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Abstract. A finite volume (FV) method for simulating 3D Fluid-Structure Interaction
(FSI) is presented in this paper. The fluid flow is simulated using a parallel unstruc-
tured multigrid preconditioned implicit compressible solver, whist a 3D matrix-free
implicit unstructured multigrid finite volume solver is employed for the structural dy-
namics. The two modules are then coupled using a so-called immersed membrane
method (IMM). Large-Eddy Simulation (LES) is employed to predict turbulence. Re-
sults from several moving boundary and FSI problems are presented to validate pro-
posed methods and demonstrate their efficiency.
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1 Introduction

The simulation of fluid flows with arbitrarily moving solid/elastic bodies is one of the
challenges in computational fluid dynamics (CFD). The development of accurate, robust
and efficient methods that can tackle this problem would provide a powerful tool to solve
many practical engineering problems. In recent years significant research efforts have
been devoted to the development of numerical models for studying moving boundary
problems based on the finite volume and finite element methods. Luo and Pedley [1–3]
performed a time-dependent simulation of a coupled flow-membrane problem, using
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the Arbitrary Lagrangian Eulerian (ALE) method together with a spine scheme to treat
a compliant wall moving in its wall normal direction in a channel. Zhao et al. [4, 5] have
also proposed a new dynamic mesh scheme to simulate an arbitrarily moving elastic wall
in a similar channel based on the ALE. Gaitonde [6,7] developed a moving mesh method
for the computation of compressible viscous flow past moving aerofoils. A sequence
of body conforming grids and the corresponding grid speeds were required, where the
inner and outer boundaries of the grids moved independently. The required grids and
their velocities were found by using a transfinite interpolation technique. Heil [8] stud-
ied a three-dimensional steady Stokes flow in an elastic tube using the ALE, which was
described by non-linear shell equations. Only the final equilibrium state was presented
because the flow was steady. Lefrancois et al. [9] developed a finite element model for
studying fluid-structure interaction and an ALE formulation was used to model the com-
pressible inviscid flow with moving boundaries with large deformation. It is observed
that all the works reported have mostly relied on the costly grid regeneration method to
capture large movements of the boundary in the flow field, whist the less costly dynamic
grid method is believed to be unable to handle large boundary and mesh deformations.

An alternative to the ALE is the Eulerian method, where the computational mesh is
fixed without deformation or movement. The group of Eulerian methods includes Im-
mersed Boundary (IB) method and Fictitious Domain (FD) method etc. Peskin et al. [10]
proposed the IB method to simulate the motion of human hearts and heart valves. At
its early stage, the IB method could not consider the inertial effect of the structure be-
cause the dynamic equation of the structure was not used to calculate its movement.
In their recent work [11], Zhu and Peskin did consider the inertial effect by taking the
structure’s (a soap film) mass into account. The IB method has been applied to a wide
range of problems, mostly in bio-fluid dynamics, including blood flow in the human
heart [12], platelet aggregation during blood clotting [13, 14] and the motion of flexible
pulp fibers [15]. Generally speaking, Eulerian methods are relatively less-complicated
techniques by using fixed fluid meshes, which reduce the computational costs for mesh
treatment. However, the above Eulerian methods do not allow for ’jump’ conditions be-
tween two sides of immersed thin structures, because the flow conditions on structural
boundaries are smoothed over several mesh cells across or near the immersed structures
due to the fact that the structures are considered as internal conditions in the flow field
and source terms are distributed to nearby fluid nodes for constraining the flow field.
Recently Zhao et al. [16] has also developed a so-called Immersed Object Method (IOM)
with overlapping unstructured grids for general Fluid-Structure-Interaction (FSI) simu-
lation. The main idea of the method is that the fluid covered by immersed objects is
assumed to be frozen and moves like a solid, whose kinematics is enforced by adding
source terms to the momentum equations. Overlapping grids are wrapped around the
objects and the boundary conditions for the overlapping grids are transferred from the
Eulerian grid to the overlapping grids for further computation on the overlapping grids,
in order to capture the fine details of boundary lays over the moving objects.

Tai and Zhao [17] parallelized an incompressible Navier-Stokes solver based on the
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artificial compressibility approach and higher-order characteristics-based finite volume
scheme for unstructured non-moving grids using a multigrid domain decomposition ap-
proach (MG-DD) and the single program multiple data (SPMD) parallel strategy with
message passing interface (MPI). They developed a communication scheme for an over-
lapping partition structure in order to obtain continuity of results in the whole domain.
Singh and Zhao [18] developed a parallel dynamic unstructured moving grid Direct
Monte Carlo Simulation (DMCS) of molecular gas dynamics and the associated thin film
deposition. It is envisaged that the combination of the ALE approach and the parallel un-
structured MG, as well as the preconditioning, may not be efficient enough and easy to
be implemented into computer codes, compared with the combination with an Eulerian
method for handling moving objects and the resulting unsteady 3D flows, not to mention
the difficulty for the ALE to simulate large mesh deformations.

In this study, we aim to develop a parallel unstructured multi-grid preconditioned
compressible Navier-Stokes solver implementing the IMM [19, 20] to calculate 3D un-
steady low-Mach-number flows with rigid/elastic moving objects. The developed solver
makes it possible to include moving objects in the flow fields with complexities that exist-
ing methods can not easily handle because it does not requires complicated interpolation
of boundary conditions along surface normal direction. Unlike the aforementioned Eu-
lerian methods, the new method does not smooth fluid forces across the immersed struc-
ture and discontinuities in pressure and gradients of flow properties can be accurately
accounted for as a result. To further illustrate the capability of proposed method to han-
dle the FSI situations, we also coupled the current flow solver to a newly developed finite
volume based computational structural mechanics solver [21]. The Large-Eddy simula-
tion (LES) has been chosen to calculate the possible arising turbulent phenomena. In this
work, a compressible dynamic form of Smagorinsky SGS model has been implemented
to calculate the SGS stress tensor. This model relies upon the Germano identity, which
has been generalized in order to be applied to other subgrid-terms arising in the filtered
energy equation. Furthermore, an improved formulation of the dynamic mixed model
has been proposed for better representing the backscatter of turbulence energy which
has been proven to be important for compressible flows. The unstructured grid filtering
was adapted from a new filtering approach based on the least-squares technique. This
approach can filter a function to any given level of commutation error on unstructured
grids. When used together with IMM, to avoid complex modifications of the filtering
operator at the vicinity of the fluid-structure interface, a linear reconstruction procedure
similar to that used for the velocity field is also applied for turbulent viscosity µt and
Prandtl number Prt.

The paper is structured as follows. In Section 2 which is the next section, the finite-
volume preconditioned compressible flow solver on tetrahedral grids is described. In
Section 3, a brief description of our parallel and multigrid implementation is presented.
This is followed by a description of the IMM algorithm in Section 4. Some information
about the coupling between the flow and structure solvers can be found in Section 5.
Brief description of turbulent modeling method employed in current work can be found
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in Section 6. In Section 7, a grid convergence study is carried out for flows induced
by a sphere oscillating in a box to establish the order of accuracy of the method and
to demonstrate the capability of the method for handling moving boundary problems.
Next, the result for a classical benchmark problem involving the turbulent flow over a
sphere is presented to validate the proposed LES model. The accuracy of the method is
then further validated by applying it to predict the aeroelastic flutter of an ONERA M6
wing in the transonic flow.

2 Governing equations and numerical methods

2.1 Governing equations

The Navier-Stokes equations for three-dimensional compressible unsteady flows can be
given in vector form explicitly expressing the conservation laws of mass, momentum and
energy. We also introduce, in the equations, pseudo-time terms to provide pseudo-time
marching for their numerical solutions:

Γ1
∂Wp

∂τ
+

∂Wc

∂t
+∇·~Fi =∇·~Fv (2.1)

where

Wc =




ρ
ρu
ρv
ρw
ρet




, Wp =




p
u
v
w
T′




, ~Fi =




ρ~U

ρu~U+p~i

ρv~U+p~j

ρw~U+p~k

ρH~U




, ~Fv =




0
~τx

~τy

~τz

( ¯̄τ ·~U−~q)




. (2.2)

τ is the pseudo time and Γ1 is the preconditioning matrix in the pseudo-time terms for
low-Mach-number flows which is defined in the appendix. Wc and Wp are the vectors of

conservative and primitive dependent variables respectively; ~Fi and ~Fv are the inviscid
convective flux and viscous flux vectors. Furthermore we have the following formulas:

~U =u~i+v~j+w~k, ¯̄τ =~τx
~i+~τy

~j+~τz
~k,

~τi =τix
~i+τiy

~j+τiz
~k, τij =µ

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij∇·~U

)
,

~q=qx
~i+qy

~j+qz
~k, T′=

p

ρ
=

c2

γ
, γ=

Cp

Cv
.

~i,~j and~k are the three unit vectors in three Cartesian directions τix, τiy and τiz the viscous
stresses and q the heat transfer flux vector, defined by

~q=−κ∇T =−µCp

Pr
∇T,
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Figure 1: Construction of control volume within a tetrahedron for a node P.

where T the temperature and Pr the Prandtl number:

Pr=
µCp

κ
.

The above equations are non-dimensionalized and the non-dimensional variables used
are defined in [19].

2.2 Numerical methods

The 3D equations (2.1) are transformed into an integral form and discretized on an un-
structured grid. A cell-vertex finite volume scheme is adopted here. For every vertex, as
shown in Fig. 1, a control volume is constructed using the median duals of the tetrahedral
cells. Spatial discretization is performed by using the integral form of the conservation
equations over the control volume surrounding node P:

∫∫∫

cv

∂Q′
1

∂τ
dV+

∫∫∫

cv

∂Wc

∂t
dV+

∫∫∫

cv
∇·~FidV−

∫∫∫

cv
∇·~FvdV =0. (2.3)

Noted that a new variable Q′
1 has arisen as

∂Q′
1

∂τ =Γ1
∂Wp

∂τ , and the Jacobian Γ1=
∂Q′

1
∂Wp

, so that,

∂Q′
1

∂τ
=

∂Q′
1

∂Wp

∂Wp

∂τ
=Γ1

∂Wp

∂τ
.

The convective term is transformed into a summation:

∫∫∫

cv
∇·~FidV =

∫

Scv

~Fi ·~ndS=
nbseg

∑
k=1

[(
~Fi

)
ij
·~n∆S

]
k
, (2.4)
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where nbseg is the number of the edges associated with node P, (~Fi)
k
ij is the inviscid flux

through the part of control volume surface associated with edge k, and ~n is the unit nor-
mal vector of the control volume surface. Finally, ∆Sk is a part of the control volume
surface associated with edge k. Therefore, all the fluxes are calculated for the edges and
then collected at the two end of each edge for updating of flow variables in time march-
ing. The viscous term is calculated using a cell-based method:

∫∫∫

cv
∇·~FvdV =

∫

Scv

~Fv ·~ndS=
ncell

∑
i=1

[
~Fv ·~n∆Sc

]
i
, (2.5)

where ncell is the number of elements associated with node P and ∆Sci is the part of
control volume surface in cell i. By using the following relation:

∫

Scv

−→
dS=0,

the total vector surface of the control volume in a cell i becomes:

~n∆Sci =
1

3

(
~n∆Spi

)
.

Thus, the calculation of viscous terms can be simplified as

ncell

∑
i=1

[
~Fv ·~n∆Sc

]
i
=

1

3

ncell

∑
i=1

[
~Fv ·~n∆Sp

]
i
, (2.6)

where ~n∆Spi is the surface vector of the face opposite node P of the tetrahedron under

consideration. Here the (~Fv)i is calculated at the center of the tetrahedron with a node
P, and can be obtained by using the Green’s Theorem based on the variables at the four
vertices of the tetrahedron. Similar to the Galerkin type of formulation, the gradient of a
flow variable φ at the center of a tetrahedron is evaluated as follows:

gradφc =−∑
4
i=1φi9Si

27V
=−1

3

∑
4
i=1φiSi

V
, (2.7)

where φi is the flow variable at a vertex i of the tetrahedron and Si is the surface area that
is opposite to node i, V is the volume of the tetrahedron. Gradients at the vertices are
obtained by a volume averaging of the gradients at the center of cells associated with the
vertex under consideration.

In this work, a high-order Roe’s TVD scheme for compressible flow for arbitrary un-
structured 3D grids has been adopted. Because of the preconditioning matrix Γ1, the
inviscid fluxes, (~Fi)

k
ij, through the face k is now reformulated as

(~Fi)
k
ij ≡

1

2

(
(~Fi)i+(~Fi)j

)
k
− 1

2

∣∣∣∣∣
∂~Fi

∂Q′
1

∣∣∣∣∣
k

(δQ′
1)k

=
1

2

(
(~Fi)i+(~Fi)j

)
k
− 1

2

∣∣∣∣∣
∂~Fi

∂Wp

∂Wp

∂Q′
1

∣∣∣∣∣
k

(
∂Q′

1

∂Wp

)

k

(
(Wp)j−(Wp)i

)
k
. (2.8)
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Note that we have retained the variable, Q′
1, in computing this flux. Define the Jacobian

in the normal direction as
(

Hp

)
k
=

(
∂~Fi

∂Wp

)

k

.

By using the previously defined Jacobian Γ1 =
∂Q′

1
∂Wp

, the above expression becomes

(
~Fi

)k

ij
≡ 1

2

(
(~Fi)i+(~Fi)j

)
k
− 1

2

∣∣HpΓ−1
1

∣∣
k
Γ1k

(
(Wp)j−(Wp)i

)
k
.

Drop the subscript k on the flux vector and the Jacobian with the assumption that the
fluxes and Jacobians all correspond to conditions in the normal direction on the given
control volume surface. After some simple algebraic derivations we have

(
~Fi

)
ij
≡ 1

2

(
(~Fi)i+(~Fi)j

)
− 1

2
Γ1

∣∣Γ−1
1 Hp

∣∣((Wp)j−(Wp)i

)
. (2.9)

Combined with the third-order MUSCL interpolation, it can produce accurate and stable
solution on unstructured grids. The left and right state vectors WL and WR at a control
volume surface are evaluated using a nominally third-order upwind-biased interpolation
scheme. If the left and right state vectors are set to Wi and Wj (i and j corresponding to
the two end nodes of an edge), it is a first-order upwind scheme, which are shown as
follows:

WL =Wi+
1

4

[
(1−κ)∆−

i +(1+κ)∆+
i

]
, (2.10a)

WR =Wj−
1

4

[
(1−κ)∆+

j +(1+κ)∆−
j

]
, (2.10b)

where

∆+
i =∆−

j =Wj−Wi,

∆−
i =Wi−Wi−1 =2

−→
ij ·∇Wi−(Wj−Wi)=2

−→
ij ·∇Wi−∆+

i ,

∆+
j =Wj+1−Wj =2

−→
ij ·∇Wj−(Wj−Wi)=2

−→
ij ·∇Wj−∆−

j .

Therefore, substituting the above equations into Eqs. (2.10a) and (2.10b), the final equa-
tions based on upwind-biased interpolation scheme is shown as follows:

WL =Wi+
1

2

[
(1−κ)

−→
ij ·∇Wi +κ∆+

i

]
, (2.11a)

WR =Wj−
1

2

[
(1−κ)

−→
ij ·∇Wj +κ∆−

j

]
, (2.11b)

where κ is set to 1/3, which corresponds to a nominally third-order accuracy.
−→
ij is the

vector representing the edge, which points from node P to its neighbouring node under
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consideration. The gradients of W at i and j are calculated by volume-averaging the
gradients of the cells that surround i and j.

Finally, for a given node P, the spatially discretized equations (2.3) form a system of
coupled ordinary differential equations, which can be reformulated as

∂Q
′
1

∂τ
∆Vcv+

∂Wc

∂t
∆Vcv

=−
{

1

2

nbseg

∑
k=1

[(
(~Fi)i+(~Fi)j

)
−Γ1

∣∣∣Γ−1
1 Hp

∣∣∣
(
(Wp)j−(Wp)i

)]
k
·~n∆S− 1

3

ncell

∑
i=1

[
~Fv ·~n∆SP

]
i

}

=−R, (2.12)

where R represents the residual which includes the convective and diffusive fluxes and
∆Vcv is the control volume of node P. The over-bar in Eq. (2.12) denotes the cell-averaging
value. An implicit scheme is adopted for Eq. (2.12) and the time dependent term is dis-
cretized using a second-order-accurate backward differencing scheme,

∂Q
′
1

∂τ
∆Vcv =−Rn+1−

(
1.5∆Vn+1

cv Wn+1
c −2.0∆Vn

cvWn
c +0.5∆Vn−1

cv Wn−1
c

∆t

)

= R̃n+1, (2.13)

where the superscript (n+1) denotes the physical time level (n+1)∆t and all the variables
are evaluated at this time level, R̃(Wn+1

p ) is the new modified residual which contains
both the time derivative and flux vectors. The derivative with respect to a pseudo time τ
is discretized as

∆Vn+1
cv Γ1

Wn+1,m+1
p −Wn+1,m

p

dτ
= R̃n+1, (2.14)

whose solution is sought by marching to a pseudo steady state in τ. Here m and (m+1)
denote the initial and final pseudo time levels. Once the artificial steady state is reached,
the derivative of Wp with respect to τ becomes zero, and the solution satisfies R̃n+1 = 0.
Hence, the original unsteady Navier-Stokes equations are fully recovered. Therefore,
instead of solving the equations in each time step in the physical time domain (t), the
problem is transformed into a sequence of steady-state computations in the artificial time
domain (τ). Eq. (2.14) can be integrated in pseudo time by an explicit five-stage Runge-
Kutta scheme. However, the pseudo time step size may be severely restricted if the phys-
ical time step size is very small. Hence, a fully implicit dual time stepping is adopted
here. A Taylor series expansion is performed for the residual in Eq. (2.14) with respect to
the pseudo time for node i,

R̃m+1
i = R̃m

i +
∂R̃i

∂(Wp)i
∆(Wp)i+

nbseg

∑
j=1

∂R̃i

∂(Wp)j
∆(Wp)j, (2.15)
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where nbseg is the number of edges connected to i, which is also equal to the number of
neighboring points connected to point i through the edges. An approximate flux function
is introduced here to simplify the implicit time stepping calculation. The total flux (in-
cluding both convective and viscous fluxes) across a control volume surface associated
with a certain edge ij can be approximated as

Fij ≈
1

2

[
(~Fi)i ·~n+(~Fi)j ·~n−

∣∣λij

∣∣((Wp)j−(Wp)i

)]
,

where λij is the spectral radius based on the preconditioned system which is associated
with edge ij. After combining all the residuals terms at every node in the flow field into
a vector and dropping the third term of the right-hand side of Eq. (2.15), we have

R̃n+1,m+1
i =R̃n+1,m

i − ∂Ri

∂(Wp)i
∆(Wp)i−1.5

∆Vn+1
cv

∆t

∂Wc

∂Wp
∆(Wp)i

=R̃n+1,m
i −

nbseg

∑
j=1

(Hp,j)∆(Wp)i−1.5
∆Vn+1

cv

∆t
M∆(Wp)i,

where

Hp,j =
1

2
[

∂(~Fi)ij

∂(Wp)i
+|λij|], M=

∂Wc

∂Wp
.

The whole-field equivalent of Eq. (2.13) can then be re-written as

(
I+

1.5∆τ

∆t
Γ−1

1 M+
∆τ

∆Vn+1
cv

nbseg

∑
j=1

(
Γ−1

1 Hp,j

))Wn+1,m+1
p −Wn+1,m

p

∆τ
∆Vn+1

cv

=Γ−1
1

(
−1.5Wn+1,m

c ∆Vn+1
cv −2.0Wn

c ∆Vn
cv+0.5Wn−1

c ∆Vn−1
cv

∆t
−Rn+1,m

)
. (2.16)

Further approximation can be introduced in order to achieve matrix-free computation.
Please check reference [19] for more related details.

2.3 Boundary treatment

The far field calculations are based on characteristic variables (Reimann invariants). Thus
at inflow the incoming variables corresponding to positive eigenvalues are specified
while the outgoing variables corresponding to negative eigenvalues are extrapolated.
Once we change the time dependent equations we also change the characteristics of the
system (though not the signs of the eigenvalues). Hence, it is also necessary to modify
the boundary conditions for the preconditioned system. Here the flux at a boundary is
defined as

~Fi ·~nSk =(~F+
i +~F−

i )·∆Sk.
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Here, ~F±
i has been redefined as ~F±

i = XHp,RΛ±XHp,LWp, where Λ± =(λi±|λi|)/2, λi rep-
resents the eigenvalues of Hp (see [19] for details of λi), XHp,R and XHp,L are the right
and left eigenvectors of Hp. See [19] for the detailed description of how to calculate the
boundary flux vectors.

3 The parallel unstructured multigrid method

This work focuses on examining the one-level method of parallelization strategies in the
geometric domain decomposition technique, which employs MPI [22] as the commu-
nication library. And the multigrid domain decomposition (MG-DD) approach [17] is
adopted for the multigrid parallelization. METIS [23] is used to decompose the flow do-
main into a set of S sub-domains that may be allocated to a set of P processors. The nodes
and elements that are allocated uniquely to a processor are referred to as core mesh com-
ponents in this work and each processor calculates the flow field variables and nodal
gradients for it. Nodes and elements are separately renumbered as a result of the use
of the SPMD (Single Programme Multiple Data) approach, i.e., each partition is treated
as a separate flow domain and copies of the same code are used for all these domains
for calculations. Each sub-domain is enclosed by a layer of nodes and elements, which
overlap the neighboring sub-domains along the inter-partition boundaries and provide
the necessary boundary conditions obtained from its neighbors. These outer most nodes
in the layer are called ghost nodes because they lie in the neighboring domains and their
flow variables are obtained by transferring the flow conditions from their corresponding
images (core nodes in the neighbors) to them. Communication between these core and
ghost nodes is based on MPI and proper synchronization between the computations in
neighboring partitions ensures that the necessary boundary conditions are correctly ex-
changed between them. An algorithm developed in [17] is employed to identify the ghost
nodes, overlapping elements and to write the individual grid files with local numbering
for each partition. The main concept of this algorithm is that those elements along the
inter-processor boundaries with nodes having different partition numbers are considered
as overlapping elements which are cut through by partition lines. And those nodes that
formed these elements are a mixture of core and ghost nodes with the outer most nodes
being ghost nodes and inner ones core nodes. Basically, a ghost node of a partition is the
mirror image of a corresponding core node in a neighboring partition.

The basic idea of the multigrid method is to carry out early iterations on a fine grid
and then progressively transfer these flow field variables and residuals to a series of
coarser grids. On the coarser grids, the low frequency errors become high frequency ones
and they can be easily eliminated by a time stepping scheme. The flow equations are then
solved on the coarser grids and the corrections are then interpolated back to the fine grid.
The process is repeated over a sufficient number of times until satisfactory convergence
on the fine grid is achieved. For ease of implementation, the non-nested mesh method us-
ing independently generated non-nested (or overset) coarse meshes is adopted [17]. Two
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different cycle strategies have been investigated in the present work, which are V-cycle
and W-cycle. The initial solution and residuals on the coarse grid (h+1) are transferred
from the fine grid (h) using volume-weighted transfer operators [17]. In order to drive
the coarser grid solution using the fine grid residual, a forcing function is calculated at
the first stage of the implicit Runge-Kutta time stepping scheme and subsequently added
to the residual on the coarse grid. After calculating the variables on the coarsest grid,
the corrections are evaluated and interpolated back level-by-level to the finest grid. The
correction is the difference between the newly computed value on the coarser grid, and
the initial value that was transferred from the finer grid. To improve efficiency for the
simulation of viscous flows, the viscous terms are only evaluated on the fine grid but not
evaluated on the coarser grids. Since the coarser grids are only used to cancel the dom-
inating low frequency errors, this treatment does not affect the accuracy of the solution.
The upwind-biased interpolation scheme is also set to first-order at the coarser levels.

The MG-DD approach is adopted in this study. This means that the non-nested multi-
grids are independently generated first. Then domain decomposition of the finest grid
is performed, which is followed by decomposition of the various coarse levels of grids
guided by the finer grid partitions. This is achieved by using the fine grid partitions to
infer the coarse level partitions (i.e., the coarse grid is to inherit its partition from that
of its corresponding finest grid) and load balancing in the coarse mesh is reasonably
well ensured. A two-level multi-grid and two sub-domains are used to demonstrate
the procedure of partitioning the coarse grid using the fine grid. The main idea about
this algorithm is that the fine grid is partitioned into two sub-domains according to the
algorithm developed for single grids. And both the maximum and minimum values in
the x and y-directions (Xmin, Xmax, Ymin and Ymax) of each partition for the fine grid are
found. With these dimensions, an imaginary bounding box enclosing the sub-domains
is formed. The main purpose of these bounding boxes is to identify the coarse nodes
that fall within these boxes according to the fine grid partitions including those nodes
beyond the sub-domain boundaries. The algorithms depicted in [17] are used to search
for those actual coarse nodes that fall within a fine grid sub-domain and those nodes that
fall beyond the sub-domain boundary are ignored. After classifying the respective coarse
nodes according to which partition they belong to, then the ghost nodes and overlapping
elements are identified using the algorithm depicted in Section 4. Individual grid files for
the partitioned coarse grids and data structures for communication are then generated.

4 The immersed membrane method (IMM)

When the immersed body in a flow field is a thin structure, it will cause discontinuous
fluid conditions across itself. Although velocity is continuous, the gradients of velocity,
pressure, gradient of pressure and fluid stresses are quite different on both sides of the
thin structure. In this work, the IMM [19, 20] is adopted, which treats thin structures or
the boundaries of normal structures (fluid occupies one side of the membrane only) as
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1 (g31)
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Figure 2: Real nodes and ghost nodes of a 2D grid cell.

membranes. This method uses an Eulerian background mesh for the fluid domain. When
the membrane is present in the flow field, it will intersect with the Eulerian mesh. Taking
a 2D mesh cell N for example, it is cut by the membrane as illustrated in Fig. 2. Fluid con-
ditions on its nodes 1, 2 and 3 are discontinuous across the membrane. A set of imaginary
ghost nodes are introduced here to replace the original nodes when they are on different
sides of the membrane, i.e., nodes having discontinuous flow conditions. Considering
node 1 on the left side of the membrane, node 3 stores discontinuous flow variables since
it is on the other side of the membrane. And a ghost node g13 will be introduced to re-
place node 3 when the computation for node 1 involves conditions at node 3. In such a
case, node 1 is called the real node and node 3 is called its corresponding ghost node g13.
The naming convention for the ghost node is that it is prefixed with g for ghost and the
first number denotes the real node and the second number the corresponding ghost node.
Under this naming convention, all the ghost nodes are listed in Fig. 2. As described, the
computations of convective fluxes are based on mesh edges. In the computation of con-
vective flux along edge 23, for example, it involves the flow conditions at node 2 and
3. When the convective flux is computed for node 2, ghost node g23 is introduced to
replace node 3 in the computation. Likewise, when the convective flux is calculated for
node 3, ghost node g32 is introduced to replace node 2. Computations of viscous fluxes
and gradients are based on mesh cells. For example, in cell N, when the viscous flux
is computed for node 1, it involves fluid conditions of node 1, node 2 and node 3, and
ghost node g13 is introduced to replace node 3 in the computation. The fluid variables at
ghost nodes are extrapolated linearly from their corresponding real nodes based on the
mesh edges which are intersected by the membrane. The extrapolated values are called
ghost-node values. The novel feature of this IMM is that extrapolation of flow variables
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to ghost nodes is always along cell edges instead of the traditional membrane-normal di-
rection [24, 25]. As a result, every node can hold multiple ghost nodes and thus multiple
ghost values since a node can be connected by multiple edges, which is especially true
for 3D unstructured grids. The selection of a particular ghost value depends on which
edge and node the computation is for. This feature is extremely efficient compared with
the wall/membrane-normal approach, because one does not need to: 1) construct wall
normal lines; 2) find out what cell faces they intersect with; 3) locate the exact positions
of the interaction points; 4) interpolate the flow conditions from nearby nodes to the in-
tersection. These calculations are very complex for a 3D surface/membrane intersecting
with a 3D unstructured mesh.

Extrapolations of ghost-node flow variables are illustrated in [19] using a 2nd-order
linear formulation. Then, later a higher-order MUSCL interpolation scheme is described
in [21]. When the immersed body is an arbitrary object with a finite volume, the given
concept and interpolation method still apply, except that only the flow variables of the
ghost nodes within the immersed body need to be calculated because physically there
are no fluid nodes inside the body. The Eulerian fluid nodes inside the object are just by-
passed in flow calculations. These inner nodes can be efficiently searched for and iden-
tified by using an internal volume mesh within the object based on a quatree search in
every time step, while the surface mesh of the object is used to perform the interpolation
and extrapolation.

5 Coupling between flow solver and computational structural

dynamics solver

We have already reported the development of a new finite volume based unstructured
multi-grid computational structural dynamics solver and its detailed coupling method
with our flow solver [19, 21]. Please check the relevant references for further details.

6 Turbulence modeling

The computation of complex turbulent flows of practical interest to engineers continues
to be a challenge. The Large-Eddy Simulation (LES) has been chosen to calculate the
possible arising turbulent phenomena in this study. Despite its inherent superiority com-
pared to other techniques for turbulence modeling, there are several issues which are still
impeding the application of LES to practical problems. The present available models tend
to break down for complex geometries and do not work well with low-order numerical
schemes. Furthermore, such models have not been developed or adequately evaluated
for many Subgrid-Scale (SGS) contributions to the compressible form of the filtered en-
ergy equation. In this work, a compressible dynamic form of Smagorinsky-Lilly SGS
model has been implemented to calculate the SGS stress tensor. This model relies upon
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the Germano identity, which has been generalized in order to be applied to other subgrid-
terms arising in the filtered energy equation. Furthermore, an improved formulation of
the dynamic mixed model has been proposed for the better representing the backscatter
of turbulence energy which has been proven to be important for compressible flows. For
illustration purpose, The SGS turbulent stress tensor σij can be reformulated as

σij =ρ
(
ũiuj−ũiũj

)
= Lij+Cij+Rij, (6.1)

where

Lij =ρ
(
˜̃uiũj−ũiũj

)
, (6.2)

Cij =ρ
(
˜̃uiũ

′′
j + ˜̃ujũ

′′
i

)
, (6.3)

Rij =ρũ′′
i u′′

j , (6.4)

are respectively, the SGS Leonard, cross, and Reynolds stresses based on Favre averaging
filtering, which implies the decomposition f = f̃ + f ′′, where f̃ is the resolved component,
and f ′′ is the unresolved component.

It is clear that the Leonard stress in Eq. (6.2) can be calculated directly from the filtered
variables and does not need to be modeled. The cross stress is modeled with the scale
similarity model [26, 27] with a coefficient of unity to ensure Galilean invariance overall
model.

Cij =ρ
(
ũiũj− ˜̃ui ˜̃uj

)
. (6.5)

The SGS Reynolds stress tensor is separated into deviatoric and isotropic parts, respec-
tively, as follows:

R= RD+RI , (6.6)

RD =ρ

(
ũ′′

i u′′
j −

1

3
ũ′′

k u′′
k δij

)
, (6.7)

RI =
1

3
ρũ′′

k u′′
k δij, (6.8)

where δij =1 if i= j and zero otherwise. The models employed to estimate RD and RI can
be described by following expressions:

RI =
ρ
〈
(ρũkũk)
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(
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)
/ ˆ̄ρ
〉

〈
3
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∆2
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∣∣2−3
(

ρ|S(ũ)|2
)∧
〉 |S(ũ)|2δij, (6.9)

RD =−2ρCd∆2 |S(ũ)|
(

Sij(ũ)− 1

3
Skk(ũ)δij

)
, (6.10)
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where

Tmm−σ̂mm =(ρũmũm)∧−(ρ̂ũmρ̂ũm)/ρ̂, (6.12)

Sij(ũ)=
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
, |S(ũ)|=

√
2Sij(ũ)Sij(ũ). (6.13)

Apart from the grid-filter level, denoted by the (·̃) corresponding to the filter width ∆, we
introduce a test-filter, which is denoted by the hat (·̃) and corresponds to the filter width
∆̂=2∆. The consecutive application of these two filters, resulting in e.g., ˆ̃ρ, defines a filter

which a filter width ˆ̃∆=k∆ can be associated. This dynamic procedure requires an explicit
filtering operation on the Favre averaging variables. The unstructured grid filtering was
adapted from a new filtering approach basing on the least-squares technique [32]. This
approach can filter a function to any given level of commutation error on unstructured
grids. In this approach, the expression for the filtered values can be written in the form
of a weighted sum,

Φ0 =
d0

∑
i=1

ω0iΦi. (6.14)

The weight for linear filtering in three dimensions is given by [33]
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where the geometric terms rij are given by the following expressions:
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In the interests of improving the spectral behavior of Eq. (6.14), it may be replaced by

Φ0 =ω00Φ0+(1−ω00)
d0

∑
i=1

ω0iΦi, (6.20)

where 1≤ω00≤1 is a user-defined parameter, normally defined as 0.5.
The first issue that needs to be addressed in constructing an operational filtering using

above method is the construction of stencil used for the filtering. For every vertex P, all of
its 1th neighboring vertexes are used for constructing the filter stencil. If any of following
rules is violated, its 2th neighboring vertexes will be further included to constructing the
filter stencil.

Rule 1: The number of its 1th neighbors does not give the required stencil size, which is
given by

d0,min =
1

D!

D

∏
i=1

(q+i), (6.21)

where q denotes the degree of the highest derivative included in x. D the space dimen-
sion. Typically, for a second-order filtering operator in three dimensional space, d0,min is
4.

Rule 2: r11, r22, r33, or r44 is zero. When cooperating with the immersed membrane
method (IMM), to avoid complex modifications of the filtering operator at the vicinity of
the fluid-structure interface, a linear reconstruction procedure similar to that used for the
velocity field is also applied on turbulent viscosity µt and Prandtl number Prt .

7 Results and discussion

7.1 Flow induced by an oscillating sphere in a closed cavity

To determine the overall accuracy of the method, we carry out a grid convergence study
for a test problem where a solid oscillating sphere is immersed in a fluid enclosed within
a cube with solid walls. This is to demonstrate the capability of the method in handling
objects moving with large displacements. The sphere of diameter D = 1.0 unit is placed
initially at the center of the cube of dimension 2×2×2 units and oscillates horizontally
with a nondimensional time period of 1.0 and an amplitude of 0.25D. The oscillation is
effected by moving the sphere as a rigid body with velocity given by

u=0.25πsin(2πt), v=w=0.
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Table 1: Rate of convergence γ calculated for different error norms.

Grids
Norm 403, 803, 1603

L∞ 1.82

L1 2.84

L2 2.15

The Reynolds number (based on the sphere diameter and maximum velocity) has been
set to 20. The following sequence of grid sizes is employed in performing the error anal-
ysis: 203, 403, 803 and 1603. And the result on the 1603 mesh is taken to be the “exact”
solution for this case. A small time step of ∆t = 0.005 is chosen for all these simulations
in order to minimize the effect of temporal errors on the solution. The simulations are
carried out for one oscillation period and the velocity components at each grid point are
recorded for all the meshes under consideration at the end of the period. The instanta-
neous streamlines at the end of an oscillation cycle (t=1.0T) are shown in Fig. 3.

For all the grids, the simulation is continued for one complete period, at the end of
which the L∞ and Lq norms of the u-velocity errors are calculated as follows:

ε∞
N = max

i=1,N3

∣∣∣u(N)
i −ue

i

∣∣∣, ε
q
N =

[
1

N3

N3

∑
i=1

∣∣∣u(N)
i −ue

i

∣∣∣
q
]1/q

,

where ε∞
N and ε

q
N are the infinity and qth error norms, u

(N)
i is the u-velocity component

at the ith node of the N3 mesh, and ue
i is the ’exact’ velocity field calculated on the 1603

grid. The results of the grid convergence study are summarized in Fig. 4, which shows
the variation of the L∞, L1 and L2 norms of errors with grid spacing in logarithmic coor-
dinates. The lines with slope one and two are also given as reference. It is evident from
Fig. 4 that the method is second order accurate. To further demonstrate the accuracy of
our method, we also use the Richardson estimation procedure to study the accuracy of
the solver as in [25]. Let f N denote the numerical solution on the N3 mesh. Assume that
the discrete solution is a γ-order approximation to its value f exact, and the flow field is
continuous and has no singularity points, then we have

γ=
log
(∥∥ f N− f N/2

∥∥/
∥∥ f N/2− f N/4

∥∥)

log2
,

where ‖ ‖ denotes an error norm (L∞, L1 or L2). If γ ≈ 2 the solution is second-order
accurate. We apply the above procedure for N=160 (using solutions obtained on meshes
403, 803, and 1603) to calculate γ for successively refined meshes. We apply the above
procedure for N=160 (using solutions obtained on meshes 403, 803, and 1603) to calculate
γ for successively refined meshes. And we use all three norms to compute the error and
the results are summarized in Table 1, which strongly supports our assertion about the
second-order accuracy of our method.
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Figure 3: Instantaneous streamlines at t=1.0T for flow induced by an oscillating sphere in a closed cube filled
with compressible and viscous fluid.
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Figure 4: Convergence of the L∞, L1 and L2 error norms for the velocity field of oscillating sphere in a closed
cube. Slope 1 and Slope 2 are the reference lines for 1-order and 2-order accuracy respectively.
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Figure 5: Computational domain for turbulent flow over a sphere.

7.2 Turbulent flow over a sphere at Re=10,000

This classical testing case was selected for the purpose of demonstrating the accuracy
of both IMM and LES modeling. The basic structure of the flow past a sphere has
been experimentally investigated using a variety of approaches, including flow visual-
ization [34, 35], and hot wire measurements of velocity fluctuations in the wake [36].
Over a wide range of Reynolds numbers (Re = 280 to about Recrit = 3.7×105 when the
’drag crisis’ occurs) unsteady shedding of vortices from the sphere is observed. Previ-
ous work shows that some of the main features and parameters determining shedding,
such as the way in which the vortices are shed in the wake and the values of the fre-
quencies associated with the wake instabilities, change significantly over this range of
Reynolds numbers (e.g., see [35,36]). Numerical simulations of the flow around a sphere
offer a strong complement to experimental measurements and are useful for improving
fundamental understanding of the flow field itself and the strengths and limitations of
turbulence models used to predict flows with massive separation. In this study, the tur-
bulent flow over a sphere at a subcritical Reynolds number (based on free stream velocity,
U, and sphere diameter, D) of 104 is predicted using the proposed method. The problem
definition is shown in Fig. 5. And the computational domain is meshed with 754,735 grid
points and 4,443,428 tetrahedral elements. The grid density near the sphere surface and
wake region is locally refined to better resolve the smaller-scale structures that arise via
shear-layer instabilities. As pointed out by Mittal and Moin in [37] that even if the use
of centered schemes for discretization of spatial derivatives is more natural for methods
such as LES because these schemes do not contain numerical dissipation, for complex
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Figure 6: Mean pressure coefficient distribution over the sphere.

Figure 7: Mean skin-friction coefficient distribution over the sphere.

flows the results are sensitive to grid discontinuities and stretching ratios, formulation
of boundary conditions, etc., all of which are critical to successful simulations. Upwind
discretizations are less sensitive to these problems, at the cost of introducing numerical
dissipation. This is because the inherent dissipation present in these schemes acts as a
built-in aliasing control mechanism, which dissipates the energy content of the high fre-
quencies in the flow. This dissipation can affect the accuracy of the computed solutions in
regions where it is of the same order of magnitude as the one due to the molecular, or SGS
dissipation. Thus the use of upwind schemes near the sphere was found to be necessary
to prevent numerical instabilities from blowing up the solution. In current simulation,
the third-order upwind scheme was employed to discretize the convection term.

Predictions of the mean pressure coefficient Cp and skin-friction coefficient Cτ are
shown in Figs. 6 and 7, respectively. The distributions were obtained by averaging over
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Figure 8: Instantaneous vorticity contours in the centre Y plane.

Vortex tubes 

Figure 9: Instantaneous pressure contours in the centre Y plane.

the azimuthal (Y) direction and over at least five shedding cycles in an attempt to ensure
adequate statistical convergence (averaging over 10 shedding cycles instead of 6 yielded
less than a 5% change in the maximum values in the figures). The skin-friction coef-
ficient Cτ is made dimensionless using ρU2

∞

√
Re, which is appropriate for the laminar

boundary layers on the sphere and compared with the measurements of Achenbach [38]
for the subcritical flow at Re= 1.65×105. We are also showing the data of Bakic [39] for
Cp at Re = 5×104 and Re = 1×105. Because the drag exhibits little variation between
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Re=104 and 1.65×105 and experimental investigations [36, 39] show little change in the
wake structure over the same interval, it is reasonable to expect that Reynolds number
effects in the pressure and skin-friction coefficients are not important. Predictions of the
mean streamwise drag Cd, shedding Strouhal number St are 0.389 and 0.178 respectively,
and in good agreement with the experimentally measured values summarized in [38,40]
(Cd(exp)=0.40, St(exp)=0.18∼0.195). Instantaneous vorticity contours (see Fig. 8) show
a wide range of scales in the separated region behind the sphere. The development of
K-H instabilities along the periphery of the separated shear layer is clearly visible in the
figure. This is also visualized in Fig. 9 as successive patches of high and low instanta-
neous pressure levels in the detached shear layers. The vortex tubes in the shear layers
arise because of the interaction between the generally inviscid outer flow and the wake
flow. As could be observed in Figs. 8 and 9, the average dimension of these tubes in-
creases with the distance from the separation point.

7.3 Aero-elastic flutter of an ONERA M6 wing in transonic regime

The ONERA M6 wing is a classic CFD validation case for external flows because of its
simple geometry combined with complexities of transonic flow. To evaluate the accuracy
of the steady aerodynamic solution of proposed method, calculations for this wing are
firstly carried out and compared to available experimental data. In this step, the wing
body will be considered as a rigid solid and the structural domain will be ignored during
the calculations. In reference [28], the ONERA M6 wing was tested throughoutly, and
the pressures at various span-wise locations were recorded, which will be served as a
main source of validation for the current study. Next, the former aerodynamic result
is employed as the initial state in the full fluid-structure interaction simulation and the
wing flutter will be predicted using the proposed method. The transonic flutter of the M6
wing has been extensively studied by many researchers [29–31] and numerous results are
available for validation purpose.

The chord-wise time averaged pressure coefficient distributions on the wing surface
at seven span-wise locations are presented in Fig. 10. The collected sample time mean
pressure coefficients data at the same locations of the wing from referenced experiment
[28] are also identified in the figures for ease of comparison. Figs. 11, 12 and 13 show the
convergence histories of the lift coefficients Cl and the drag coefficients Cd, as well as the
moment coefficient Cm along z-axis, respectively. A mean lift coefficient Cl and a mean
drag coefficient Cd are derived from the limited time samples. They are listed in Table 2,
and show good agreements with other published results. Results for three different flow
domain grids are tabulated for ease of comparison. These results show that the predicted
pressure coefficient agrees well with the experimental result, which in turn exhibits the
accuracy of proposed method.

The M6 wing flutter computation begins by employing the converged solution from
the former computation as the initial solution for the flow domain and the initial wing
velocity is zero. The immersed structural domain (represented by the ONERA M6 wing
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Figure 10: Time averaged pressure coefficients dis-
tributions on seven selected locations on ONERA
M6 wing.
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Figure 11: Time history of the drag coefficient of the ONERA M6 wing.

Figure 12: Time history of the lift coefficient of the ONERA M6 wing.

Figure 13: Time history of the moment coefficient of the ONERA M6 wing.
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Table 2: Predicted mean Lift and Drag coefficients for M6 wing.

Mean Lift Coefficient Mean Drag Coefficient

Finest Grid 0.1428 0.0084704

Intermediate Grid 0.1420 0.0084663

Coarse Grid 0.1347 0.0073866

Note:
Grid one 1,769,472 elements, 306,577 nodes
Grid two 3,566,552 elements, 604,583 nodes
Grid three 5,308,416 elements, 909,521 nodes

body) is meshed by 42,150 tetrahedron elements and 9,094 nodes. The wing surface is
meshed with 7,868 boundary triangles. The structure material parameters are as follows:

Young’s Modulus, E=7.102×1010 Pa,

Material Density, ρ=2770.0kg/m3 ,

Poisson’s Ratio, ν=0.32.

A fixed time step for both flow and structural domain is employed in the current sim-
ulation. Fig. 14 shows the flutter responses of the ONERA M6 wing at M∞ =0.8395 and
3.06o angle of attack. While Fig. 15 shows the time variation of lift and drag coefficients
for the ONERA M6 wing during the flutter process. As can be seen from the figures,
the constant energy difference (Etot−WE) is equal to the initial energy. This verifies that
the energy exchange between the structure and the fluid satisfies the global conserva-
tion law for the total energy. We also find that the maximum tip displacement at leading
edge is about 87.6% of that at trailing edge, which means that the flutter of M6 wing is a
composition motion of the first bending and first torsion mode while dominated by the
former.

8 Conclusion

In this paper, we describe the development of a parallel unstructured multi-grid precon-
ditioned compressible Navier-Stokes solver implementing the IMM to calculate 3D un-
steady low-Mach-number flows with rigid/elastic moving objects. The developed solver
makes it possible to include moving objects in the flow fields with complexities that exist-
ing methods can not easily handle because it does not requires complicated interpolation
of boundary conditions along surface normal direction. A dynamic SGS model has been
implemented to calculate the SGS contribution. As to our knowledge, LES computation
for compressible flow on unstructured grids with FSI capability can be hardly found in
the literature and still posts a challenge to researchers. The preliminary results shown in
the paper illustrate the capability and accuracy of the proposed method.
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Figure 14: Flutter responses for ONERA M6 wing using intermediate grid at M∞ =0.8395 and 3.06o angle of
attack (Displacement in y direction).

Figure 15: Time history of lift and drag coefficients for M6 wing fluttering using intermediate grid at M∞=0.8395
and 3.06o angle of attack.
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