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2 LAGA, Université Paris 13, 99 Av J.B. Clement, 93430 Villetaneuse, France.
3 School of Engineering, University of Durham, South Road, Durham DH1 3LE, UK.

Received 21 November 2007; Accepted (in revised version) 17 April 2008

Communicated by Chi-Wang Shu

Available online 28 May 2008

Abstract. We propose a new method for numerical solution of the third-order differ-
ential equations. The key idea is to use relaxation approximation to transform the non-
linear third-order differential equation to a semilinear second-order differential system
with a source term and a relaxation parameter. The relaxation system has linear charac-
teristic variables and can be numerically solved without relying on Riemann problem
solvers or linear iterations. A non-oscillatory finite volume method for the relaxation
system is developed. The method is uniformly accurate for all relaxation rates. Nu-
merical results are shown for some nonlinear problems such as the Korteweg-de Vires
equation. Our method demonstrated the capability of accurately capturing soliton
wave phenomena.
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1 Introduction

Most work on relaxation methods is concerned with hyperbolic equations of conserva-
tion laws; there has been active research on relaxation methods for first-order differential
problems (see, e.g., [3, 10, 16–18] and references therein). However, to the best of our
knowledge, there is no reference in the literature on relaxation methods for dispersive,
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namely, third and higher-order differential equations. Therefore, our goal in the present
work is to develop a relaxation method for solving the third-order differential equations

Ut+F(U)x+νUxxx =0, (x,t)∈R×R
+ ,

U(x,0)= Ū(x), x∈R,
(1.1)

where U(x,t) is the unknown solution, F(U) is an arbitrary (smooth) function, ν is the
dispersive coefficient and Ū(x) is a given initial data. The subscript t and x denote deriva-
tives with respect to time and space, respectively. Eq. (1.1) arise in the modeling of many
physical phenomena such as surface water waves, plasma waves, Rossby waves and
harmonic lattices among others. In particular, the Korteweg-de Vires (KdV) equation has
serve as a prototype for the third-order differential equations (1.1). The KdV equation is
a special case of (1.1) for the choice F(U) = U2 and the KdV equation is also a generic
model for the study of weakly nonlinear long waves. For a comprehensive overview of
the analysis and applications of the KdV equation we refer the reader to [7,9] and further
references can be found therein.

It is well-known that the numerical solution of Eq. (1.1) is not trivial and many avail-
able numerical methods fail to accurately solve the problem under consideration. Most of
the numerical difficulties on solving Eq. (1.1) are associated with the nonlinear structure
of the flux function F(U) and the presence of the dispersive term νUxxx. For example, in
many applications such as in quantum hydrodynamic models or semiconductor device
simulations and in the dispersive limit of conservation laws, the third-order derivative
term might has small or even zero coefficients in some parts of the domain. These phys-
ical situations represent a challenge in most of computational algorithms designed for
equations of conservation laws. It has long been known that conservative discretization
schemes for nonlinear and non-dissipative partial differential equations governing wave
phenomena tend to become numerically unstable, and dissipation has subsequently been
routinely introduced into such numerical schemes.

In the last years, relaxation methods for hyperbolic partial differential equations have
been subject of several investigations. We should point out that, relaxation methods were
first developed in [10] for the conservation laws containing first-order derivatives. Re-
cently, relaxation schemes have been used for gas dynamics [17], shallow water equa-
tions [18], traffic flows [16] and Hamilton-Jacobi equations [2], among other applications.
The central idea in these methods is that the nonlinear conservation laws are replaced by
a semilinear hyperbolic system with linear characteristics and a relaxation parameter con-
trolling the rate of convergence to the original conservation laws [10]. The main advan-
tage in considering relaxation methods is that Riemann solvers are completely avoided
in their reconstruction. Issues of diagonalization of the so-called relaxing system, choice
of approximations of the global or local characteristic speeds have been discussed in the
above mentioned references.

The aim of this paper is to propose a suitable scheme to approximate numerical solu-
tion to the problem (1.1) by relaxation method such that it can be implemented efficiently
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and has a good convergence property as in the case of the relaxation schemes for first-
order differential equations. Numerically, the main advantage of solving the relaxation
system over the original partial differential equation (1.1) lies essentially in the simple
linear structure of characteristics fields and in the fact that the lower-order term is local-
ized. In particular, the semilinear nature in the system allows for a new manner to de-
velop numerical schemes that are simple and Riemann solver free whereas, the absence
of the third-order differential term in the system eliminates the difficulties associated
with boundary conditions such that the classical three-point stencil can be used. An ad-
ditional advantage of the relaxation method for Eq. (1.1) is its ability to capture the wave
behavior easily using simple stable discretizations. This property is crucial for the im-
plementation of finite volume method in this work. We should point out that relaxation
methods for second-order differential equations such as degenerate diffusion problems
have been studied in [6, 14] among others.

The rest of the paper is organized as follows. In Section 2 we discuss the relaxation
approximation of Eq. (1.1). Section 3 describes the finite volume discretization of the
relaxation system. Numerical examples are presented in Section 4 to confirm the capa-
bility of this method for capturing soliton wave phenomena and various boundary wave
patterns. We end the paper with a few concluding remarks in Section 5.

2 The relaxation approximation

The original relaxation method was designed in [10] to solve first-order hyperbolic prob-
lems. Recently, this method has been applied to a wide class of multi-dimensional partial
differential equations of first and second order, see for example [2, 16–18]. In the current
work we propose the following relaxation approximation of the third-order differential
equations (1.1)

Ut+Vx =0,

Vt+AUx =−1

ε

(

V−F(U)−νUxx

)

, (2.1)

U(x,0)= Ū, V(x,0)= F
(

Ū
)

+νŪxx,

where V ∈R is the relaxation variable, ε ∈ [0,1) is the parameter that measures the re-
laxation rate, and A is the characteristic speed. Formally, as ε→ 0, one can recover the
nonlinear dispersive equation (1.1) by projecting V to the local equilibrium

V = F(U)+νUxx. (2.2)

The convergence of (2.1) to (1.1) is guaranteed if the so-called subcharacteristic condition
[3, 10]

A−F′(U)2≥0, (2.3)

holds in the relaxation system (2.1) for all U. The condition (2.3) ensures that a numerical
method for the original equation (1.1) and the relaxation system (2.1) shares the same
asymptotic behavior for small values of the relaxation rate ε.
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Remark 2.1. It should be stressed that the choice of relaxation approximations to Eq. (1.1)
is not unique. Other types of relaxation systems which relax at the limit (ε→0) to Eq. (1.1)
are also possible. For instance a three-speed relaxation system reads

Ut+Vx =0,

Vt+
ν

ε
Wx =−1

ε

(

V−F(U)
)

,

Wt+AUx =−1

ε

(

W−Uxx

)

,

U(x,0)= Ū, V(x,0)= F
(

Ū
)

, W(x,0)=νŪxx.

(2.4)

We point out that numerical schemes that work for the relaxation system with source
term (2.1) would not apply to the system (2.4) since here, in addition to the stiff low-order
term, the convective term is also stiff. Therefore, a special attention must be given to en-
sure that the schemes possess the correct zero relaxation, in the sense that the asymptotic
limit that leads from system (2.4) to (1.1) should be preserved at the discrete level.

Note that the idea of relaxation methods for differential equations with third-order
derivatives is to rewrite the original equation as a second-order differential system, and
only then apply the finite volume method. The local auxiliary variables, introduced to
approximate the derivatives of the solution, are superficial and can be easily removed for
linear problems. A key ingredient for the success of such methods is the careful design
of the cell interface numerical fluxes. All fluxes must be designed to guarantee stability
and local solvability of the auxiliary variables. The obvious advantage of this approach
is that the nonlinear equation (1.1) is transformed to a semilinear system (2.1) with linear
characteristic variables easy to discretize without relying on Riemann problem solvers or
iterative procedures.

The relaxation system (2.1) can be rewritten in vector form as

Wt+AWx =−1

ε
Q(W), (2.5)

where

W=





U

V



, A=





0 1

A 0



, Q=





0

V−F(U)−νUxx



.

Since the system (2.5) is hyperbolic, we can write A = RΛR−1, with R is the matrix of
right eigenvectors of A and Λ is a diagonal matrix with eigenvalues of A as its elements.
Their explicit expressions are given by

R=







1 1

−
√

A
√

A






, R−1 =









1

2
− 1

2
√

A
1

2

1

2
√

A









, Λ=







−
√

A 0

0
√

A






.
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To decouple Eq. (2.5) we introduce the characteristic variables F = R−1W. Therefore,
Eq. (2.5) transforms to

Ft+ΛFx =−1

ε
R−1Q, (2.6)

where

F=







F

G






=R−1W=









U

2
− V

2
√

A
U

2
+

V

2
√

A









, R−1Q=







F−F̂

G−Ĝ






,

with F̂ and Ĝ are the local equilibrium functions given by

F̂ =
U

2
+

F(U)

2
√

A
+

ν

2
√

A
Uxx, Ĝ=

U

2
− F(U)

2
√

A
− ν

2
√

A
Uxx.

Thus, we obtain an equivalent relaxation system in diagonalizable form

Ft+
√

AFx =−1

ε

(

F−F̂
)

,

Gt−
√

AGx =−1

ε

(

G−Ĝ
)

.

(2.7)

It should be noted that in kinetic terminology, F̂ and Ĝ are known by Maxwellians while,
F and G are known by Riemann invariants and are related to the macroscopic variables
U and V by

U =F+G, V =
√

A(F−G). (2.8)

It is easy to verify that the system (2.7) is strictly hyperbolic with two real distinct eigen-
values ±

√
A and linear characteristic variables given by

V±
√

AU. (2.9)

We remark that the systems (2.7) and (2.1) are equivalent such that a discretization of
each one of them leads essentially to the discretization of the other. In addition, for most
of the examples solved in this paper, we assume periodic boundary conditions for both
variables U and V. This assumption is for simplicity in presentation only and is not
essential. The method can be easily designed for nonperiodic boundary conditions. For
instance, if Dirichlet boundary conditions are supplied for U in (1.1) then the boundary
conditions for the relaxation variable V can be set to the local equilibrium (2.2), compare
[3, 10] for more discussions.

3 The finite volume method

The finite volume method is preferable in numerical solutions of partial differential equa-
tions due to its conservation properties. Standard relaxation methods have also been
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Figure 1: Illustration of the control space-time domain in finite-volume relaxation method. The dotted lines
correspond to the original equation (1.1) and the dashed lines correspond to the relaxation system (2.1).

formulated in a finite-volume framework (see, for example [3, 10]). In this paper, we
consider a new finite-volume relaxation method for the third-order differential equation
(1.1). To formulate our method, we divide the spatial domain into N computational cells
Ij =[xj−1/2,xj+1/2] for j=1,··· ,N. The center of the cell denoted by xj =(xj−1/2,xj+1/2)/2
and the size of each cell by ∆x = xj+1/2−xj−1/2. We denote by Wj+1/2 the value of W

at xj+1/2 evaluated from the cell Ij+1. Integrating Eq. (2.5) over the space-time domain
]X−,X+[×[tn,tn+1[ shown in Fig. 1, we obtain

∫ X+

X−
W
(

x,tn+θ
n
j+1/2

)

dx=Wn
j dX−+Wn

j+1dX+−θ
n
j+1/2An

j+1/2

(

Wn
j+1−Wn

j

)

− 1

ε

∫ tn+1

tn

∫ X+

X−
Q(W)dxdt, (3.1)

where the distances dX− and dX+ are defined as dX±=
∣

∣X±−xj+1/2

∣

∣. In (3.1), Wn
j denotes

the space average of the solution W in the cell ]X−,X+[ at time tn

Wn
j =

1

dX−+dX+

∫ X+

X−
W(x,tn)dx.

We also define

Wn
j+1/2 =

1

dX−+dX+

∫ X+

X−
W(x,tn +θ

n
j+1/2)dx. (3.2)

The reconstruction of the numerical fluxes (3.2) is the essential step in most finite volume
methods. The special structure of the nonlinear terms in (2.1) makes it trivial to evolve
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the flux terms explicitly and the source term implicitly. To explain this feature, a simple
implicit-explicit scheme applied to (2.1) yields

Un+1
j −Un

j

∆t
+D1Vn

j =0,

Vn+1
j −Vn

j

∆t
+Aj+1/2D1Un

j =−1

ε

(

Vn+1
j −F(Un+1

j )−νD2Un+1
j

)

,

(3.3)

where ∆t is the time stepsize, D1Un
j and D2Un+1

j denote the space discretization of the

first-order and second-order differential operators,

D1Un
j =

Un
j+1/2−Un

j−1/2

∆x
,

D2Un+1
j =

Un+1
j+1 −2Un+1

j +Un+1
j−1

(∆x)2
.

(3.4)

Hence, the numerical solution (Un+1
j ,Vn+1

j ) is updated from (3.3) as

Un+1
j =Un

j −∆t
(

Vn
j+1/2−Vn

j−1/2

)

,

Vn+1
j =

ε

ε+∆t

(

Vn
j −∆tAj+1/2D1Un

j

)

+
∆t

ε+∆t

(

F(Un+1
j )+νD2Un+1

j

)

.
(3.5)

Notice that the implicit-explicit scheme (3.5) avoids solution of linear or nonlinear sys-
tems. Furthermore, the scheme (3.5) is stable for all values of ε (including ε=0) under the
usual hyperbolic and parabolic CFL conditions. However, this scheme is only first-order
accurate in time. In the current study we used a second-order implicit-explicit studied
in [3,10,16]. Its implementation for Eq. (2.1) can be carried out using the following steps:

U∗
j =Un

j , (3.6a)

V∗
j =Vn

j +
∆t

ε

(

V∗
j −F(U∗

j )−νD2U∗
j

)

; (3.6b)

U
(1)
j =U∗

j −∆tD1V∗
j , (3.6c)

V
(1)
j =V∗

j −∆tAj+1/2D1U∗
j ; (3.6d)

U∗∗
j =U

(1)
j , (3.6e)

V∗∗
j =V

(1)
j −∆t

ε

(

V∗∗
j −F(U∗∗

j )−νD2U∗∗
j

)

− 2∆t

ε

(

V∗
j −F(U∗

j )−νD2U∗
j

)

; (3.6f)

U
(2)
j =U∗∗

j −∆tD1V∗∗
j , V

(2)
j =V∗∗

j −∆tAj+1/2D1U∗∗
j ; (3.6g)

Un+1
j =

1

2
Un

j +
1

2
U

(2)
j , Vn+1

j =
1

2
Vn

j +
1

2
V

(2)
j . (3.6h)
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Note that the time-discretization (3.6) in the limit when ε→ 0 converges to the formally
TVD Runge-Kutta schemes given by Shu and Osher in [19], also referred to as Strong
Stability-Preserving (SSP) time discretization methods in [8]. An accuracy study of this
scheme is given in the Appendix for a linear case.

Remark 3.1. It is possible to construct an implicit-explicit scheme where the second-order
differential term is treated implicitly in (3.6b) and (3.6f). By doing so, two linear systems
of algebraic equations have to be solved at each time step during the time integration pro-
cess. However, due to the extensive computational effort required for the linear solver,
this may limit the efficiency of the relaxation scheme for solving Eq. (1.1).

The spatial discretization of the relaxation system (3.3) is complete when a numerical
construction of dX−, dX+ and θ

n
j+1/2 in (3.2) are chosen. A simple selection is X− = xj,

X+ = xj+1 and θ
n
j+1/2 =α

n
j+1/2∆t/2 with α

n
j+1/2 is a positive parameter. This selection has

been analyzed and experimented in [5] for conservation laws with source terms. In the
present work, since the system (2.6) has linear characteristics, we can easily apply the
finite-volume method for its discretization. Here, we set

θ
n
j+1/2 =α

n
j+1/2θ̄j+1/2, θ̄j+1/2 =

∆x

2Sn
j+1/2

, Sn
j+1/2 =max

(√

Aj,
√

Aj+1

)

, (3.7)

with
√

Aj are the characteristic speeds in the relaxation system (2.6). Hence, the numeri-
cal fluxes required in the spatial discretization of (2.6) are defined as

Fn
j+1/2 =

1

2

(

Fn
j +Fn

j+1

)

−
θ

n
j+1/2

∆x
Λ

n
j+1/2

(

Fn
j+1−Fn

j

)

, (3.8)

or equivalently

Fn
j+1/2 =

1

2

(

Fn
j +Fn

j+1

)

−
θ

n
j+1/2

∆x

√

An
j+1/2

(

Fn
j+1−Fn

j

)

,

Gn
j+1/2 =

1

2

(

Gn
j +Gn

j+1

)

+
θ

n
j+1/2

∆x

√

An
j+1/2

(

Gn
j+1−Gn

j

)

.

(3.9)

Once Fn
j+1/2 and Gn

j+1/2 are reconstructed in (3.9), the numerical fluxes Un
j+1/2 and Vn

j+1/2

in the relaxation system are obtained from (2.8) by

Uj+1/2 =Fj+1/2+Gj+1/2 and Vj+1/2 =
√

Aj(Fj+1/2−Gj+1/2). (3.10)

Clearly, the accuracy of the finite volume method will depend on the choice of the char-
acteristic speeds

√

Aj+1/2 in (3.9). A simple selection can be based on rough estimates of

eigenvalues of F′(U) as
√

An
j+1/2 =A with A is a positive constant satisfying

A≥
∣

∣F′(U)
∣

∣. (3.11)
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Other choice is to calculate
√

Aj locally at each control volume as

√

An
j+1/2 =max

{

∣

∣F′(Un
j )
∣

∣,
∣

∣F′(Un
j+1)

∣

∣

}

. (3.12)

A global choice is to take the maximum over the gridpoints in (3.12). It is worth saying

that, larger values of
√

An
j+1/2 usually add more numerical dissipation. For a discussion

on the role of the characteristic speeds in relaxation schemes we refer the reader to our
previous works [3, 18] and the references are therein.

Remark 3.2. Some remarks are in order:
• The relaxation rate ε can be viewed as a viscosity coefficient in (2.1) such that more

numerical diffusion is added for larger value of ε. For small ε, numerical results obtained
by relaxing scheme (ε≪1) and relaxed scheme (ε=0) are essentially the same.

• The slopes Sn
j+1/2 in (3.7) can be viewed as the Rusanov speeds. By letting α

n
j+1/2 =1

the spatial discretization (3.9) leads to the well-established Lax-Wendroff scheme. For
homogeneous systems, the reconstruction (3.9) is exactly the VFRoe scheme studied in
[13]. Another selection of α

n
j+1/2 based on sign matrix has been investigated in [15].

• Using constant characteristic speeds satisfying (3.11), the discretization (3.9) gives

Fn
j+1/2 =

1

2

(

Fn
j +Fn

j+1

)

−
α

n
j+1/2

2

(

Fn
j+1−Fn

j

)

,

Gn
j+1/2 =

1

2

(

Gn
j +Gn

j+1

)

+
α

n
j+1/2

2

(

Gn
j+1−Gn

j

)

.

(3.13)

To obtain the numerical fluxes in (3.3) one solves (3.13) and (3.10) as

Un
j+1/2 =

1

2

(

Un
j+1+Un

j

)

−
α

n
j+1/2

2A
(

Vn
j+1−Vn

j

)

,

Vn
j+1/2 =

1

2

(

Vn
j+1+Vn

j

)

−
α

n
j+1/2

2
A
(

Un
j+1−Un

j

)

.

(3.14)

Again, if α
n
j+1/2 =1 the reconstruction (3.13) reduces to the first-order upwinding

Fn
j+1/2 =Fn

j and Gn
j+1/2 =Gn

j+1. (3.15)

Notice that the upwind scheme (3.15) was early used in [10, 16]. It is worth remarking
that the results presented in section 4 were obtained using uniform meshes. However,
our reconstruction can be applied for unstructured meshes without major conceptual
modifications.

Another choice of the slopes α
n
j+1/2 leading to a first-order scheme is α

n
j+1/2 = α̃

n
j+1/2

where
α̃

n
j+1/2 =Sn

j+1/2/sn
j+1/2, (3.16)
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with
Sn

j+1/2 =max
(√

Aj,
√

Aj+1

)

and sn
j+1/2 =min

(√

Aj,
√

Aj+1

)

.

Moreover, if constant characteristic speeds are used then, α̃
n
j+1/2 = 1 and the scheme re-

sults in the first-order upwinding (3.15). In the present work, we consider a second-order
scheme incorporating limiters in its reconstruction as

α
n
j+1/2 = α̃

n
j+1/2+σ

n
j+1/2Ψ

(

rj

)

, (3.17)

where α̃
n
j+1/2 is given by (3.16) and

σ
n
j+1/2 =

∆t

∆x
Sn

j+1/2−
Sn

j+1/2

sn
j+1/2

, rj =
Fn

j −Fn
j−1

Fn
j+1−Fn

j

.

The reconstruction for the variable G is performed in similar manner. In (3.17), Ψ(r) de-
fines the van Leer slope limiter function [20], Ψ(r) = (|r|+r)/(1+|r|). Note that other
slope limiter functions such Minmod or Superbee functions can also apply. The recon-
structed slopes (3.17) are inserted in (3.7)-(3.9) and the numerical fluxes Un

j+1/2 and Vn
j+1/2

are computed from (3.10). Remark that if we set Ψ=0, the spatial discretization (3.17) re-
duces to the first-order scheme.

4 Numerical examples

In this section we present few numerical examples to demonstrate the accuracy and ca-
pacity of the relaxation finite-volume method described in the previous sections. In all
these examples we solve the KdV equation

Ut+
(

U2
)

x
+νUxxx =0, (x,t)∈ [−M,M]×(0,T],

U(x,0)= Ū(x), x∈ [−M,M].
(4.1)

This equation which was developed for nonlinear shallow water waves, has been found
relevant in other physical models such as ion acoustic waves in a plasma and acoustic
waves in an harmonic crystal, see for example [7, 9, 11]. In addition, the KdV equation
is a natural test problem for comparing conservative versus dissipative discretizations in
numerical schemes for dispersive equations.

Note that, since in most of the examples considered in this section, U(x,t) converges
to 0 exponentially as |x|→∞, the initial value problem (1.1) is approximated by an initial-
boundary value problem for x∈ [−M,M] as long as the soliton does not reach the bound-
aries. We choose a suitable M to fit in with different examples. The relaxation system
associated with Eq. (4.1) is reconstructed as in (2.1). In all our computations the charac-
teristic speeds A are calculated locally at each control volume as

√

Aj+1/2 =max
{

∣

∣Uj

∣

∣,
∣

∣Uj+1

∣

∣

}

. (4.2)
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Figure 2: Asymptotic-preserving plots for the single solitary wave at t=30.

Other selection of characteristic speeds in general relaxation methods have been dis-
cussed in references [3, 17, 18]. Moreover, the courant number C is fixed to 0.5 and we
use variable time stepsizes ∆t adjusted at each time step according to the condition

∆t=Cmin

(

∆x

maxj

(
√

Aj+1/2

) ,
(∆x)2

ν

)

,

We present numerical results for the following soliton examples of the KdV equation.

4.1 Single solitary wave

As a first example we solve the KdV equation (4.1) for a single soliton with known ana-
lytical solution given by

U(x,t)=12νc2sech2(c(x−4νc2t−x0)
)

, (4.3)

where M=50 and
c=0.3, x0 =−20.

The initial condition Ū(x) is calculated from the exact solution (4.3). For boundary con-
ditions U(−M,t), U(M,t) and Ux(M,t), we simply use the values extracted from the
exact solution. The boundary conditions V(−M,t), V(M,t) and Vx(M,t) are obtained
according to the local equilibrium (2.2). This example is served to check the accuracy
of the finite-volume relaxation method for dispersive equations. First, we examine the
asymptotic-preserving property of the relaxation method. To this end we display in Fig. 2
the obtained solutions for different relaxation rates ε at time t = 30 using ν = 1 and 200
cells. We observe that for large values of ε the computed solution is far from the correct
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Figure 3: Single solitary wave.

Table 1: Relative errors for the single solitary wave at t=30 and two different values of ν.

ν=0.001 ν=1

N L2-error Rate L∞-error Rate L2-error Rate L∞-error Rate

50 5.103195E-4 —– 5.149129E-4 —– 1.381533E-1 —– 1.012682E-1 —–

100 1.559843E-4 1.71 1.640719E-4 1.65 3.779509E-2 1.87 2.888078E-2 1.81

200 4.479472E-5 1.80 4.775029E-5 1.78 9.514495E-3 1.99 7.270416E-3 1.99

400 1.127657E-5 1.99 1.202683E-5 1.99 2.173661E-3 2.13 1.684170E-3 2.11

800 2.612184E-6 2.11 2.844519E-6 2.08 4.698027E-4 2.21 3.690883E-4 2.19

limit solution. Decreasing the relaxation rate results in an improvement of the computed
solution. For ε=0, the computed solution and the exact solution coincide. This confirms
the formal convergence analysis of relaxation system to the original conservation law as
ε→0. Furthermore, these results show that the finite-volume discretization maintains the
correct asymptotic limit.

In Fig. 3 we plot the evolution of the soliton in the time-space domain. Note the
single soliton (4.3) propagates to the right with speed c=0.3. This motion has been well
captured by our method without diffusing the soliton profile or introducing nonphysical
oscillations.

Our next concern is to perform a convergence study for the finite-volume relaxation
method. The relative L2 and L∞ errors are listed in Table 1 for the single solitary wave at
t=30 using two different values of the dispersion coefficient ν and ε=0. All the errors are
measured by the difference between the pointvalues of the exact solution (4.3) and the
reconstructed pointvalues of the computed solution. As expected, for the two selected
dispersion coefficients, the errors decay as the number of gridpoints N increases. A slow
decay rate has been detected in the errors for ν = 1. We can clearly see that the finite-
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volume relaxation scheme shows a second-order accuracy in space for the considered
single solitary wave.

In what follows we present results only for the relaxed computations (ε = 0) and the
KdV equation is solved subject to periodic boundary conditions. In addition, the com-
putational domain is discretized into 200 control volumes and the dispersion coefficient
ν=1 in all the computations.

4.2 Interaction of three solitons

Next we solve a three solitary waves characterized by Eq. (4.1) subject to the following
initial condition

Ū(x)=
3

∑
i=1

12c2
i sech2(ci(x−xi)), (4.4)

where M=90 and

c1 =0.3, c2 =0.25, c3 =0.2, x1 =−60, x2 =−44, x3 =−26.

The obtained result is displayed in Fig. 4. As can be seen the three pulses travel with time
to the right. But the taller soliton moves faster, hence the three occasionally merge and
then split apart again. The relaxation method captures accurately the evolution of the
solitons in the computational domain without diffusing the fronts neither introducing
oscillations near steep gradients. Our finite-volume relaxation method performs well for
this test example. Note that the performance of our method is very attractive since the
computed solution remains, stable, monotone and highly accurate even on coarse meshes
without solving Riemann problems or requiring special front tracking procedures.

4.3 Interaction of four solitons

In this example we study the interaction of four solitary waves defined by the initial
condition

Ū(x)=
4

∑
i=1

12c2
i sech2(ci(x−xi)), (4.5)

where M=120 and

c1 =0.3, c2 =0.25, c3 =0.2, c4 =0.15,

x1 =−85, x2 =−60, x3 =−35, x4 =−10.

Fig. 5 depicts the evolution of the computed solution in the time-space phase. We observe
that the soliton with higher amplitude moves with faster speed, and the amplitudes of
the five waves are well preserved at the final time of computation. This indicates that our
finite-volume relaxation method has an excellent conservation property. Furthermore,
the resolution achieved by the new finite-volume relaxation method agree well with most
of the results obtained by typical non-dissipative schemes for the dispersive equations.
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Figure 4: Solitary wave interaction of three solitons.
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Figure 5: Solitary wave interaction of four solitons.

4.4 Interaction of five solitons

Our last example solves the KdV equation for a five solitons splitting. This test case has
the initial condition

Ū(x)=
5

∑
i=1

12c2
i sech2(ci(x−xi)), (4.6)

where M=150 and

c1 =0.3, c2 =0.25, c3 =0.2, c4 =0.15, c5 =0.1,

x1 =−120, x2 =−90, x3 =−60, x4 =−30, x5 =0.

In Fig. 6 we show the obtained results for Eqs. (4.1) and (4.6). The solution is completely
free of spurious oscillations and no extensive numerical dissipation is detected. The re-
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Figure 6: Solitary wave interaction of five solitons.

sults again indicate very good performance of the finite-volume relaxation method for
this test example. We can see the small complex structures of the solitons being cap-
tured by the proposed method. Clearly our method is very suitable for computing such
solutions.

5 Conclusions

We have proposed new finite-volume relaxation methods for the third-order differential
equations. The relaxation approximation and a finite volume method have been suc-
cessfully combined and turned into a second-order scheme to tackle some difficulties in
the numerical integration of the nonlinear dispersive equations. Numerical simulations
for the Korteweg-de Vires equation, as prototypical test case for third-order differential
equations, have been presented for different wave patterns. Our numerical results in-
dicate that the proposed method is extremely accurate and efficient and most suitable
for the study of complex dynamics of higher-order equations. Our relaxation scheme
resolves these problems accurately and captures the long wave behavior without using
eigenvector decompositions or Riemann solvers.

High-order discretizations which have non-oscillatory solvers maintaining the lo-
cal structure of the method, and accuracy enhancement study, and more numerical ex-
periments with physically interesting two-dimensional problems constitute an ongoing
work.
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Appendix: Accuracy study of the implicit-explicit scheme

In this appendix we perform an accuracy study for the implicit-explicit scheme (3.6) for
the relaxation system (2.1). Let us first rewrite the system (2.1) in the general ODE form

dU

dt
+H(U)=−1

ε
S(U). (A.1)

Then we apply the implicit-explicit scheme (3.6) to the system (A.1) for the linear case
H(U)= ΛU and S(U)= ΓU, with Λ and Γ are constant matrices. If we further set ε = 1,
the scheme (3.6) reduces to

U∗=Un+Γ∆tU∗, (A.2a)

U(1) =U∗−Λ∆tU∗, (A.2b)

U∗∗=U(1)−Γ∆tU∗∗−2Γ∆tU∗, (A.2c)

U(2) =U∗∗−Λ∆tU∗∗, (A.2d)

Un+1 =
1

2
Un+

1

2
U(2). (A.2e)

It is easy to verify that the exact solution of (A.1) in the interval [n∆t,(n+1)∆t] is given
by

Un+1 = e−(Λ+Γ)∆tUn, (A.3)

Let us also assume that ‖Λ‖∆t < 1 and 2‖Γ‖∆t < 1 such that the matrices in (A.2) are
invertible. Hence, Eq. (A.2) can be rewritten as

U∗=(I−Γ∆t)−1
Un, (A.4a)

U(1) =(I−Λ∆t)(I−Γ∆t)−1
Un, (A.4b)

U∗∗=(I+Γ∆t)−1
(

U(1)−2Γ∆tU∗
)

, (A.4c)

U(2) =(I−Λ∆t)U∗∗, (A.4d)

Un+1 =
1

2
Un+

1

2
U(2), (A.4e)

where I denotes the identity matrix. Expanding Eqs. (A.4a) and (A.4b) up to the order
O
(

∆t3
)

, we obtain

U∗=
(

I+Γ∆t+Γ2∆t2
)

Un+O
(

∆t3
)

, (A.5)

U(1) =
(

I+(Γ−Λ)∆t+
(

Γ2−ΛΓ
)

∆t2
)

Un+O
(

∆t3
)

, (A.6)

Next, we substitute (A.5) and (A.6) into (A.4c) and results

U∗∗=
(

I−(2Γ+Λ)∆t+Γ2∆t2
)

Un+O
(

∆t3
)

. (A.7)
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Combining (A.7) and (A.4d) one obtains

U(2) =
(

I−(2Γ+2Λ)∆t+
(

Γ2+2ΛΓ+Λ2
)

∆t2
)

Un+O
(

∆t3
)

. (A.8)

Finally, substituting (A.8) into (A.4e) we obtain

Un+1 =
(

I−(Γ+Λ)+
1

2
(Γ+Λ)2

)

Un+O
(

∆t3
)

,

= e−(Λ+Γ)∆tUn+O
(

∆t3
)

. (A.9)

This shows a second-order accuracy for the implicit-explicit scheme (3.6) applied to the
ODE (A.1).
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