b)

where the degenerate mobility is

b(u,v)=u(1−u)(
1

4
−v2), (2.2)

and the free energy is given by

E(u,v)=
∫

Ω

{γ

2
(|∇u|2+|∇v|2)+Ψ(u,v)

}
dx. (2.3)

The homogeneous free energy Ψ(u,v) is

Ψ(u,v)= θ [Φ(u+v)+Φ(u−v)]+
1

2

[
αu(1−u)−βv2

]
, (2.4)

Φ(s)= slns+(1−s)ln(1−s). (2.5)

Here θ represents the temperature, γ is the coefficient of gradient energy and α, β are the
coefficients of nearest and next-nearest neighbors pairwise energetic interactions.

In the AC/CH system, u denotes an average concentration and v represents a non-
conserved order variable. Neumann boundary conditions are prescribed for u, v and
no-flux boundary for the mass flux J =−b(u,v)∇w, i.e.,

∂u

∂ν
=

∂v

∂ν
=b(u,v)

∂w

∂ν
=0 on ∂Ω, (2.6)

where w = δE/δu is the chemical potential and ν is the normal vector to ∂Ω. From this
boundary condition, we have

d

dt

∫

Ω
udx=0,

d

dt
E(u,v)≤0. (2.7)
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When we choose the initial condition u0 ≡ 1
2 , which yields that Ψu ≡ 0 and u≡ 1

2 , the
system (2.1) collapses to a logarithmic Allen-Cahn equation. Whereas, when we choose
v0≡0, which yields that Ψv =0, the system (2.1) collapses to a logarithmic Cahn-Hilliard
equation considered in [10]. Therefore, the system (2.1) can be considered as a system
encompassing both the Allen-Cahn and Cahn-Hilliard equations. The AC/CH system is
studied to model further aspects of the behavior of alloys and related physical systems,
when coupled with equations of fluid flow or heat conduction, etc.

3 The LDG method for the AC/CH system

In this section, we consider the LDG method for the AC/CH system (1.1) in Ω∈R
d with

d≤ 3. Although we do not perform numerical experiments in three dimensions in this
paper, the LDG methods and the energy stability results of this paper are valid for all
d≤3.

3.1 Notation

Let Th denote a tessellation of Ω with shape-regular elements K. Let Γ denote the union
of the boundary faces of elements K∈Th, i.e., Γ=∪K∈Th

∂K, and Γ0 =Γ\∂Ω.
In order to describe the flux functions we need to introduce some notations. Let e be

a face shared by the “left” and “right” elements KL and KR (we refer to [13] and [10] for a
proper definition of “left” and “right” in our context). Define the normal vectors νL and
νR on e pointing exterior to KL and KR, respectively. If ψ is a function on KL and KR, but
possibly discontinuous across e, let ψL denote (ψ|KL

)|e and ψR denote (ψ|KR
)|e the left and

right trace, respectively.
Let P p(K) be the space of polynomials of degree at most p≥ 0 on K∈Th. The finite

element spaces are denoted by

Vh =
{

ϕ : ϕ|K ∈P p(K), ∀K∈Th

}
,

Σh =
{

η=(η1,··· ,ηd)
T : ηl |K ∈P p(K), l =1···d, ∀K∈Th

}
.

Note that functions in Vh and Σh are allowed to have discontinuities across element in-
terfaces.

3.2 The LDG methods

First, we rewrite (2.1) as a first order system

ut =∇·s1, vt =−b(u,v)(−q2+r2)/ρ, s1 =b(u,v)p, (3.1a)

p=∇(−q1+r1), q1 =γ∇·w1, q2 =γ∇·w2, (3.1b)

w1 =∇u, w2 =∇v, r1 =Ψu, r2 =Ψv, (3.1c)
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where Ψu = ∂Ψ/∂u and Ψv = ∂Ψ/∂v. Applying the LDG method to the system (3.1), we
have the scheme: Find u, v, q1, q2, r1, r2 ∈Vh and s1, p, w1, w2 ∈Σh, such that, for all test
functions ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6∈Vh and η1, η2, η3, η4∈Σh, we have

∫

K
ut ϕ1dK =−

∫

K
s1 ·∇ϕ1dK+

∫

∂K
ŝ1 ·νϕ1ds, (3.2a)

∫

K
vt ϕ2dK =

∫

K
−b(u,v)(−q2+r2)ϕ2/ρdK, (3.2b)

∫

K
s1 ·η1dK =

∫

K
b(u,v)p·η1dK, (3.2c)

∫

K
p·η2dK =−

∫

K
(−q1+r1)(∇·η2)dK+

∫

∂K
(−q̂1+ r̂1)(η2 ·ν)ds, (3.2d)

∫

K
q1 ϕ3dK =−γ

∫

K
w1 ·∇ϕ3dK+

∫

∂K
γŵ1 ·νϕ3ds, (3.2e)

∫

K
q2 ϕ4dK =−γ

∫

K
w2 ·∇ϕ4dK+

∫

∂K
γŵ2 ·νϕ4ds, (3.2f)

∫

K
w1 ·η3dK =−

∫

K
u(∇·η3)dK+

∫

∂K
û(η3 ·ν)ds, (3.2g)

∫

K
w2 ·η4dK =−

∫

K
v(∇·η4)dK+

∫

∂K
v̂(η4 ·ν)ds, (3.2h)

∫

K
r1 ϕ5dK =

∫

K
Ψu ϕ5dK,

∫

K
r2 ϕ6dK =

∫

K
Ψv ϕ6dK. (3.2i)

The “hat” terms in (3.2) in the cell boundary terms from integration by parts are the
so-called “numerical fluxes”, which are functions defined on the edges and should be de-
signed based on different guiding principles for different PDEs to ensure stability. Similar
to the development in [10], it turns out that we can take the simple choices such that

ŝ1|e = s1L, q̂1|e =q1R, r̂1|e = r1R,

ŵ1|e =w1L, û|e =uR, ŵ2|e =w2L, v̂|e =vR.
(3.3)

By the boundary conditions (2.6), we take

ŝ1 =0, q̂1 =qin
1 , r̂1 = rin

1 , ŵ1 =0, ŵ2 =0, û=uin, v̂=vin (3.4)

at the domain boundary, where uin means the value taking from the inside of the bound-
ary element. We remark that the numerical solution of u is conserved under this bound-
ary condition, easily seen by set φ1 = 1 in (3.2a). We also remark that the choice for the
fluxes (3.3) is not unique. In fact the crucial part is taking ŝ1 and q̂1,r̂1 from opposite sides,
ŵ1 and û from opposite sides and ŵ2 and v̂ from opposite sides.
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3.3 Energy stability

Proposition 3.1. (Energy stability) The solution to the schemes (3.2) and the flux satisfies
the energy stability

d

dt

∫

Ω

{γ

2
(w1 ·w1+w2 ·w2)+Ψ(u,v)

}
dx≤0.

Proof. Choosing the test function ϕ5 =−ut and ϕ6 =−vt in (3.2i), we obtain

−
∫

K
r1utdK =−

∫

K
ΨuutdK, −

∫

K
r2vtdK =−

∫

K
ΨvvtdK. (3.5)

After taking the time derivative, we choose the test functions η3=w1, in (3.2g) and η4=w2

in (3.2h). Then we get

γ
∫

K
w1t ·w1dK =−γ

∫

K
ut(∇·w1)dK+γ

∫

∂K
ût(w1 ·ν)ds, (3.6)

γ
∫

K
w2t ·w2dK =−γ

∫

K
vt(∇·w2)dK+γ

∫

∂K
v̂t(w2 ·ν)ds. (3.7)

For (3.2a)-(3.2f), we take the test functions

ϕ1 =−q1+r1, ϕ2 =−q2+r2, η1 =−p, η2 = s1, ϕ3 =ut, ϕ4 =vt.

Then we have
∫

K
ut(−q1+r1)dK =−

∫

K
s1 ·∇(−q1+r1)dK+

∫

∂K
ŝ1 ·ν(−q1+r1)ds, (3.8)

∫

K
vt(−q2+r2)dK =

∫

K
−b(u,v)(−q2+r2)(−q2+r2)/ρdK, (3.9)

−
∫

K
s1 ·pdK =−

∫

K
b(u,v)p·pdK, (3.10)

∫

K
p·s1dK =−

∫

K
(−q1+r1)(∇·s1)dK+

∫

∂K
(−q̂1+ r̂1)(s1 ·ν)ds, (3.11)

∫

K
q1utdK =−γ

∫

K
w1 ·∇utdK+

∫

∂K
γŵ1 ·νutds, (3.12)

∫

K
q2vtdK =−γ

∫

K
w2 ·∇vtdK+

∫

∂K
γŵ2 ·νvtds. (3.13)

Summing up the equations (3.5)-(3.13), we obtain

∫

K
{γ(w1t ·w1+w2t ·w2)+Ψuut+Ψvvt}dK

+
∫

K
b(u,v)(−q2+r2)(−q2+r2)/ρdK+

∫

K
b(u,v)p ·pdK

=−
∫

∂K
s1 ·ν(−q1+r1)ds+

∫

∂K
ŝ1 ·ν(−q1+r1)ds+

∫

∂K
(−q̂1+ r̂1)(s1 ·ν)ds
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Table 1: Accuracy test for the AC/CH system with the exact solution (4.1). Uniform meshes with J cells at
time t=0.5.

u v

J L2 error order L∞ error order L2 error order L∞ error order

10 4.07E-01 – 1.04E-00 – 8.24E-02 – 1.87E-01 –
P0 20 1.67E-01 1.29 5.24E-01 1.00 4.09E-02 1.01 9.54E-02 0.97

40 7.81E-02 1.10 2.54E-01 1.04 2.04E-02 1.00 4.77E-02 1.00
80 3.84E-02 1.03 1.26E-01 1.00 1.02E-02 1.00 2.38E-02 1.00

10 8.42E-02 – 3.68E-01 – 1.35E-02 – 4.93E-02 –
P1 20 1.99E-02 2.08 8.99E-02 2.03 3.37E-03 2.01 1.24E-02 1.99

40 4.91E-03 2.02 2.23E-02 2.01 8.41E-04 2.00 3.12E-03 2.00
80 1.22E-03 2.00 5.57E-03 2.00 2.10E-04 2.00 7.79E-04 2.00

10 6.68E-03 – 3.42E-02 – 5.96E-04 – 2.55E-03 –
P2 20 7.92E-04 3.08 3.96E-03 3.11 7.35E-05 3.02 3.11E-04 3.03

40 9.76E-05 3.02 5.06E-04 2.97 9.16E-06 3.01 3.91E-05 2.99
80 1.22E-05 3.01 6.35E-05 2.99 1.14E-06 3.00 4.89E-06 3.00

10 8.49E-04 – 3.38E-03 – 4.35E-05 – 1.57E-04 –
P3 20 5.60E-05 3.92 2.23E-04 3.92 2.76E-06 3.98 1.01E-05 3.96

40 3.55E-06 3.98 1.41E-05 3.98 1.73E-07 3.99 6.33E-07 3.99
80 2.22E-07 4.00 8.90E-07 3.99 9.51E-09 4.19 3.73E-08 4.08

−γ
∫

∂K
ut(w1 ·ν)ds+γ

∫

∂K
ût(w1 ·ν)ds+

∫

∂K
γŵ1 ·νutds

−γ
∫

∂K
vt(w2 ·ν)ds+γ

∫

∂K
v̂t(w2 ·ν)ds+

∫

∂K
γŵ2 ·νvtds.

Summing up the cell entropy equalities, with the numerical fluxes (3.3) and the boundary
conditions (3.4), we get

∫

Ω
{γ(w1t ·w1+w2t ·w2)+Ψuut+Ψvvt}dK

+
∫

Ω
b(u,v)(−q2+r2)(−q2+r2)/ρdK+

∫

Ω
b(u,v)p ·pdK =0.

For b(u,v)≥0, we obtain

d

dt

∫

K

{γ

2
(w1 ·w1+w2 ·w2)+Ψ

}
dK≤0. (3.14)

This completes the proof of this proposition.

Remark 3.1. Although the proof of the energy stability in Proposition 3.1 follows the
similar line as in [10], the result of Proposition 3.1 is for the general AC/CH system. The
result in [10] is only for the CH equation which is a special case of the AC/CH system.



828 Y. Xia, Y. Xu and C.-W. Shu / Commun. Comput. Phys., 5 (2009), pp. 821-835

Table 2: Accuracy test for the AC/CH system with the exact solution (4.2). Uniform meshes with J cells at
time t=0.5.

u v

J L2 error order L∞ error order L2 error order L∞ error order

10 4.02E-02 – 8.19E-02 – 1.49E-03 – 3.43E-03 –
P0 20 1.59E-02 1.33 3.52E-02 1.22 7.47E-04 1.00 1.74E-03 0.98

40 7.32E-03 1.12 1.68E-02 1.06 3.74E-04 1.00 8.72E-04 1.00
80 3.57E-03 1.03 8.31E-02 1.01 1.87E-04 1.00 4.36E-04 1.00

10 7.92E-03 – 2.83E-02 – 2.02E-04 – 7.09E-04 –
P1 20 1.93E-03 2.04 6.92E-03 2.03 5.05E-05 2.00 1.81E-04 1.97

40 4.79E-04 2.01 1.73E-03 2.00 1.26E-05 2.00 4.56E-05 1.99
80 1.19E-04 2.00 4.33E-04 1.99 3.15E-06 2.00 1.14E-05 2.00

10 8.16E-04 – 3.45E-03 – 1.07E-05 – 4.58E-05 –
P2 20 1.02E-04 3.00 4.22E-04 3.03 1.34E-06 3.00 5.69E-06 3.01

40 1.27E-05 3.00 5.40E-05 2.96 1.67E-07 3.00 7.16E-07 2.99
80 1.59E-06 3.00 6.79E-06 2.99 2.09E-08 3.00 8.97E-08 3.00

10 6.58E-05 – 3.00E-04 – 4.38E-07 – 1.99E-06 –
P3 20 4.15E-06 3.99 1.95E-05 3.95 2.74E-08 4.00 1.28E-07 3.95

40 2.60E-07 4.00 1.21E-06 4.01 1.72E-09 4.00 8.08E-09 3.99
80 1.62E-08 4.00 7.60E-08 3.99 1.08E-10 3.99 4.64E-10 4.13

4 Numerical results

In this section we perform numerical experiments of the LDG method applied to the
AC/CH system. Time discretization is by the forward Euler method with a suitably
small ∆t for stability. Since ∆t=O(h4) for the stability constraint, accuracy is maintained
up to fourth order. We will not address the issue of time discretization efficiency in this
paper. All the computations were performed in double precision. We have verified with
the aid of successive mesh refinements, that in all cases, the results shown in the figures
are numerically convergent.

Example 4.1. In this example, we consider the accuracy test for the AC/CH system. Con-
sider Ω = (0,4π), γ = 6, α = 11/2, β = 1/2 and ρ = 1.0 with constant mobility b = 1. We
consider two cases with different value of θ.

Case 1. θ=0. In this case, the AC/CH system decouples to the AC equation and the CH
equation. We take the exact solution of

u(x,t)= et cos(0.5x)−e−0.5t sin(x), v(x,t)= e−t cos(0.5x). (4.1)

The L2 and L∞ errors and the numerical orders of accuracy at time t = 0.5 with uniform
meshes are contained in Table 1.
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(b) α=3,β=1.
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(d) α=−1,β=3.

Figure 1: The homogeneous free energy Ψ with different α,β in Example 4.2.

Case 2. θ =0.1. We take the exact solution of

u(x,t)=0.5−e−2− t
2 sin(x), v(x,t)= e−4−t cos(0.5x) (4.2)

for the AC/CH system with the source term f , where f is a given function so that (4.2) is
the exact solution. In this case, the AC/CH system is still coupled. The L2 and L∞ errors
and the numerical orders of accuracy at time t =0.5 with uniform meshes are contained
in Table 2.

We can see that the method with Pk elements gives (k+1)-th order of accuracy in both
L2 and L∞ norms.

Example 4.2. Consider Ω = (0,1), θ = 0.1, ǫ = 0.1 and ρ = 0.08 with degenerate mobility
(2.2) and constant mobility b=1/16 respectively. The initial condition

(u0,v0)=(0.55+δu,δv),
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(a) α = 3,β = −1 with degenerate mobility
(2.2), t=2.
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(b) α=3,β=−1 with constant mobility b= 1
16 ,

t=2.
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(c) α=3,β=1 with degenerate mobility (2.2)
t=2.
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(d) α=3,β=1 with constant mobility b= 1
16 ,

t=6.

Figure 2: The numerical solutions of the AC/CH system in Example 4.2. P1 and P2 element on uniform mesh
with 80 cells.

where δu,δv are random with

max(‖δu‖∞ ,‖δv‖∞)≤0.05. (4.3)

We simulate the AC/CH system with the following different parameters: 1. α=3, β=−1
and γ = 1

6 ǫ2; 2. α = 3, β = 1 and γ = 1
3 ǫ2; 3. α = 1, β = 3 and γ = 1

3 ǫ2; 4. α =−1, β = 3 and

γ= 1
6 ǫ2.

In Fig. 1, we plot the corresponding homogeneous free energy Ψ in (2.4). We see
the energy Ψ has two global minimizers located at (0,0) and (0,1) when (α,β) = (3,±1),
and two global minimizers located at (0.5,±0.5) when (α,β)=(±1,3). We use P1 and P2

elements and show the results with the P2 element and a uniform mesh with 80 cells in
Fig. 1. The simulations are stopped when the obtained profiles do not change for a long
time (the maximum residue is less than 10−6).
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(a) α = 1,β = 3 with degenerate mobility (2.2),
t=8.
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(b) α = 1,β = 3 with constant mobility b = 1
16 ,

t=4.
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(c) α=−1,β=3 with degenerate mobility (2.2)
t=8.
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Figure 3: The numerical solutions of the AC/CH system in Example 4.2. P1 and P2 element on uniform mesh
with 80 cells.

In Figs. 2 and 3, we show the numerical results in different cases, which satisfy the
constraints (1.2). We have the following observations:

• As shown in Fig. 2, the numerical solution converges to the global minimizers (0,0)
and (0,1) of the free energy Ψ when (α,β)=(3,±1).

• Similarly, the numerical solution converges to the global minimizers (0.5,±0.5) of
Ψ in Fig. 3. The degenerate mobility b(u,v) in (2.2) has four roots (0.5,±0.5), (0,0)
and (0,1), which are global minimizers of Ψ.

• As shown in Figs. 2 and 3, the diffusion in the degenerate mobility cases is van-
ishing in pure phases ((0,0) and (0,1)) and in a perfectly ordered environment
((0.5,±0.5)). The solution is changing more slowly compared with the constant
mobility cases.
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Figure 4: The homogeneous free energy Ψ with different α, β in Example 4.3.

Example 4.3. To show the capability of the method, we consider the following 2D ex-
amples in Ω = (0,1)×(0,1), γ = 5×10−3, θ = 0.1 with degenerate and constant mobility
respectively. The initial condition (u0,v0)=(0.55+δu ,δv), where δu,δv are random which
satisfies (4.3). We consider the following cases with the global minimizers of the free
energy Ψ located at pure phases or ordered environment:

1. α=4, β=2, ρ=0.001 with degenerate mobility (2.2);

2. α=4, β=2, ρ=0.001 with constant mobility b=1/16, which is the maximum of the
degenerate mobility;

3. α=2, β=4, ρ=0.08 with degenerate mobility (2.2);

4. α=2, β=4, ρ=0.08 with constant mobility b=1/16.

The corresponding free energy Ψ is plotted in Fig. 4. When α=4, β=2, the global minimiz-
ers Ψ are located at (0,0) and (0,1). The global minimizers of Ψ are located at (0.5,±0.5)
if α=2, β=4. We use P1 element and a uniform mesh with 40×40 cells.

The numerical results are given in Figs. 5, 6, 7 and 8 for the four different cases. In each
case, the numerical results satisfy the constraints (1.2) and converge to the corresponding
global minimizer of the free energy Ψ.

• In Figs. 5 and 6 where α > β, initially both spinodal decomposition and order-
disorder type instabilities occur. However, as the final equilibrium is approached,
only separation into two terminal phases is seen.

• In Figs. 7 and 8 where α<β, ordering without initial phase separation occurs and the
final equilibrium corresponds to a mixture of ordered and terminal phases. There
is a delayed spinodal decomposition that begins only after some ordering has oc-
curred.

• As in the 1D example, we find the solution with the degenerate mobility (2.2)
changes more slowly than the solution with the constant mobility, which is the
maximum of the degenerate mobility.
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Figure 5: The numerical solutions of the AC/CH system in Example 4.3 with α=4, β=2 and the degenerate

mobility (2.2). P1 element on uniform mesh with 40×40 cells.
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Figure 6: The numerical solutions of the AC/CH system in Example 4.3 with α = 4, β = 2 and the constant

mobility b= 1
16 . P1 element on uniform mesh with 40×40 cells.
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Figure 7: The numerical solutions of the AC/CH system in Example 4.3 with α=2, β=4 and the degenerate

mobility (2.2). P1 element on uniform mesh with 40×40 cells.
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Figure 8: The numerical solutions of the AC/CH system in Example 4.3 with α = 2, β = 4 and the constant

mobility b= 1
16 . P1 element on uniform mesh with 40×40 cells.
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5 Conclusion

We have discussed the application of local discontinuous Galerkin methods to solve the
Allen-Cahn/Cahn-Hilliard system. The energy stability is proven for the general nonlin-
ear case. Numerical examples for one-dimensional and two dimensional cases are given
to illustrate the accuracy and capability of the methods. These results indicate that the
LDG method is a good tool for solving such nonlinear equations in mathematical physics.
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