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Abstract. The Damage Spreading (DS) method allows the investigation of the effect
caused by tiny perturbations, in the initial conditions of physical systems, on their
final stationary or equilibrium states. The damage (D(t)) is determined during the
dynamic evolution of a physical system and measures the time dependence of the
difference between a reference (unperturbed) configuration and an initially perturbed
one. In this paper we first give a brief overview of Monte Carlo simulation results ob-
tained by applying the DS method. Different model systems under study often exhibit
a transition between a state where the damage becomes healed (the frozen phase) and
a regime where the damage spreads arriving at a finite (stationary) value (the dam-
aged phase), when a control parameter is finely tuned. These kinds of transitions are
actually true irreversible phase transitions themselves, and the issue of their univer-
sality class is also discussed. Subsequently, the attention is focused on the propagation
of damage in magnetic systems placed in confined geometries. The influence of in-
terfaces between magnetic domains of different orientation on the spreading of the
perturbation is also discussed, showing that the presence of interfaces enhances the
propagation of the damage. Furthermore, the critical transition between propagation
and nonpropagation of the damage is discussed. In all cases, the determined critical
exponents suggest that the DS transition does not belong to the universality class of
Directed Percolation, unlike many other systems exhibiting irreversible phase transi-
tions. This result reflects the dramatic influence of interfaces on the propagation of
perturbations in magnetic systems.
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1 Introduction

One of the most interesting challenges in the theory of dynamic systems is the under-
standing of the dependence of the time evolution of physical observables on the initial
conditions, because very often a small perturbation in the initial parameters could com-
pletely change their behavior [1]. Within this context, it is interesting to study the time
evolution of such perturbations in order to investigate under which conditions a small
initial perturbation may grow up indefinitely or, eventually, it may vanish and become
healed.

In order to understand this behavior, Kauffman introduced the concept of Damage
Spreading (DS) [2]. In order to implement the DS method in computational simula-
tions [3, 4], two configurations or samples S and S′, of a certain stochastic model, are
allowed to evolve simultaneously. Initially, both samples differ only in the state of a
small number of sites. Then, the difference between S and S′ can be considered as a small
initial perturbation or damage.

The time evolution of the perturbation can be followed by evaluating the total damage
or “Hamming distance” defined as

D(t)=
1

N ∑
i

Di(t)=
1

N ∑
i

1−δSi(t),S′
i(t), (1.1)

where Di(t) is the damage of the site labeled with the index i at time t, δSi(t),S′
i(t) is the

delta function and the summations in Eq. (1.1) run over the total number of sites of the
system N.

By starting from a vanishing small perturbation D(t=0)→0, one may expect at least
two main scenarios, namely: a) D(t→∞)→0 and the perturbation is irrelevant because
the damage heals; or b) D(t→∞) assumes some non-zero value, and the damage spreads.
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These two situations indicate a weak or a strong influence of the initial conditions, re-
spectively [5, 6]. Of course, an intermediate or marginal case where the number of dam-
aged sites approaches a finite positive number, which does not increase proportionally
to N, may also occur. In this case, after normalization by N one has that Eq. (1.1) gives
D(t→∞)≡0, but the damage has not healed out. When the system arrives either at the
state of zero damage or complete damage (D = 0 or D = 1, respectively), it will remain
in this situation indefinitely. For this reason, a transition between these two states is
irreversible and could be related to Directed Percolation processes [7], for which an irre-
versible critical transition occurs from an active to an inactive state (absorptive state). In
those models belonging to the universality class of directed percolation, when the system
is trapped in an absorptive state, it is then impossible to recover the activity by changing
the control parameter.

The first studies of DS in physical systems were applied to the Ising model, spin
glasses and the Kauffman cellular automata, and they appeared in the mid-eighties [8–
11]. Subsequently, this technique has also been applied to the study of several different
models such as Ising models [9–59], spin glasses [11, 60–70], Potts models with q-states
[71–77], the Heisenberg model [78,79], the XY model [80,81], a discrete ferromagnet [82],
two-dimensional trivalent cellular structures [83, 84], biological evolution [85, 86], and
cellular automata [6,87–93]. Also, non-equilibrium systems [2,28,92,94–99], SOS models
[100–102], opinion dynamics [103, 104] and small world networks [105, 106], have been
characterized by means of the DS method.

In view of the great interest attracted by this field of research of interdisciplinary ap-
plication, the aim of this work is to present a brief overview of the state of the art in
studies of the Damage Spreading transition, focusing our attention on recent results ob-
tained for magnetic systems in confined geometries, which are helpful in understanding
the propagation of perturbations in nano- and micromaterials.

The manuscript is organized as follows: in Section 2 we briefly describe the archetyp-
ical models used in the study of DS, namely the Domany-Kinzel cellular automata and
the Ising model. In Section 3 we describe the DS method in these basic models, and Sec-
tion 4 is devoted to the discussion on the main characteristics of DS. In Section 5, in first
place we present a brief discussion of the equilibrium configurations that can be found
for Ising systems in confined geometries, and therefore we discuss the results obtained
for DS in these systems. Finally, our conclusions are stated in Section 6.

2 Definition of basic models

Both, the Domany-Kinzel (DK) cellular automata model and the Ising magnet have be-
come archetypical systems for the study of DS. So, for the sake of completeness we give
brief descriptions of both models.
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2.1 The Domany-Kinzel cellular automata model

The DK model [107,108] is a family of the (1+1) dimensional stochastic cellular automata
with two parameters, p1 and p2, which simulate the time evolution of interacting active
elements in a random medium. The DK model consists of a linear chain of N sites (Si) that
can take two possible values, usually 0 and 1 (empty and occupied sites, respectively).
The state of each site i at time t+1 [Si(t+1)] depends only upon the state at time t of
the two nearest neighbors [Si−1(t) and Si+1(t)], according to the transition probability
[P[Si(t+1) |Si−1(t),Si+1(t)]] defined as

P[1 |0,0]=0,

P[1 |0,1]= P[1 |1,0]= p1 , (2.1)

P[1 |1,1]= p2 ,

where

P[0|•,•]=1−P[1|•,•]

and the parameters p1 and p2 represent the probabilities that the site i is occupied if
exactly one or both of its neighbors are also occupied, respectively.

Domany and Kinzel demonstrated [107, 108] the existence of two phases, depending
on the values of the parameters p1 and p2, a frozen and an active phase, separated by
a critical line. In the active phase, there exists a stationary state that it is governed by
fluctuations, while in the frozen phase all initial states lead to an absorbing state. There
is strong numerical evidence that this phase transition belongs to the universality class
of Directed Percolation (except for its upper terminal point). The exceptional behavior
at the upper terminal point of the critical line is due to an additional symmetry between
active and inactive sites along the line p2 = 1. Here, the DK model has two symmetric
absorbing states given by the empty and the fully occupied lattices, respectively.

2.2 The Ising model

The other archetypical system used to study the DS transition is the Ising model [109]. In
this case, each site of the lattice represents a spin variable. In the ferromagnetic case, the
spins have an energetic preference to adopt the same direction. The Hamiltonian of this
system can be written as

H=−J · ∑
<i,j>

σiσj−H ∑
<i,j>

σi, (2.2)

where σi is the Ising spin variable that can assume two different values σi =±1, the in-
dexes 1≤ i, j ≤ N are used to label the spins, J > 0 is the coupling constant of the ferro-
magnet, H is the external magnetic field, and the summation runs over all the nearest-
neighbor pairs of spins. In the absence of an external magnetic field (H = 0) and at low
temperature, the system is, for more than one dimension, in the ferromagnetic phase and,
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on average, most spins are pointing in the same direction. In contrast, at high temper-
ature the system maximizes the entropy, thermal fluctuations break the order and the
system is in the paramagnetic phase. This ferromagnetic-paramagnetic critical transition
is a second-order phase transition and it occurs at a well-defined critical Temperature
(TC). In the two-dimensional case, one has exactly

kTC/J =2/ln(1+
√

2)=2.269··· ,

where k is the Boltzmann constant.

3 Damage spreading in the basic models

3.1 Damage spreading in the DK model

One of the most interesting behaviors of DS was first discovered in the (1+1)-dimensional
DK cellular automata [107, 108]. In fact, in addition to the two known phases (frozen
and active) of the phase diagram of the DK model, already discussed in the previous
section, Martins et al. [110] found a third phase related to the spreading of the dam-
age. This “new” phase, which lies in the active phase, simultaneously exhibits regions
where the damage spread and heals, and it is extremely sensitivity to the initial condi-
tions. Subsequently, other authors [34, 111–113] determined the boundary of this phase
more precisely. Independently, Mean Field approximations applied to different systems
[90, 93, 113, 114] confirmed the existence of this “chaotic phase” in the sense that the final
state of the system is sensitive to the initial conditions. However, it has also been realized
that the results obtained [93, 114] may depend on the dynamic rules used in the imple-
mentation of the algorithm. This characteristic of DS will be explained in detail in next
Section.

3.2 Damage spreading in the Ising model

In the case of the Ising model, the definition given in Eq. (1.1) can be rewritten as

D(t)=
1

2N

N

∑
l

∣

∣

∣

SA
l (t,T)−SB

l (t,T)
∣

∣

∣

, (3.1)

where the summation runs over the total number of spins N, and the index l(1 ≤ l ≤
N) is the label that identifies the spins of the configurations. SA(t,T) is an equilibrium
configuration of the system at temperature T and time t, while SB(t,T) is the perturbed
configuration that is obtained from the previous one, at t=0, just by flipping few spins [3].
Physically, the definition given by Eq. (3.1) represents the total fraction of spins that are
different in both configurations. Then, one is interested in investigating under which
conditions a small initial perturbation will grow up indefinitely or eventually will vanish
and become healed.
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Notice that by performing Monte Carlo simulations, the same sequence of random
numbers has to be used for both copies, in order to assure identical realizations of thermal
noise. Furthermore, to study the time evolution of the DS, a meaningful definition of the
Monte Carlo time step (mcs) is necessary. For this purpose, the standard definition is
adopted according to that during one mcs all N−spins of the sample are flipped once, on
the average.

4 Main characteristics of the damage spreading

4.1 On the dependence of damage spreading with the simulation algorithm

As it was mentioned previously, the DS behavior depends on the dynamic rules used to
implement the algorithm, in Monte Carlo Simulations. In order to understand this de-
pendence, it is very useful to remind the reader that the detailed balance condition [1, 4]
assures that the system will arrive at an equilibrium state, but it does not establish the
way of this evolution. In other words, detailed balance does not univocally determine
the dynamic rules that have to be applied to go from a given configuration to the next.
Therefore, this situation opens the possibility on choosing different transition probabili-
ties between states, which implies that different dynamic rules can be applied to the same
physical system. In the case of the Ising Model, the equilibrium state can be generated
by different dynamic rules, e. g. Heath Bath, Glauber, Kawasaki and Metropolis dynam-
ics, which represent different dynamics that allow the system to arrive at an equilibrium
state.

In principle, it was expected that DS would not depend on the intrinsic dynamics
of the simulation, and one could find regular and chaotic phases that could be identi-
fied with the properties of the equilibrium system [10, 11]. However, subsequent studies
showed that different dynamic rules implies the occurrence of different behavior in the
DS, such as Glauber versus Metropolis [17,115], Q2R [16] or Kawasaki [19]. Furthermore,
depending on the type of updates, this means in which way the sites of the lattice are cho-
sen (randomly, typewriter, chessboard, etc.), the results obtained for DS and the critical
temperature of the transition between propagation and nonpropagation of the damage
are different [20, 24, 46].

Summing up, the observed behavior is not surprising since DS is a dynamic process,
and for this reason, it is reasonable to expect that it may depend on the dynamic rules
applied. As an example, it is useful to consider the Ising model in two dimensions and
compare the results obtained using both Glauber [10] and Heath Bath [11] dynamics. For
the Ising model simulated by using the Glauber dynamics, Stanley et al. [10] and Mariz
et al. [17] found that in the paramagnetic phase (T > TC, where TC is the Onsager critical
temperature (TC = 2.269··· J)) the system is chaotic (D(t→∞) tends to a finite non-zero
value), while in the ferromagnetic phase the damage heals (D(t→∞)→0). On the other
hand, Derrida et al. [11] studied DS in the Ising Model with the Heath Bath dynamics.
They found, in contrast to the case of Glauber dynamics, that for both the paramagnetic
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and ferromagnetic phases, damage heals in the limit D(0)→0.
On the other hand, the results obtained by Costa [13] and Le Caër [14] in three dimen-

sions and using the Glauber dynamics, show a behavior similar to the 2D case, but the
critical temperature for the DS transition (TD) is lower than TC.

4.2 On the universality class of the damage spreading transition

The universality class of the continuous and irreversible critical transition between prop-
agation and non-propagation of damage is still an open question. Grassberger [34] con-
jectures that the DS transition may belong to the Directed Percolation universality class
(DP) [116–118] if its critical point does not coincide with a critical transition of the phys-
ical system, e.g., the critical temperature of the Ising magnet. In the same paper, Grass-
berger [34] presents a Monte Carlo simulation study of DS in the DK cellular automata
[119] as a test for his conjecture. He founds that critical exponents of the DS transition
coincide, within error bars, with the exponents of the DP universality class, both in two
and three dimensions.

An analytical justification for Grassberger’s conjecture is given by Mean Field stud-
ies reported by Bagnoli [93] and the subsequent exact results obtained by Kohring and
Schreckenber [114]. They found that, for certain limits of the transition probability be-
tween states, the dynamics of DS in the DK cellular automata is identical to the evolution
of the DK itself, and for this reason, the DS transition belongs to the DP universality
class. These results were later extended to other regions of the phase diagram of the DK
Model [91].

Numerical simulations of different models also showed that the DS transition is char-
acterized by critical exponents of the DP universality class, as in the case of the 2D Ising
Model with Swendsen-Wang dynamics [48], as well as in a deterministic cellular au-
tomata with small noise [87].

However, there are also other systems where the DS transition has a non-DP behavior,
such as the case of the Kauffman Model [2]. In general, it is expected that if the order
parameter has a Z2 symmetry, the DS transition may not belong to the DP class [40].

In the Ising model with Glauber dynamics, Stanley et al. [10] determined that the
DS transition and the paramagnet-ferromagnet transition coincide. For this reason, it is
expected that the DS transition may not belong to the DP universality class.

In three dimensions, Costa [13] and Le Caër [14] found that

TD/TC ≈0.96 and TD/TC ≈0.91,

respectively. A few years later, Grassberger [33] determined more precisely the critical
temperature for the DS transition, and he found that

TD =0.992(2)TC

in two dimensions and
TD =0.9225(5)TC
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in three dimensions. He also determined the value of the critical exponent δ governing
the time dependence of the survival probability of damage, showing that it coincides,
within error bars, with the accepted value corresponding to the DP universality class.

On the other hand, Vojta [41, 43], studying the dynamic stability of the kinetic Ising
model with Glauber dynamics and using a Mean Field approximation, found that there
exists a critical temperature for the Damage propagation-nonpropagation transition given
by

TD ≃1.739J ≃0.826TC.

Also, Vojta generalized these results in the presence of an external magnetic field h. He
found that h causes an increase of the critical temperature TD and stabilizes the non-
chaotic phase. The general behavior of TD as a function of h is given by

TD(h)

J
=

1

1−h/J
in the limit h/J →1. (4.1)

DS has also been studied in the Ziff-Gulari-Barshad (ZGB) model [120], for the cat-
alytic oxidation of carbon monoxide. The ZGB model exhibits a second-order irreversible
phase transition between an active state with production of CO2 and a poisoned (absorp-
tive) regime [120] where the reaction stops irreversibly, which is known to belong to the
universality class of DP [121]. By performing Monte Carlo simulations of DS in the ZGB
model in 2D, Albano [95] showed that there exist both chaotic and regular phases, and
that the transition between them lies within the reactive phase. So, the DS transition is
not coincident with the model transition that takes place between a poisoned and a re-
active phase. However, the reported critical exponent δ≃ 0.65(2) is quite different from
that corresponding to the DP universality class, namely δ =0.451 [118]. So, the question
about the universality class of the DS transition in the ZGB model is still open.

Another interesting possibility is to study the interplay between reversible (equilib-
rium) critical transitions of confined systems and the irreversible DS transition. In par-
ticular, for the case of magnetic systems confined between rigid walls, it is interesting
to study the relationship between on the one hand, the DS transition and on the other
hand, the paramagnet-ferromagnet, the wetting and the corner-filling transitions. In the
last examples (wetting and corner transitions), the presence of external magnetic fields
applied to the walls of the system promotes the presence of interfaces between magnetic
domains of different orientation, and therefore it is interesting to study the effect of these
interfaces on the propagation of damage. In fact, it have been observed [54–56, 59] that
the presence of interfaces enhances the spatiotemporal spreading of damage.

5 Damage spreading in the confined Ising model

Here, we focused our attention to the study of DS in the Ising Model when the ferromag-
net is confined between walls that exhert surface magnetic fields. For this purpose, first
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it is worth studying the main properties of equilibrium configurations, since they are the
starting point for the study of DS. Subsequently, the study of DS is actually addressed.

5.1 Equilibrium configurations of the Ising magnet in confined geometries

5.1.1 Strip geometries and the wetting transition.

The study of the properties of thin−confined−films has attracted growing attention in
the last decades not only due to the interest in the understanding of the properties of
confined and low dimensional materials, but also to the existence of many potential ap-
plications in the fields of nanoscience and nanotechnology.

A thin film can be modeled by using the Ising magnet in a confined geometry. So, if
one has a film in a stripped geometry of size L×M (L≪M), the Hamiltonian of the Ising
magnet given by Eq. (2.2) can be redefined as

H=−J
M,L

∑
<ij,mn>

σijσmn−h1

M

∑
i=1

σi1−hL

M

∑
i=1

σiL, (5.1)

where σij is the Ising spin variable corresponding to the site of coordinates (i, j), J > 0
is the coupling constant of the ferromagnet and the first summation of (5.1) runs over
all nearest-neighbor pairs of spins such as 1 ≤ i ≤ M and 1 ≤ j ≤ L. The second (third)
summation corresponds to the interaction of the spins placed at the surface layer j = 1
(j= L) of the film where the surface magnetic field h1 (hL) acts. Such fields are measured
in units of the coupling constant J. Of course, for non-vanishing surface fields one has to
assume open boundary conditions (OBC) along the M−direction of the film. However,
for h1 = hL = 0 both OBC and periodic boundary conditions (PBC) may be used. Also,
along the L−direction of the strip, OBC are always used.

Considering PBC connecting the upper and lower surfaces of the film and neglecting
surface fields in the Hamiltonian of Eq. (5.1), one finds standard configurations of the
Ising magnet, as is shown in Fig. 1(a). In this case, for T = 0.98TC one has rather homo-
geneous configurations essentially showing large monodomain structures. On the other
hand, by assuming OBC and keeping h1 =hL =0, a quite distinct behavior is observed, as
is shown in Fig. 1(b), which was also obtained at the same temperature as in Fig. 1(a). In
fact, near the bulk critical temperature, the system shows a quasi-phase transition from a
state that is ordered at scales ξ < L (note that ξ is the standard correlation length) below
TC to a state that is essentially ordered in the direction perpendicular to the open bound-
ary, but is disordered in the other direction. In fact, for T≤TC (but close to TC) the system
is broken up in a sequence of magnetic domains with spins of opposite sign. The succes-
sive domain walls occur essentially at random (see, e.g., Fig. 1(b)). It should be noticed
that this particular kind of configuration is the macroscopic manifestation of the mixing
neighbor effect undergone by spins at the surfaces of the film with open boundaries. For
a detailed discussion on this kind of configuration, see also Albano et al. [128].
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(a)

(b)

Figure 1: Snapshot configurations corresponding to the Ising magnet as obtained for L=12, M=1200, t=10000
mcs, T = 0.98TC, and using (a) periodic boundary conditions, (b) open boundary conditions. Note that the
horizontal coordinate has been reduced by a factor of five in comparison with the vertical coordinate, for the
sake of clarity of the picture. Sites taken by down spins are shown in black while up spins are left white [54].
More details in the text.

(a)

(b)

(c)

Figure 2: Snapshot configurations obtained after 104 mcs in confined geometries when short-range fields with
opposite signs are applied to the bottom and top sides of a lattice of size L=24 and M=1200. In these cases,
the snapshots are taken at T = 0.80TC and different surface fields: (a) h = 0.4, within the non-wet phase; (b)
h=0.6, near the critical wetting curve, and (c) h=0.8, within the wet phase. Note that the horizontal coordinate
has been reduced by a factor of five in comparison with the vertical one, for the sake of clarity of the picture.
Sites taken by down spins are shown in black while up spins are left white [56]. More details in the text.

Also, by considering OBC and the competing surface magnetic fields h1 =−hL (see
Eq. (5.1)) another very interesting scenario takes place. In fact, for T < TC, these compet-
ing fields cause the development of a domain wall interface along the direction parallel
to the surface of the film, as is shown in Fig. 2. This situation can be described in terms of
a wetting transition that takes place at a certain−field-dependent−critical wetting tem-
perature Tw(h). In fact, for T<Tw(h) a small number of rows parallel to one of the surface
of the film have an overall magnetization pointing to the same direction as the adjacent
surfaces field (see Fig. 2(a)). However, the bulk of the film has the opposite magneti-
zation (i.e., pointing in the direction of the other competing field). Alternatively, one
may also consider a symmetric situation that is equivalent to the previous one due to
the spin-reversal field-reversal symmetry. This non-wet state of the surface takes place
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at low enough temperatures. As the temperature is raised towards Tw(h), the number
of rows adjacent to the surface that has a magnetization of different orientation than the
bulk increases, i.e., the domain wall between the coexisting phase of opposite magneti-
zation, which at low temperature is tightly bound to one surface (non-wet state), moves
farther and farther away from the surface toward the bulk of the film. When the interface
is located, on average, in the middle of the film, the system reaches the wet phase for the
first time. Of course, a well-defined wetting transition takes place in the thermodynamic
limit only. Nevertheless, as shown in Fig. 2(b), a precursor of this wetting transition can
also be observed in confined geometries for finite values of L. In confined geometries,
this precursor wetting transition is most correctly described in terms of a localization-
delocalization transition of the interface (for further discussions on the wetting transition
of the Ising system, see, e.g., [122–137]). For T>Tw, the interface between domains moves
along the L-direction, and the system enters the wet regime (delocalized interface), as is
shown in Fig. 2(c).

0.7 0.75 0.8 0.85 0.9 0.95 1
T/T

C

0

0.2

0.4

0.6

0.8

h

Figure 3: Phase diagram of h versus T/TC. The dashed line corresponds to the wetting transition (Eq. (5.2)),
while the full line corresponds to the corner-filling transition (Eq. (5.4)). The circles and squares correspond to
the results obtained for the DS transition at the strip [56] and the corner [59] geometries, respectively.

The phase diagram (i.e., the critical curve in the h-T plane, as shown in Fig. 3) has
been solved exactly by Abraham [122, 126], yielding

cosh(2hβ)=cosh(2K)−e−2K sinh(2K), (5.2)

where J > 0 is the coupling constant, h is the surface magnetic field, β = 1/kT is the
Boltzmann factor, and K = Jβ.
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5.1.2 The corner geometry and the filling transition

Another interesting confinement scenario for the Ising magnet is the so-called corner
geometry sketched in Fig. 4. For this case, the Hamiltonian given by Eq. (5.1) has to be
modified for a lattice of size L×L, yielding

H=−J ∑
<i,j,m,n>

σi,jσm,n−h∑
i

σi,1−h∑
j

σL,j+h∑
j

σ1,j+h∑
i

σi,L, (5.3)

where σi,j =±1 is the spin variable, J >0 is the coupling constant, and h is the magnitude
of the surface field. The first summation runs over all spins, while the remaining ones
hold for spins at the surfaces where the magnetic fields are applied (see also Fig. 4) and
h>0 is measured in units of J.

Figure 4: Corner geometry of size L×L. The signs + and − indicate the surfaces where the competing surface
magnetic fields are applied. The positive domain is shown in grey and the negative one is left white. In this
case, the boundary conditions are open for all sides of the sample [59].

Studies performed by using this confinement geometry show that for certain values
of the temperature and the competing magnetic fields h, applied to opposite corners, a
corner-filling transition can be observed (see Fig. 5). The study of this filling transition
under equilibrium conditions has recently attracted growing attention [138–167]. Also,
the filling transition upon the irreversible growth of a magnetic system has very recently
been studied [168]. In both cases, the occurrence of an interface between magnetic do-
mains of different orientation is due to the presence of competing fields. The localization-
delocalization transition of the interface in a finite system yields to a true second-order
corner-filling transition in the thermodynamic limit (L→∞). The analytical expression
of the equilibrium phase diagram was early conjectured by Parry et al. [150] and more
recently proved rigorously by Abraham and Maciolek [153], yielding

cosh(2hβ)=cosh(2K)−e−2K sinh2(2K). (5.4)
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Figure 5: Snapshot configurations obtained after 104 mcs in a corner geometry of size L×L, with L = 128,
T = 0.80TC and different surface fields: (a) h = 0.20 < hF(L); (b) h = 0.24∼ hF(L), and (c) h = 0.28 > hF(L).
Sites taken by down spins are shown in black while up spins are left white. More details in the text.

The critical curve obtained by using Eq. (5.4) is shown in Fig. 3. It is found that for a
given surface magnetic field, the filling transition takes place at a temperature lower that
of the wetting transition, except of course for h = 0, where both curves converge to the
Onsager critical temperature of the Ising model (TC).

In all cases briefly discussed here, one has that the interplay between confinement,
boundary conditions, surface fields and temperature leads to the occurrence of fluctuat-
ing interfaces, so that the propagation of damage in such systems is expected to strongly
depend on the properties of interfaces. It should also be noticed that due to the equiva-
lence between the Ising model and both a lattice gas and a binary alloy, all the physical
situations discussed above have a wider field of application, e.g., for the study of simple
fluids and in the field of condensed matter physics.

5.2 Damage spreading

5.2.1 Strip geometries

Let us start our discussion of DS in confined samples with the case of the strip geometry
(L×M, with L≪M) [54, 55]. Close to criticality, this Ising magnet exhibits an interesting
boundary effect, as already discussed in relation to Figs. 1(a) and 1(b). When an initial
perturbation is introduced in these configurations, at the critical point of the DS transi-
tion, one observes a monotonic growth of the damage according to a power-law behavior
(see Fig. 6) given by

D(t)∝ tη , (5.5)

where η is the dynamic critical exponent. Results obtained from the study of DS in these
systems are consistent with the fact that the presence of interfaces between magnetic
domains enhances the propagation of the perturbation, as judged by the values of the
dynamic critical exponents [54]:

ηOBC =0.471(5), ηPBC =0.392(5).
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Based on the fact that ηOBC
> ηPBC, one concludes that, for a given time, the damaged

area of the sample is always bigger in samples with OBC as compared with samples
having PBC. This result can be explained in terms of the fluctuations in the orientation
of the spins in the region near the interfaces. In fact, around these regions, which are
present in samples with OBC (see Fig. 1(b)), one has the largest fluctuations that enhance
the propagation of the perturbation. In contrast, inside of the magnetic monodomains,
which characterize the samples obtained by using PBC (see Fig. 1(a)), the propagation of
the damage slows down.
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Figure 6: Log-log plots of D(t) versus t obtained for the Ising magnet in the strip geometry. Results corre-
sponding to different temperatures obtained using lattices of size L×M=12×601 and applying open boundary
conditions. The slope of the dashed line is ηOBC =0.47 (see equation 5.5) [55]. More details in the text.

A similar behavior is observed for the propagation of damage in the Abraham’s
model (see Fig. 7) [56]. In this case, for certain values of the temperature T and the
surface magnetic fields applied to the upper and lower walls of the lattice (h), a critical
localization-delocalization transition of the interface between magnetic domains occurs.
It is found [56] that the dynamic critical exponent for DS is bigger than in the previous
cases, yielding ηWT = 0.91(1) (see Fig. 7). This result reflects the fact that the interface
between magnetic domains is parallel to the propagation of the perturbation, and for this
reason one has

ηWT
>ηOBC

>ηPBC.

Moreover, after proper extrapolation to the thermodynamic limit, the phase diagram of
the DS transition can be drawn, as shown in Fig. 3. It is observed that the DS transition
occurs within the non-wet phase of the wetting phase diagram (see Fig. 3) and conse-
quently it does not coincide with the wetting transition.

Other interesting result related to the propagation of damage along the interface be-
tween magnetic domains can be visualized by the study of the damage profiles along the



M. L. R. Puzzo and E. V. Albano / Commun. Comput. Phys., 4 (2008), pp. 207-230 221

L-direction, defined as:

PL(j,t)=
1

2M

M

∑
i=1

∣

∣

∣
SA

i,j(t,T)−SB
i,j(t,T)]

∣

∣

∣
, (5.6)

where SA
i,j(t,T) and SB

i,j(t,T) are the reference and damaged configurations at site l of

coordinates {i, j}, as early defined in the context of equation (1), respectively. Thus, the
damage profile represents the average damage of the ith (i = 1,··· ,L) row of the system,
that runs parallel to the surfaces where the fields are applied, i.e., the M-direction.
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Figure 7: Log-log plots of D(t) versus t. Results obtained at different temperatures, applying short-range fields

of magnitude h=0.5, and using lattices of size L×M =24×1201. The dashed line has slope ηWT =0.90 [56].

It is found [55] that for zero fields and assuming both PBC and OBC (Figs. 8(a)-(b),
respectively), the damage profiles are essentially flat. This can be explained in terms of
the interfaces between different magnetic domains which are essentially perpendicular
to the film and the overall effect on the profiles is homogeneous. On the other hand,
in presence of surface fields the situation is qualitatively different (see Fig. 8(c)). The
damage profiles show an important curvature related to the existence of an interface
in the M-direction, as shown in Fig. 2(c). The effect of the walls is to slow down the
propagation of the damage, while the interface between magnetic domains running along
the film enhance the spreading of the damage.

5.2.2 Corner geometry

DS in the corner geometry, with competing (short-range) magnetic fields acting on the
surfaces, shows [59] a behavior qualitatively similar to that the observed in the case of
the strip geometry (see Fig. 9). However, in contrast to the previous case, three different
regimes for DS were found, as is shown in Fig. 10. For short times, one observes the heal-
ing of the damage created in the bulk of the domains. However, at the critical DS point,
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Results are obtained using lattice of size L = 12, M = 600 in confined geometries, namely (a) T = 0.98TC and
PBC, (b) T =0.98TC and OBC, (c) T =0.861TC and applying short-range fields |h1|= |hL |=0.5. [55]

a small cluster of damaged sites survives close to the interface. During the second time
regime, the damage propagates along the interface according to a power-law behavior of
the form

D(t)∝ tη∗
, with η∗=0.89(1).

Finally, due to the constraint imposed by the corners where magnetic fields of opposite
direction meet, the damage no longer propagates along the surface but starts to spread
slowly into the bulk of the domains. Within this late regime one has D(t) ∝ tη∗∗

, where
η∗∗=0.40(2) is the exponent describing the spreading of the damage in the bulk [59].

As in the case of strip geometry, it is useful to gain further insight into the spatiotem-
poral propagation of the damage. For this purpose, the probability distribution of the
distance from the damage zone to the corner (P(lD

0 )) can be measured. The distribution
was evaluated along the diagonal of the sample (y-direction in Fig. 4) at x= L/2. Fig. 11
shows a summary of the results [59].

In these cases, for h ≪ h f (∞) (e.g., h = 0.20) the distribution is almost flat with two
small peaks close to the corners. Approaching the transition by increasing the field these
peaks develop and become slightly shifted toward the center of the sample (e.g., h=0.21
and h=0.22 in Fig. 11). This double-peaked structure indicates that the damage remains
bound to each corner with the same probability as expected for the case of the non-wet
phase. On the other hand, for h ∼ h f (∞) (e.g., h = 0.23,0.24 in Fig. 11) the distribution
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Figure 10: Log-log plot of D(t) versus t, as obtained for the Ising magnet in the corner geometry. Results
obtained for T = 0.80TC and at the “critical” size-dependent magnetic field hD(L): hD(L = 256) = 0.355,
hD(L =512)=0.3675, hD(L =1024)=0.37, and hD(L =2048)=0.38. The dashed line has slope η∗=0.89 and
the dotted line has slope η∗∗=0.40 [59].

becomes a Gaussian centered along the middle of the sample. The Gaussian structure of
P(lD

0 ) remains even for h≫h f (∞) (e.g., h=0.30 in Fig. 11). This results are in qualitative
agreement with the corresponding to the damage profile showed in Fig. 8 for the strip
geometry; and it shows that the damage is located in the neighborhood of the interface
between magnetic domains.
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and different values of surface magnetic field h, as listed in the figure [59].

5.2.3 Overview of the behaviour of DS in different confinement geometries

Table 1 summarizes the exponents obtained for different confinement geometries and
boundary conditions. In view of the exponents obtained, one concludes that the pres-
ence of interfaces between magnetic domains of different orientation causes the enhance-
ment of the propagation as compared with samples where such interfaces are not well
defined. Furthermore, these results clearly show that the propagation of the damage is
anisotropic: it propagates better along an interface than across it. Moreover, the obtained
results suggest that the damage propagates along the magnetic interfaces with a critical
exponent

η I =0.90(2)≃ηWT ≃η∗

and it spreads into the magnetic domains with an exponent

ηDOM =0.40(2)≃ηPBC ≃η∗∗.

Table 1: List of the critical exponent of Damage Spreading (η) obtained for the different models, as indicated
in the first column.

Model Critical Exponent η

Ising strip geometry with PBC [54] 0.392(5)
Ising strip geometry with OBC [54] 0.471(5)

Abraham’s Model [56] 0.91(1)
Corner Geometry (Second Regime) [59] 0.89(1)
Corner Geometry (Third Regime) [59] 0.40(2)
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Taking into account this point of view, the value of the exponent ηOBC = 0.471(5)
can be explained in terms of the equilibrium configurations of the system. In fact, the
sequence of domains with spins of opposite sign implies the inhomogeneity in the prop-
agation of damage. When the perturbation arrives at an interface, it will propagate faster
than in the bulk. For this reason, the exponent ηOBC can be thought as a result of the
interplay between the propagation along the interfaces and the propagation inside the
magnetic domains. Regrettably, for this example it seems to be impossible to separate
both effects in order to write the exponent in terms of η I and ηDOM.

Fig. 12 shows the behavior of D(t) for the different confinement geometries studied:
the strip geometry with PBC’s and OBC’s at criticality and without applied magnetic
fields [54, 55], the Abraham’s Model [56] and the corner geometry [59]. In all these cases
and because of the dependence on the initial conditions, the first 100 mcs were disre-
garded in order to evaluate the exponents.
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Figure 12: Log-log plot of D(t) versus t obtained at the DS critical point for the different models described in

this work. The dotted line has slope ηDOM =0.40, the dashed line has slope ηOBC =0.47, and the solid line has

slope η I =0.90. More details in the text.

6 Conclusions

A brief overview of the Damage Spreading method applied to different models is pre-
sented and the critical non-equilibrium DS transition is analyzed. Within this context, DS
in confined geometries is discussed in detail. A power-law behavior is found for DS as a
function of time. The dynamic critical exponent η depends on the presence of interfaces
between magnetic domains generated by the existence of surface magnetic fields applied
to the walls of the lattice. The results reported suggest that the damage propagates along
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the interfaces between domains with opposite orientations of the magnetization with an
exponent η I∼0.90 and it spreads into the magnetic domain with an exponent ηDOM∼0.40.
In view of these results, we conclude that the presence of interfaces enhances the propa-
gation of a perturbation.

The critical propagation-nonpropagation transition of the damage was studied too.
The results discussed indicate that, in some cases as in the Abraham’s model and a pure
Ising system in the absence of magnetic fields, there is clear evidence indicating that the
DS transition and the critical transition of the corresponding system occur at different
critical points. These cases correspond to the wetting and the ferromagnet-paramagnet
transitions, respectively. In the case of the corner geometry, both transitions – damage
spreading and corner-filling – coincide within error bars. It is found that, at criticality,
the damage obeys a power-law behavior of the form D(t) ∝ tη , where η is the damage
spreading critical exponent. The evaluation of critical exponents allows the identification
of three propagation regimes: i) inside the magnetic domains the propagation is slow
(η = 0.40(2)), ii) the fast propagation is observed along the interface between domains
(η=0.90(2)), iii) the alternating propagation across interfaces and inside domains is con-
sistent with an exponent lying between the previous cases, namely η =0.47(1).

In the cases of confined geometries, the critical exponents found suggest that the DS
transition does not belong to the DP universality class. This finding seems to be related
to the enhancement of the propagation of the damage caused by the magnetic interfaces
appearing in confined samples.

The DS method is a suitable tool for the study and understanding of the propagation
of perturbations in physical systems. Due to the concept of universality that allows one to
describe second-order phase transitions and classify them into universality classes, char-
acterized by the same set of critical exponents, it is possible to investigate simple models
representing more complex physical situations, as e.g., the Ising model as archetype of
various systems such as ferromagnets, fluids, lattice gases, binary alloys, etc. Therefore,
the discussed role of the interfaces in the propagation of perturbations may be a quite
general phenomenon of relevance in material science in general, and particularly, due to
the additional influence of confinement, in the field of micro- and nanotechnology.
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[57] T. Tomé, E. Arashiro, J. R. Drugowich de Felı́cio, M. J. de Oliveira, Braz. Jour. of Phys. 33

(2003) 458; arXiv: cond-mat/0306410.
[58] M. L. Rubio Puzzo, E. V. Albano, Physica A 349 (2005) 172.
[59] M. L. Rubio Puzzo, E. V. Albano, J. Phys.: Cond. Matt. 19 (2007) 026201.
[60] L. de Arcangelis, A. Coniglio, H. J. Herrmann, Europhys. Lett. 9 (1989) 749.
[61] L. de Arcangelis, H. J. Herrmann, A. Coniglio, J. Phys. A 22 (1989) 4971.
[62] H. R. da Cruz, U. M. S. Costa, E. M. F. Curado, J. Phys. A 22 (1989) L651.
[63] N. Boissin, H. J. Herrmann, J. Phys. A 24 (1991) L43.
[64] I. A. Campbell, L. de Arcangelis, Physica A 178 (1991) 29.
[65] I. A. Campbell, Europhys. Lett. 21 (1993) 959.
[66] I. A. Campbell, L. Bernardi, Phys. Rev. B 50 (1994) 12643.
[67] R. M. C. de Almeida, L. Bernardi, I. A. Campbell, Journal de Physique 5 (1995) 355.
[68] F. Wang, N. Kawashima, M. Suzuki, Europhys. Lett 33 (1996) 165.
[69] T. Wappler, T. Vojta, M. Schreiber, Phys. Rev. B 55 (1997) 6272.
[70] M. Heerema, F. Ritort, J. Phys. A 31, 8423 (1998); Phys. Rev. E 60 (1999) 3646.
[71] A. Mariz, J. Phys. A. 23 (1990) 979.
[72] M. F. A. Bibiano, F. G. B. Moreira, A. M. Mariz, Phys. Rev. E 55 (1997) 1448.
[73] L. R. da Silva, F. A. Tamarit, A. C. N. de Magalhaes, J. Phys. A 30 (1997) 2329.
[74] J. A. Redinz, F. A. Tamarit, A. C. N. de Magalhaes, Physica A 255 (1998) 439.
[75] E. M. de Souza Luz, M. P. Almeida, U. M. S. Costa, M. L. Lyra, Physica A 282 (2000) 176.
[76] J. A. Redinz, F. A. Tamarit, A. C. N. Magalhaes, Physica A 293 (2001) 508.
[77] A. S. Anjos, D. A. Moreira, A. M. Mariz, F. D. Nobre, Phys. Rev. E 74 (2006) 016703.
[78] E. N. Miranda, N. Parga, J. Phys. A 24 (1991) 1059.
[79] U. M. S. Costa, A. F. de Souza, M. L. Lyra, Physica A 283 (2000) 42.
[80] O. Golinelli, B. Derrida, J. Phys. A 22 (1989) L939.
[81] J. Chiu, S. Teitel, J. Phys. A 23 (1990) L891.
[82] A. M. Mariz, A. M. C. Souza, C. Tsallis, J. Phys. A 26 (1993) L1007.
[83] Z. Z. Guo, K. Y. Szeto, X. Fu, Phys. Rev. E 70 (2004) 016105.
[84] Z. Z. Guo, K. Y. Szeto, Phys. Rev. E 71 (2005) 066115.
[85] D. Stauffer, J. Stat. Phys. 74 (1994) 1293.
[86] A. Valeriani, J. L. Vega, J. Phys. A 32 (1999) 105.
[87] F. Bagnoli, R. Rechtman, S. Ruffo, Phys. Lett. A 172 (1992) 34.
[88] C. Tsallis, F. A. Tamarit, A. M. C. de Souza, Phys. Rev. E 48 (1993) 1554.
[89] C. Tsallis, M. L. Martins, EuroPhys. Lett. 27 (1994) 415.
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