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Abstract. We study the multiscale finite element method for solving multiscale elliptic
problems with highly oscillating coefficients, which is designed to accurately capture
the large scale behaviors of the solution without resolving the small scale characters.
The key idea is to construct the multiscale base functions in the local partial differential
equation with proper boundary conditions. The boundary conditions are chosen to ex-
tract more accurate boundary information in the local problem. We consider periodic
and non-periodic coefficients with linear and oscillatory boundary conditions for the
base functions. Numerical examples will be provided to demonstrate the effectiveness
of the proposed multiscale finite element method.
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1 Introduction

Many multiscale problems are often described by partial differential equations (PDEs)
with highly oscillating coefficients. In practice, the coefficients may contain many scales
spanning over a great extent [3]. On one hand, the direct use of traditional numeri-
cal methods, such as standard finite element method (FEM) or finite difference method
(FDM), to the multiscale problems is very difficult since the mesh size has to be extremely
small. On the other hand, the main interest is to acquire the large scale solution with accu-
racy instead of finding the small scale characters in detail. The multiscale finite element
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method (MFEM), whose goal is to obtain the large scale solution accurately and effi-
ciently, is to capture large scale information by constructing the multiscale finite element
base functions. This can be achieved by solving the base functions from the local problem
in the elements. With proper boundary conditions, the base functions are adaptive to the
features of the differential operator.

To capture the large scale solutions without resolving the small scale details, Babus̆ka
& Osborn [2] (for one-dimensional problems) and Babus̆ka et al. [1] (for special two-
dimensional problems) presented the generalized finite element method by introducing
modified base functions that are based on the differential operator. Hou & Wu [12] ex-
tended the idea of [1, 2] and proposed the multiscale finite element method by solving
the local homogenization problems for the base functions. Hou et al. [13] and Efendiev
& Wu [8] provided many theoretical analysis and numerical experiments for the MFEM.
Engquist & Luo [9] studied the convergence of the multigrid method for highly oscilla-
tory elliptic problems on a new coarse-grid finite difference scheme. Huang & Xu [14,15]
applied the partition of unity method (PUM) to the multiscale problems with highly os-
cillating coefficients, and proved that the PUM admitted optimal convergence rate with
nonmatching and overlapping grids. In [4], Chen & Cui constructed a special multi-
scale rectangular element space whose base functions consisting of bilinear functions and
bubble-like functions. In [5], Chen & Hou proposed a mixed multiscale finite element
method with an over-sampling technique, which solves the local Neumann boundary
value problem for the bases. Chen & Yue [6] considered the oversampling multiscale fi-
nite element method with a new upscaling technique for resolving the well singularities.
Jenny et al. [16] and He & Ren [11] applied the multiscale finite volume method in sub-
surface flow simulation and for solving the ground-water flow problems, respectively.
Ren & E [19] and Yue & E [20] studied the heterogeneous multiscale method for the mod-
eling of complex fluids with application to two-phase porous media flow. In [17], Ming
& Yue presented an overview of the recent development on the multiscale numerical
methods. Efendiev & Hou [7] discussed the applications of the MFEM to two-phase im-
miscible flow simulation in which limited global information is taken into account, and
the applications to inverse problems are also discussed. Nassehi et al. [18] developed
the MFEM using bubble functions thus obtained stable solutions without excessive mesh
refinement near the wall. In [10], a systematic review to the heterogeneous multiscale
method (HMM), including the fundamental designing philosophy and the error analy-
sis, is presented. Yue & E [21] systematically investigated the issues in the multiscale
modeling, and discussed the mixed Dirichlet-Neumann boundary condition in porous
media.

An advantage of the multiscale finite element method is that it can reduce the size of
computation. For example, let N be the number of elements in each spatial direction, and
let M be the number of subcell elements in each direction for solving the base functions.
Then there are a total of (MN)d (d is the dimension) elements at the fine grid level. For the
FEM, the computer memory required to solve the problem at the fine grid is O(MdNd), in
contrast with the MFEM which requires only O(Md+Nd) amount of memory. Moreover,
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it should be noted that the MFEM solves the problem at the coarse mesh level h = 1/N,
while the FEM solves the problem at the fine mesh level hs = h/M. Even with coarser
meshes, the MFEM can still obtain accurate solution, and is even more accurate than that
of the much costing FEM in some cases [12].

This paper is organized as follows. The formulation of the two-dimensional multiple
scales elliptic problem and the multiscale finite element method are given in Section 2.
In Section 3, we consider two kinds of boundary conditions for the base functions in
the local problem. Section 4 is concerned with the applications of the linear and the
oscillatory boundary condition of the base functions in numerical experiments. Section 5
provides some concluding remarks.

2 Formulations of the multiscale problem

In this section, we introduce the model problem and the multiscale method. First, we
state some notations and conventions to be used in this paper. The Einstein summation
convention is used: summation is taken over repeated indices. Throughout the paper, we
shall use the notations of standard Sobolev spaces and related norms. L2(Ω) denotes the
space of square integrable functions defined in domain Ω,

H1
0(Ω)={v∈H1(Ω); v=0 on ∂Ω}, H2

0(Ω)={v∈H2(Ω); v=0, ∇v=0 on ∂Ω},

H−1(Ω) is the dual of H1
0(Ω). Moreover, C and Ci denote generic positive constants,

which are independent of ε and h. For simplicity, we assume that Ω is an open unit
square domain in R2, i.e., Ω=(0,1)2, which satisfies the convexity assumption needed to
obtain certain regularity properties for the elliptic operator.

2.1 Model problem

Consider the following second order elliptic equation:

{

Lεuε = f in Ω,
uε = g in ∂Ω,

(2.1)

where f is some smooth function in L2(Ω), and the Dirichlet boundary condition g is
defined on the domain,

Lε =−∇·(aε∇)

is the elliptic differential operator, ε is assumed to be small parameter, aε = (aε
ij(x)) is

the conductivity tensor and is a symmetric matrix which satisfies the uniform ellipticity
condition:

α|ξ|2 ≤ ξia
ε
ijξ j ≤β|ξ|2 , ∀ξ∈R2

for some positive constants 0<α< β.
In practice, aε may be highly oscillating or random, thus the solution uε displays a

multiscale nature. For the case of conduction problem, (2.1) is the heat/electrical equation
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through the composite materials, in which aε is the thermal/electric conductivity, and uε

represents the temperature/electric potential. For the case of flow simulation, (2.1) is the
pressure equation through the porous media, in which aε is the ratio of the permeability
and the fluid viscosity, and uε represents the pressure. In these problems the multiscale
nature comes from the highly oscillating coefficients

aε
ij(x)= aij(x,

x

εk
), (2.2)

where x denotes the two-dimensional spatial coordinates {x,y}, εk denotes several small
positive parameters. For simplicity of notation we use u instead of uε, keeping in mind
that u depends on εk in fact. It is known the multiple scales in the solution, which is the
main difficulty, exist in both steady problem and transient problem. In this work, we only
consider the steady problem in this paper.

The variational formulation of (2.1) is to seek u∈H1
0(Ω) such that

a(u,v)= f (v), ∀v∈H1
0(Ω), (2.3)

where

a(u,v)=
∫

Ω

aij
∂u

∂xi

∂v

∂xj
dx, f (v)=

∫

Ω

f vdx, i, j=1,2. (2.4)

It is easy to see that the bilinear form a(u,v) is elliptic and continuous, i.e.,

C1|v|21,Ω ≤ a(v,v)≤C2|v|21,Ω, ∀v∈H1
0(Ω),

|a(u,v)|≤C|u|1,Ω |v|1,Ω, ∀u,v∈H1
0(Ω).

Let Kh be a partition of Ω by rectangles K with mesh size h, 0 < h≪ 1. In each element
K∈Kh, we define a set of nodal base {φi,i=1,··· ,d} with d=4 being the number of nodes
of the rectangular element. Let xj ∈ K̄ (j=1,··· ,4) be the nodal points of K and four nodal
points labeled counterclockwise from the lower left corner as (x1,y1), (x2,y2), (x3,y3),
(x4,y4).

2.2 The multiscale finite element method

The main difference between the MFEM and the FEM is the construction of the base func-
tions. In the MFEM, the base functions φi are constructed with respect to the differential
operator in the local problem and satisfy

{

Lεφ
i =0 in K∈Kh,

φi = θi on ∂K.
(2.5)

We require φi(xj)=δij, where δij is the Kronecker symbols. To guarantee the well-posedness

of the local problem (2.5), we should specify the boundary condition θi on ∂K, and the
use of the different boundary conditions are crucial to the model problem [12, 21]. It is
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required that the base functions φi are adaptive to the local property of the differential
operator. As a consequence, the small scale information in each element K is taken into
the large scale solution through the base functions.

The multiscale finite element method is accomplished by restricting the variational
formulation (2.3) into a finite dimensional subspace of H1

0(Ω), denoted by Vh. We assume
that the base functions are continuous across the boundaries of the elements, so that

Vh = span{φi
K : i=1,··· ,4;K∈Kh}⊂H1

0(Ω).

In the following, we study the approximate solution of (2.3) in Vh, i.e., to find uh ∈Vh

such that
a(uh,v)= f (v), ∀v∈Vh, (2.6)

where uh is the solution of the MFEM.
It is known that when the parameters εk are large, that is, h≪ εk , the MFEM behaves

similarly as the FEM [13]. However, when εk are very small, that is, εk ≪ h, the two
methods behave differently. In this case, we make hs = h/M to satisfy hs ≪ εk. There are
two ways for constructing the multiscale base functions: one is to do it in the original
coarse element K directly, and the other one is to construct them with the over-sampling
technique in larger coarse elements. The over-sampling technique for the multiscale finite
element method can settle the resonance error [6, 12]. It is known that the resonance
error is the strongest when h = εk, which is more visible for periodic coefficients and is
generically small for random coefficients. In practice, such as flow simulation in a large
region, the mesh size h is always larger than the physical small scale εk; thus there is no
resonance existing. However, using the over-sampling technique to construct the base
functions will increase the demand of computing resources. Therefore, in this paper we
construct the base functions for the MFEM directly in the original coarse element with
the linear and the oscillatory boundary condition, respectively.

3 Boundary condition of the base functions

The boundary condition in the local problem (2.5) for the base functions is very impor-
tant; different boundary conditions can affect the accuracy and convergence of the MFEM
scheme. Below we describe two different kinds of boundary conditions.

3.1 Linear boundary condition

We let θi vary linearly on ∂K, just like in the standard bilinear base functions. This is
called linear boundary condition. For example, for base function φ1 one has

θ1(x)=
x2−x

x2−x1
, x∈ (x1,x2),

θ1(y)=
y4−y

y4−y1
, y∈ (y1,y4).

(3.1)

This kind of boundary condition was employed in [8, 13].
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3.2 Oscillatory boundary condition

In this case, we solve the ordinary differential equations in each element on ∂K. These
ODEs are obtained from (2.5) by deleting terms with partial derivatives in the direction
normal to ∂K. When the multiscale coefficients are separable variables, i.e., the coeffi-
cients can be written as

aij(
x

εk
,

y

εk
)= a1

ij(
x

εk
)·a2

ij(
y

εk
). (3.2)

In this case, we can derive

d

dx

(

a1
ij(

x

εk
)

dθi(x)

dx

)

=0 on ∂K′s x direction, (3.3)

d

dy

(

a2
ij(

y

εk
)

dθi(y)

dy

)

=0 on ∂K′s y direction, (3.4)

which can be solved analytically. For example, for base function φ1 one has

θ1(x)=
∫ x2

x

ds

a1
ij(s/εk)

/
∫ x2

x1

ds

a1
ij(s/εk)

, x∈ (x1,x2),

θ1(y)=
∫ y4

y

dt

a2
ij(t/εk)

/
∫ y4

y1

dt

a2
ij(t/εk)

, y∈ (y1,y4). (3.5)

The base functions φ2, φ3, φ4 can be obtained similarly, It can be verified that if aij are
constants, the oscillatory boundary condition becomes the linear boundary condition.

With either boundary condition, we solve the local problem (2.5) by the standard
finite element method for the base functions. We will see in Section 4 that the oscillatory
boundary condition (3.5) is better than the linear boundary condition (3.1) in many cases,
but there exist some exceptions.

4 Numerical experiments

In this section, we investigate the accuracy and convergence of the multiscale finite el-
ement method using some numerical experiments. Since it is very difficult to construct
a genuine two-dimensional multiscale problem with both exact solution and extensive
generality, we use the resolved numerical solution to replace the exact solution. The re-
solved solution is obtained by using standard FEM on two fine mesh grids 1024×1024
and 2048×2048. Then the ‘exact’ solution u is obtained by using Richardson extrapola-
tion technique to accelerate the accuracy on the two grids. Since both mesh sizes resolve
the smallest scale among εk, the error of the extrapolation is acceptably very small.

The computations are carried out in a unit square domain Ω=(0,1)2 with rectangular
meshes. We denote N the partition number in the x and y directions. Thus the domain
Ω is divided into N×N elements with multiscale mesh size h = 1/N. To compute the
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Table 1: Example 4.1: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 = 0.2 and
ε2 =0.08. In this case, umax≈0.0263.

ε1 ε2 N M MFEM(L) rate MFEM(O) rate

0.2 0.08 32 8 1.107e-3 4.281e-5
64 8 3.642e-4 1.60 9.057e-6 2.24
128 8 9.506e-5 1.94 2.797e-6 1.70
256 8 2.451e-5 1.96 8.196e-7 1.77
512 8 6.186e-6 1.99 2.150e-7 1.93

Table 2: Example 4.1: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 =0.125 and
ε2 =0.0078125. In this case, umax ≈0.0264.

ε1 ε2 N M MFEM(L) rate MFEM(O) rate

0.125 0.0078125 8 16 9.330e-3 1.034e-2
16 16 4.787e-3 0.96 5.429e-3 0.93
32 16 1.538e-3 1.64 1.958e-3 1.47
64 16 5.699e-4 1.43 3.092e-4 2.66
128 16 1.558e-3 -1.45 2.340e-5 3.72

base functions in (2.5), each element is divided into M×M subelements with mesh size
hs =h/M.

We use the two boundary conditions described in Section 3. After using the standard
FEM to solve the local problem for base functions, we compute the gradient of the base
functions at the center of the subelements. The local stiffness matrix and the local rights-
hand side in (2.4) are computed using the two-dimensional Gauss quadrature rule. Then
we glue the local stiffness matrix to the global stiffness matrix. The resulting discrete
algebra equations by using the algebraic multigrid method.

To analyze the error of the MFEM, we compare the MFEM solution uh with the ‘exact’
solution approximation u. The same exact solution u is used for the MFEM with both
the linear base functions (denoted by MFEM(L)) and the oscillatory base functions (de-
noted by MFEM(O)). In the following tables, the discrete l2 norm errors are listed for
the MFEM(L) and the MFEM(O), and the rate is the convergence rate when the grid is
refined.

Example 4.1. We solve (2.1) with f =1, u|∂Ω = g=0 and the periodic coefficient that

aij =





2+1.8sin
(

2πx
ε1

)

2+1.8cos
(

2πy
ε2

) +
2+1.8cos

(

2πy
ε1

)

2+1.8sin
(

2πx
ε2

)



·δij. (4.1)



S. Jiang and Y. Huang / Commun. Comput. Phys., 5 (2009), pp. 928-941 935

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

30

35

40

  x  y

  a
xy

  x

  y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

  x  y

  a
xy

  x

  y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Example 4.1: the 3D view (left) and the 2D contour (right) for the coefficient function (4.1). Top:
ε1 = 0.2,ε2 = 0.08, and the value of max(a)/min(a) is 15.998; Bottom: ε1 = 0.125,ε2 = 0.0078125, the value of
max(a)/min(a) is 3.243.

In [8], it is proved that the error MFEM(L) satisfies

for case h≪ ε2 ≪ ε1 : ||u−uh||0,Ω ≤C

(

h

ε2

)2

, (4.2)

for case ε2≪h≪ ε1 : ||u−uh||0,Ω ≤C1

(

h

ε1

)2

+C2

( ε2

h

)

. (4.3)

In Tables 1 and 2, different values of ε1 and ε2 are chosen, and the corresponding errors
and the rate of convergence are shown. We also plot in Fig. 1 the 3D and 2D views of the
coefficient function (4.1). It is seen from Fig. 1 that the periodic coefficient is parallel to
the mesh grids. For the case h≪ ε2 ≪ ε1, it is observed from Table 1 that the accuracy of
MFEM(O) is much higher than that of MFEM(L). Moreover, both boundary conditions
yield second-order rate of convergence, which verifies (4.2). For the case ε2 ≪ h ≪ ε1,
it is observed from Table 2 that the rate of convergence for MFEM(L) deteriorates from
second-order (when the term (h/ε1)

2 dominates) to negative first-order (when the term
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Figure 2: Example 4.2: the 3D view (left) and the 2D contour (right) for the coefficient function (4.4). Top:
ε1 =0.16, and the value of max(a)/min(a) is 2.288; Bottom: ε1 =0.008, the value of max(a)/min(a) is 2.286.

ε2/h dominates in (4.3)). In contrast, MFEM(O) can acquire high positive order conver-
gence rate as the mesh is refined.

Example 4.2. We make coordinate transformation to periodic coefficient in this example.
Solve (2.1) with f =1 and g=0, and

aij =

(

2+1.5sin

(

2π(x+y)

ε1

))−1(

2+1.5sin

(

2π(x−y)

ε1

))−1

·δij. (4.4)

In Fig. 2, we observe the coordinates transformation effects on the coefficient a(x),
where the coarse grid boundary edge cuts across the contours under irrational angle
(π/4 in this example), which is different from Example 4.1.

It is observed from Table 3 that for case h≪ ε1 both MFEM(L) and MFEM(O) obtain
second-order convergence rate. However, the accuracy of MFEM(O) is lower than that of
MFEM(L). Moreover, it is seen that for the case h≫ε1, the convergence rate for MFEM(L)
deteriorates from second-order to negative first-order, while MFEM(O) is more accurate
in this case. These phenomena were also noticed in Example 7.1 in [13]. It seems that
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Table 3: Example 4.2: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 = 0.16. In
this case, umax≈0.19393.

ε1 N M MFEM(L) rate MFEM(O) rate

0.16 32 8 1.609e-3 4.259e-3
64 8 3.562e-4 2.18 1.577e-3 1.43

128 8 8.627e-5 2.05 4.498e-4 1.81
256 8 2.142e-5 2.01 1.168e-4 1.95
512 8 5.352e-6 2.00 2.950e-5 1.99

when the boundary edge of the coarse elements cuts through the contours of the periodic
coefficient under irrational angle, MFEM(O) with large parameter ε1=0.16 (as in Table 3)
can not extract more accurate information on the boundary. On the contrary, MFEM(O)
with small parameter ε1 = 0.008 can behave better. This is because when the boundary
edge goes through the entire period due to ergodicity as εk →0, sufficient information is
to be captured by the oscillatory multiscale base functions.
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Figure 3: Example 4.3: the 3D view (left) and the 2D contour (right) for the coefficient function (4.5), with
ε1 =0.2,ε2 =0.08. The value of max(a)/min(a) is 148.444.

Example 4.3. We make another coordinate transformation to periodic coefficient. Solve
(2.1) with f =1, u|∂Ω = g=0.5(x2+y2), and

aij =





1.5+sin
(

2π(
√

3x+3y)
ε1

)

1.5+cos
(

2π(
√

3x−y)
ε1

) ·
1.5+cos

(

2π(
√

3x−y)
ε2

)

1.5+sin
(

2π(
√

3x+3y)
ε2

)



·δij. (4.5)

Fig. 3 presents the 3D view and the 2D contour for a(x). It is seen that the mesh grid
goes through the contours of the coefficient under irrational angle (π/3 in this example).
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Table 4: Example 4.3: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 = 0.2 and
ε2 =0.08. In this case, umax =1.

ε1 ε2 N M MFEM(L) rate MFEM(O) rate

0.2 0.08 64 8 3.748e-3 1.821e-3
128 8 8.610e-4 2.12 9.102e-4 1.00
256 8 2.035e-4 2.08 3.197e-4 1.51
512 8 5.094e-5 2.00 8.994e-5 1.83

It is seen from Table 4 that for case h≪ ε2 ≪ ε1, MFEM(L) is a little more accurate than
MFEM(O). For the case ε2≪h≪ ε1, it is found that there is no big difference in accuracy
between MFEM(L) and MFEM(O).

From Examples 4.2 and 4.3, we remark that in the situation that the mesh element
edge cuts through the contours of the periodic coefficient under irrational angle, there
is no great difference using either the linear or oscillatory boundary condition for the
multiscale bases when small scales present; however, it should be pointed out when there
are large scale parameters, MFEM(L) behaves better than MFEM(O) in this case.
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Figure 4: Example 4.4: the 3D view (left) and the 2D contour (right) for the coefficient function (4.6), with
ε1 =0.125,ε2 =0.0078125, and the value of max(a)/min(a) is 2.384.

Example 4.4. The last example is concerned with the non-periodic coefficient in (2.1):

aij =

(

2.5+tanh(x/ε1)

2.5+sinh(y/ε1)
+

2.5+tanh(y/ε2)

2.5+cosh(x/ε2)

)

·δij, (4.6)

together with f =1, g= x.

For the non-periodic coefficient situation, the contours in Fig. 4 have no regularity
with the mesh grid boundary. In Table 5, for the case h≪ε2≪ε1, MFEM(L) and MFEM(O)
behave similarly and the second-order convergence rate is not in this case. In Table 6, for
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Table 5: Example 4.4: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 = 0.2 and
ε2 =0.08. In this case, umax≈1.023.

ε1 ε2 N M MFEM(L) rate MFEM(O) rate

0.2 0.08 32 8 8.123e-5 1.296e-4
64 8 2.158e-5 1.91 3.403e-5 1.93
128 8 7.007e-6 1.62 1.016e-5 1.74
256 8 4.106e-6 0.77 4.779e-6 1.09
512 8 3.655e-6 0.17 3.792e-6 0.33

Table 6: Example 4.4: the l2-error and the convergence rate by MFEM(L) and MFEM(O) with ε1 =0.125 and
ε2 =0.0078125. In this case, umax≈2.895.

ε1 ε2 N M MFEM(L) rate MFEM(O) rate

0.125 0.0078125 8 16 1.167e-1 2.086e-2
16 16 2.964e-2 1.98 6.146e-3 1.76
32 16 7.976e-3 1.89 1.606e-3 1.94
64 16 1.908e-3 2.06 4.069e-4 1.98

128 16 4.867e-4 1.97 1.027e-4 1.99

the case ε2≪h≪ε1, the numerical results obtained by using MFEM(O) are more accurate
than those of MFEM(L). This is due to the well-being of the ergodicity refined by the
small parameters. So we conclude that in the non-periodic situation, MFEM(O) is a good
choice for the multiscale problem.

5 Conclusions

Through numerical studies on the boundary conditions of the base functions for the mul-
tiscale finite element method, we demonstrate the superiority of the oscillatory bound-
ary condition for the multiscale base functions in many cases. However, the oscillatory
boundary condition is not a panacea in all cases. It is observed that when the boundary
edge of the coarse grids cuts through the contours of the coefficient under irrational an-
gle, the large scale parameters will affect the well-being of the ergodicity. Consequently,
the ill-fitted of the oscillatory boundary condition may yield less accurate results than
those given by the linear boundary condition.
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