
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 4, No. 5, pp. 1086-1105

Commun. Comput. Phys.
November 2008

Parallel Mesh Refinement of Higher Order Finite

Elements for Electronic Structure Calculations†

Dier Zhang1,∗, Aihui Zhou2 and Xin-Gao Gong1

1 Department of Physics, Fudan University, Shanghai 200433, China.
2 LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy
of Sciences, Beijing 100190, China.

Received 29 February 2008; Accepted (in revised version) 29 May 2008

Available online 16 July 2008

Abstract. The finite element method is a promising method for electronic structure
calculations. In this paper, a new parallel mesh refinement method for electronic struc-
ture calculations is presented. Some properties of the method are investigated to make
it more efficient and more convenient for implementation. Several practical issues such
as distributed memory parallel computation, less tetrahedra prototypes, and the as-
signment of the mesh elements carried out independently in each sub-domain will be
discussed. The numerical experiments on the periodic system, cluster and nano-tube
are presented to demonstrate the effectiveness of the proposed method.

AMS subject classifications: 81Q05, 65L50

Key words: Tetrahedral mesh, adaptive mesh refinement, parallel algorithms, electronic structure
calculations.

1 Introduction

The finite-element (FE) method has attracted much attention for electronic structure cal-
culations. Using the compactly supported piecewise polynomials functions, the method
allows for variable resolution in real space and produces well structured sparse matri-
ces. Therefore it is very suitable for parallel implementation. On the other hand, the FE
method has been so far limited by the huge number of basis functions, which uses much
more degrees of freedoms than the traditional plane wave (PW) method [1] based on the
Fourier basis. However, the significant strength of the finite element method lies in its

†Dedicated to Professor Xiantu He on the occasion of his 70th birthday.
∗Corresponding author. Email addresses: dearzhang@fudan.edu.cn (D. Zhang), azhou@lsec.cc.ac.cn (A.
Zhou), xggong@fudan.edu.cn (X.-G. Gong)

http://www.global-sci.com/ 1086 c©2008 Global-Science Press

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1087

ability to place adaptive/local refinements in regions where the desired functions vary
rapidly while treating the other zones with a coarser description [2–9].

In early works, White et al. [10] found that with uniform meshes as many as 105 basis
functions per atom were required to achieve sufficient accuracy. To decrease the number
of basis functions Tsuchida and Tsukada [2] had applied nonuniform hexahedron meshes
on H2 molecules. Beck [5, 11] studied the multigrid method based on such nonuniform
hexahedron meshes. In these applications the grid can be made to vary logarithmically
near the nuclei, but the smoothness of the wave function is not guaranteed for the non-
conforming mesh. Afterward, Tsuchida and Tsukada [3, 4] proposed another approach
with the adaptive curvilinear coordinates (ACC’s), which was recently applied for the
calculations of ab initio molecular dynamics. All the above adaptive coordinates are based
on hexahedron meshes. In [12], we proposed an adaptive refinement method to gener-
ate conforming tetrahedra mesh. This method can create a very flexible mesh which
could be locally refined in any interested regions. Moreover, the mesh conforming can
be preserved during the refinements. With a posteriori error estimation of the eigenvalue
problem [13], the refinement is carried out, automatically paying special attention to the
spatial regions where the computed functions vary rapidly, especially near the nuclei.
For this implementation the particular technique adopted for mesh refinement is very
important. In order to perform large scale electronic structure calculations, we present
a parallel algorithm for the adaptive construction of tetrahedral meshes in the finite ele-
ment computations, which is technically assigned for the physics problem.

The serial refinement algorithms of simplicial meshes have been examined by many
authors. However few works concerning parallel mesh refinements have been reported.
Jones and Plassmann [14] proposed a parallel algorithm for adaptive local refinement of
two-dimensional triangular meshes. Castaños and Savage [15] described the parallel al-
gorithm for local adaptive refinement of tetrahedral meshes used in the PARED package.
Zhang [16] proposed another parallel algorithm using the newest vertex approach.

For efficient electronic structure calculations, we will introduce a new direct paral-
lel algorithm for the adaptive refinements. In our method the assignment of the FE
nodes is applicable for interpolation during the calculations. Our parallel algorithm fol-
lows the simplicial bisection algorithm based on newest vertex approach. This approach
was first developed by Bäsch [17] for the local tetrahedral mesh refinement. Later on,
Maubach [18] and Horst [19] generalized the method to the case of arbitrary number of
dimensions. Kossaczky [20], Liu and Joe [21], and Arnold et al. [22] also studied local
refinement by bisection with different interpretations. The basic step in the refinement
is tetrahedral bisection, as shown in Fig. 1. We adopt the notation and algorithm of the
bisection refinement introduced in [22]. In this algorithm, with the data structure named
marked tetrahedron the tetrahedra are classified into 5 types and the selection of refine-
ment edge depends only on the type and the ordering of vertices for the tetrahedra. The
parallelization of the refinement algorithm is based on a natural idea, i.e., to exchange
the hanging vertices and edges on the interface of each sub-mesh, as used in the litera-
tures [14–16].

1088 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

Figure 1: Bisection of a single tetrahedron.

Our method takes care of aspects such as distributed memory parallel computation
based on domain subdivision; less tetrahedra prototypes by taking the character of the
physics problem into account; the assignment of the mesh elements carried out indepen-
dently in each sub-domain without any global notation; the data structure fitting for ba-
sis functions of higher order by assigning each mesh element (tetrahedron, vertex, edge,
face) a number during the refinements.

The paper is organized as follows. The next section provides the domain subdivision
for electronic structure calculations. In Section 3 the data structure and algorithm of the
parallel mesh refinement are presented. In Section 4 we discuss some available properties
of the refined meshes. In Section 5 we discuss the parallel data storage and matrix-vector
multiplications. In Section 6 we consider some numerical examples. The final section is
devoted to the conclusions.

2 Domain subdivision and mesh partitioning

Although the domains for many FE implementation are irregular, in electronic structure
calculations we can always adopt the cuboid-like domains. The main reason is that usu-
ally there are only three typical kinds of problems in electronic structure calculations: 1.
Super-cell with periodic boundary condition for the crystal systems; 2. Finite systems
like clusters or molecules, which need a large enough domain; 3. Transport problems
with special boundary condition in a given direction.

A cuboid-like domain is suitable for all these kinds of physical problems. Our re-
finement method is therefore based on such cuboid domains which can be divided into
a regular tetrahedra mesh initially. In order to allocate a mesh T on a distributed mem-
ory parallel computer, one needs to partition T into P sub-meshes Ti, (i = 0,··· ,P−1),
where P is the number of MPI processors. This is easily done by the regular partition, see
Fig. 2 as an example, where we simply partition the cube into 8 equal sub-cubes. Each
processor treats only one sub-mesh which is similar to the original one. In our imple-
mentation, the boundary of each sub-mesh is generated at the very beginning and kept

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1089

Figure 2: 8 sub-domains for C60, and the mesh of one sub-domain.

unchanged throughout the refinements. In the electronic structure calculation the load
balance among different processors can be achieved by putting similar number of atoms
in each sub-domain.

face edge vertex

Figure 3: Three kinds of interface-mesh. The interface-meshes on the faces are triangular meshes, which are
shared by two processors. The interface-meshes of the edges are 1-dimensional and shared by four processors.
The interface-meshes on the vertices are shared by eight processes, which are trivial and never be changed
during the refinements.

We name the connection part Tij =Ti
⋂

Tj (i 6= j) between two neighboring sub-meshes
Ti and Tj interface-mesh. The interface-meshes are also stored just like un-partitioned
meshes. There are three kinds of interface-meshes (see Fig. 3): sharing a face, sharing an
edge , and sharing a vertex between the neighboring cuboid domains. The face interface-
meshes are usually shared by 2 domains, while the edge is shared by 4 domains and the
vertex is shared by 8 domains. Each interface-mesh is stored by all its neighbor proces-
sors. The interface-meshes of the faces are triangular meshes, the interface-meshes of the
edges are 1-dimensional, and the interface-meshes of the vertices are just one point which
will never be changed during the refinements.

1090 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

3 Data structure and parallel refinement algorithm

3.1 Data structure

Our package is written in C language. In this subsection, we describe the data structure.
In our implementation, the elements of FE mesh including tetrahedra, faces, vertices,
edges, and interpolation nodes are assigned. The tetrahedra are represented below by
the structure array tetra[] with the members

struct tetra {
int vertex[4]; storing the index of vertices in the tetrahedron,
int edge[6]; storing the index of edges,
int face[4]; storing the index of faces,
int type; storing the type of the tetrahedron.

}

Here, the algorithm described in [22] is used to classify the tetrahedra into 5 types. With
a conventional order of the array tetra[i].vertex[4] and the type of a tetrahedron, its
refinement edge can be uniquely determined [20, 22]. The bisection of a tetrahedron is
simply to compute the array and type of its children according to a given set of rules.

Though the array tetra.vertex[4] and the type of a tetrahedron are enough for
uniquely determining its refinement edge, we also store the indexes of edges and faces
for assigning the interpolation nodes in the tetrahedron. With all these indexes we can
assign the nodes which occur on the edges or faces during the refinement, it is not nec-
essary to reassign them after the mesh refinement. This yields convenience and natu-
ral assignment [23] such that the indexes of new nodes naturally follow the old ones.
For example, in the case of quadratic basis functions with the nodes on each vertex and
edge, we store the mapping array vertex[i].node and array edge[i].node to find the
nodes. The coordinates of the interpolation nodes are stored in the structure member
node[i].coordination[3].

We use βV , βE, βF, βT and βN to denote the number of vertices, edges, faces, tetra-
hedra, and nodes respectively. The number of nodes depends on the order of the basis
functions, for 2-order interpolation βN=βV+βE. The well-known Euler-Poincare formula
states the relationship among them:

βV +βF−βT−βE = s, (3.1)

where s is the Euler characteristic, s=1 for finite meshes and s=0 for infinite meshes and
the case of periodic boundary condition. As a practical issue, it is important to know the
pair-wise relationships to achieve memory efficiency. The relationship (3.1) is apparently
not much helpful and it is usually ignored in the literature since the problem is hard to
treat for irregular meshes and partition ways. However, the present approach (shown in
Section 2) results in the following lemma.

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1091

Lemma 3.1. Let βV , βE, βF, βT and βN be the number of vertices, edges, faces, tetrahedra, and
nodes respectively. Then

βE≤7βV , βF≤12βV , βT≤6βV . (3.2)

The proof of Lemma 3.1 will be given in Section 4. Note that Lemma 3.1 indicates a
simple way to initialize these numbers, that is, the upper limits of the number of edges,
faces and tetrahedra are determined by the number of vertices. For example, if we choose
βV =10,000, then βE =70,000, βF =120,000 and βT =60,000 are reasonable choices.

For each processor, the neighboring interface-meshes are stored like a 2-D mesh (on
the faces) or 1-D mesh (on the edges). Each of them has a set of mapping arrays between
the sub-meshes and interface-meshes. The interface-meshes and their mapping arrays
are created when the mesh is partitioned, and updated during mesh refinement. Two
neighboring sub-meshes Ti and Tj share the vertices, edges and faces; all of them are the
elements on their interface-meshes Tij = Ti

⋂

Tj. All the information exchanging between
the neighboring sub-meshes will be realized through the interface-mesh. The mesh in-

formation of Tij is stored in the processor i and j as T
(i)
ij and T

(j)
ij respectively, where the

superscript denotes the processor id:

Ti(z)
mapping←−−−→T (i)

ij (z)
data exchange⇐======⇒T (j)

ij (z)
mapping←−−−→Tj(z). (3.3)

During the refinement, the new vertices, edges and faces will be added up to the interface-
meshes. The interface-meshes are updated synchronously with the sub-meshes, but they
are not be regenerated after the refinement. We suppose that the indexes of vertices,

edges and faces are the same on the shared interface-meshes T
(i)
ij and T

(j)
ij , for that we

need not to create a mapping between them. It is easy to generate an initial regular mesh
satisfying this condition, and we demand that the indexes keep the same order through-
out the refinement. We will discuss how to achieve this in Section 3.2.

Compared with the method in [16], our data structure helps us to assign the inter-
polation nodes more naturally for high order basis functions. In our method the data
exchange during the mesh refinement is easy to be implemented in the case that the
boundary of the sub-domain is fixed.

3.2 The parallel refinement algorithm

The refinement procedure consists of two phases. In the first phase, each sub-mesh is
refined independently, while the shared faces, edges and vertices of the interface-meshes
are treated as if they were on the boundary. In the second phase, the new elements on
interface-meshes are exchanged between the neighboring sub-meshes.

In step 1 of Algorithm 3.1, BisectTets is a serial procedure for bisecting every tetra-
hedron in set S,

BisectTets(T,S)=(T\S)
⋃

(

⋃

τ∈S

BisectTet(τ)
)

,

1092 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

Algorithm 3.1: Parallel Refinement Algorithm

(T′i ,{T′(i)
ij })=ParallelRefine(Ti,{T(i)

ij },Si), where i is the processor index, and Ti
⋂

Tj 6=∅

Input: The sub-meshes on each sub-domain {T′i } , the set of interface-meshes {T(i)
ij }, the set of the

tetrahedra to be refined Si , Si⊂Ti.

1. Bisect the tetrahedron τ∈Si in each processor i , T̄i =BisectTets(Ti,Si),

2. Conform the sub-meshes (T′i ,{T′(i)
ij })=ParallelConform(T̄i,{T(i)

ij }).

Output: The refined sum-mesh T′i given by T′=
⋃n

i=1 T′i .

Algorithm 3.2: Parallel Conforming

(T′i ,{T′(i)
ij })=ParallelConform(Ti,{T(i)

ij })
Input: The sum-mesh Ti has not been conformed and its neighboring interface-meshes {T(i)

ij }
1. Exchange the data between every two neighboring processors, renew the interface-meshes and

make the sub-meshes coupled with each neighbor meshes

(T̃i,{T′(i)
ij })=Exchange(Ti,{T(i)

ij }).
2. Let Si ={τ∈ T̃i|with hanging vertices on τ}.
3. if (

⋃

j Sj 6=∅) then

T̄i =BisectTets(T̃i,Si),

(T′i ,{T′(i)
ij })=ParallelConform(T̃i,{T′(i)

ij })
4. else

T′i = T̃i

Output: The conformed sum-meshes of T′i and interface-meshes {T′(i)
ij }.

where BisectTet(τ) is the bisection of a single tetrahedron. This is the basic refinement
step in the algorithm of [22]. After that, in step 2 the mesh is conformed by clearing up
the hanging vertices and edges.

Algorithm 3.2 is a recursive procedure which stops when no more hanging vertices
and edges. The difference with the serial algorithm is that we need to exchange the
hanging vertices and edges on the interface of each neighboring sub-mesh. Because the
result of the serial algorithm is independent of the sequence of the hanging vertices and
edges, we can ensure that the parallel algorithm produces the same result as the serial one
and terminates in same finite number of steps (see the proof in [16]). In this sense, our
algorithm is essentially the same as that in [16], except the exchange mode of the hanging
vertices and edges on the interface and the data structures. In our method the exchange
of the hanging vertices and edges is based on the shared interface-mesh between two
neighboring sub-meshes. It helps us to assign the indexes of the sub-mesh elements,
naturally distributed over every processor to avoid a global assignment.

In Algorithm 3.3 each processor sends and receives the hanging vertices and edges on

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1093

Algorithm 3.3: Exchange the Hanging Vertices and Edges

(T̃i,{T′(i)
ij })=Exchange(Ti,{T(i)

ij })
Input: The sum-mesh Ti, and its neighboring interface-meshes {T(i)

ij }

1. Let H
(i)
ij be the set of the hanging vertices and edges on the interface of Ti to be added to the

interface-mesh T
(i)
ij .

2. Send the data of H
(i)
ij to each neighboring processor j. The positions of the hanging vertices and

edges are assigned with the index of T
(i)
ij .

3. Receive the preceding data from all the neighboring processors.

4. Update the sub-mesh Ti, T̃i =Ti
⋃

(

⋃

j H̃ij(j)
)

.

5. Update the interface-meshes {T(i)
ij } to {T′(i)

ij }.

Output: The sub-mesh T̃i matched with all of its neighbor sub-meshes and its neighbor interface-meshes

{T′(i)
ij } matched with T̃i.

the interface, and then adds them to sub-mesh and interface-meshes. The data exchange
is based on the shared interface-meshes. Let the index of the edge on interface-meshes

T
(i)
ij be T (i)

ij (edgez). Because the index is equal to that of the shared interface-meshes

T (i)
ij (edgez)≡T

(j)
ij (edgez), (3.4)

as we send the index to the neighboring processor j, the position of the hanging vertex
is determined on the neighboring sub-mesh Tj, and the processor j will add up the new
vertex using the information. In the same way, the hanging edge is denoted by the in-
dex of face and vertex where it is located to help the neighboring processors to find the
position.

In step 5 we add the new vertices and edges to the interface-meshes. The problem is

how to keep the indexes of the interface-meshes T′(i)
ij and T′(j)

ij in the same order, which

are stored and updated in different processors. The natural idea is to add the new vertices
and edges in same order. In our method the new vertices and edges are denoted by
their original processor. The precedence for adding them is determined by their original
processor id. As shown in Fig. 4, the interface-mesh T14 is a plane which has 6 neighbor

sub-meshes 0,1,··· ,5. It was stored by two processors 1 and 4 as T
(1)
14 and T

(4)
14 , and the

new vertices and edges will come from all the 6 neighbor sub-meshes. The processor 1
or 4 will treat the new vertices and edges in the same order according to the number of
their original processor. More precisely, the new vertices and edges coming from the sub-

mesh 0 will be first added to the interface-mesh T
(1)
14 and T

(4)
14 , then from the sub-mesh 1,

and so on. Note that the overlapping new vertices and edges should not be reassigned

redundantly. In this way the indexes of T
(1)
14 and T

(4)
14 always keep in the same order.

1094 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

Figure 4: The neighboring sub-meshes of the interface-mesh.

3.3 Assigning indices to new nodes

We assign the interpolating nodes with a local set of indexes on each sub-mesh,

{0,1,··· ,β(i)
N −1}, where β

(i)
N is the number of nodes on sub-mesh i. Different from the

method in [16], we have no global index for the nodes, so each processor assigns the
nodes independently. For each quadratic basis function there are 10 interpolating nodes
in one tetrahedron located on each vertex and on the middle point of each edge. In this
case, these arrays are stored in

• vertex[i].node,(i=0,1,··· ,βV−1), store the indexes of the nodes located on vertices,
βV is the number of vertices;

• edge[i].node,(i=0,1,··· ,βE−1), store the indexes of the nodes located on edges, βE

is the number of edges.

When a new node is created, a unique index is assigned to it. In a step of bisecting a
tetrahedron, 4 new nodes will be created at most, if the nodes have not been created by
the bisection of neighboring tetrahedra (see Fig. 5). The new vertex will inherit the node
originally belonging to the edge bisected. Each new edge will get a new node assigned
as βN , then βN→βN +1.

The nodes on the interface-meshes are assigned by the same way. We demand that

the indexes of the nodes on the interface-meshes T′(i)
ij and T′(j)

ij also keep in the same

order throughout the refinement just like that for the vertices and edges. In the finite
element implementation, a vector is presented by the values on the mesh nodes, which

are stored by an array in βN order. We store β
(i)
N array in ith processor after dividing the

array into P parts, each of which corresponds to one sub-domain. The overlapping parts
will be stored repeatedly in all neighboring processors. With the mapping between the
nodes of sub-mesh and interface-meshes we can find the overlapping parts in the array,
and exchange them between the neighboring processors.

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1095

Figure 5: In a step of bisecting a tetrahedron, 4 new nodes will be created at most for a quadratic basis function.

4 Regular shapes of tetrahedra in refined mesh

Starting from the regular mesh the tetrahedra in the refined mesh keep some of the reg-
ular shapes throughout the refinements. In the initial regular mesh all the tetrahedra are
congruent and marked the same type, type A. Obviously, all the bisected tetrahedra are
marked in three types A,Pu,Pf , as shown in Fig. 6. It can be seen that all tetrahedra with
the same type are similar to each other in the refined mesh from the initial regular mesh.

Definition 4.1. Let type A0 be the mark of the initial tetrahedra for the regular mesh.
Let type Pi

f be the mark of the son tetrahedra of type Ai, type Pi
u be the mark of the

son tetrahedra of Pi
f tetrahedra, type Ai+1 be the mark of the son tetrahedra of Pi

u, (i =

0,1,2,···). Then Ai,Pi
f ,P

i
u is the i-th generation of bisected tetrahedra,

A0→P0
f →P0

u→A1→···→Pi
f→Pi

u→Ai+1→··· . (4.1)

Lemma 4.1. The tetrahedra of the same type and generation are congruent with each other. The
tetrahedra of the same type but different generation are similar to each other.

Proof. It is easy to verify that A0 type tetrahedra are congruent with each other. As
in Fig. 7, when an A0 type tetrahedron is bisected into two P0

f type tetrahedra, AE =

CE, AC = CA, AD = CB, EC = EA, ED = EB, CD = AB ⇒ TAECD
∼= TCEAB. Therefore

the tetrahedra of type P0
f are all congruent.

When a P0
f type tetrahedron is bisected into two P0

u type tetrahedra, AC = AB, EC =

EB, FC= FB ⇒ TAEFC
∼=TAEFB. Therefore the tetrahedra of type P0

u are all congruent.
When a P0

f type tetrahedron is bisected into two P0
u type tetrahedra, AE = BE, AF =

BF, AG = BG ⇒ TEFGA
∼= TEFGB. Therefore the tetrahedra of type A1 are all congruent

also. Obviously, TABCD ≃ TGBFE, so that the tetrahedra of type A1 are similar to that of
A0.

Lemma 4.1 ensures that there are only 3 types of tetrahedra throughout the refine-
ments.

1096 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

Figure 6: 3 types of tetrahedra.

Figure 7: A1 type tetrahedra are obtained by 3 successive bisections of an A0 type tetrahedron. The right part
of the figure shows the sequence of the bisections A0→P0

f →P0
u→A1.

Corollary 4.1. The tetrahedra of the same type in i-th generation and j-th generation
satisfy

li =2(i−j)lj, Vi =8(i−j)Vj, (4.2)

where li is the edge length of i-th tetrahedra and Vi is the volume of i-th tetrahedra.

Lemma 4.1 and Corollary 4.1 ensure the regular shape of the tetrahedra in the refined
mesh. In finite element calculations these properties provide a fast algorithm to generate
stiffness matrix (see [12]).

Suppose that in the initial mesh the length of the cube edge is h. Let type Ai be the
mark of the edges with edge length

√
3h/2i , type P i

f be the mark of the edges with edge

length
√

2h/2i, type P i
u be the mark of the edges with edge length h/2i, where i is the

generation number of the edges, (i=0,1,2,···).

When bisecting a tetrahedron, the particular edge to be refined is called the refinement
edge [22].

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1097

Lemma 4.2. The refinement edge of an Ai type tetrahedron is of type Ai, the refinement edge of a
Pi

f type tetrahedron is of type P i
f , and the refinement edge of a Pi

u type tetrahedron is of type P i
u.

Proof. As in Fig. 7, the refinement edge in A0 type tetrahedron TABCD is BD, the refine-
ment edge in P0

f type tetrahedron TCEAB is BC, and the refinement edge in P0
u type tetra-

hedron TAEFB is AB. Suppose in the initial mesh the length of the cube edge AB is h. Then
according to Corollary 4.1, the refinement edge length of the i-th generation tetrahedron
is

li =

√
3h/2i type A,√
2h/2i type Pf ,

h/2i type Pu.

(4.3)

Thus the lengths of refinement edges belonging to different type of tetrahedra never
equal to each other; conversely if two tetrahedra shared their refinement edge they must
belong to the same type and generation.

Lemma 4.2 ensures that the types of tetrahedron correspond to the types of their re-
finement edges. If an edge shared by two tetrahedra is the refinement (longest) edge on
both tetrahedra, the two tetrahedra belong to the same type and generation.

We close this section by giving a proof of Lemma 3.1.

Proof. First, for a regular mesh with a×b×c elements there hold

βV =(a+1)(b+1)(c+1),

βT =6abc<6βV ,

βE =(2a+1)(2b+1)(2c+1)−(a+1)(b+1)(c+1)<7βV ,

βF =12abc+2ab+2ac+2bc<12βV .

(4.4)

In an infinite regular mesh each cubic element corresponds to 6 tetrahedra, 12 faces, 7
edges, and 1 vertex, namely

βE =7βV , βF =12βV , βT =6βV . (4.5)

Then, we will prove that the refined meshes starting from the regular mesh also satisfy
those inequalities in (3.2). Whatever the refinements proceed, any refined mesh can be
generated from the initial regular mesh by bisecting the edges in the order

A0→P0
f→P0

u→A1→···→P i
f→P i

u→Ai+1→··· . (4.6)

In each bisection step, all the neighboring tetrahedra will be bisected. This order veri-
fies the bisection by the tetrahedron generation, and no hanging vertex exists during the
generation. In a step of bisecting an edge and all of its neighboring tetrahedra, one new
vertex will be added and the increasing numbers of the edges, faces and tetrahedra are
dependent on the number of neighboring tetrahedra. In Fig. 8, suppose the refined edge

1098 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

Figure 8: The refinement edge has n neighboring tetrahedron. The bisection of this edge will result in n+1
new edges, 2n new faces and n new tetrahedra.

to be bisected is not on the boundary and has n neighboring tetrahedra, the increasing
numbers of the vertices, edges, faces and tetrahedra are

δβV =1, δβE =n+1,

δβF =2n, δβT =n,
(4.7)

where n is determined by the type of the refinement edge,

n=

6 the edge of typeA,
4 the edge of type P f ,
8 the edge of type Pu.

(4.8)

If the refined edge is on the boundary, less edges, faces and tetrahedra will be added:

δβV =1, δβE <n+1,

δβF <2n, δβT <n,
(4.9)

where n satisfies (4.8).

Each step of bisecting a P f type edge results in 8 Pu type tetrahedra generated. Each
step of bisecting a Pu type edge will consume 8 Pu type tetrahedra, and all the Pu type
tetrahedra are produced by bisecting the P f type edges. For that the times of bisecting
Pu type edges is less than or equal to those of bisecting P f type edges. From Eq. (4.8) the
average number of n, n̄ satisfy

n̄≤6. (4.10)

From (4.7) and (4.9), the average numbers of increasing vertices, edges, faces and tetra-

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1099

hedra in each step of bisecting an edge satisfy

δβV =1,

δβE = n̄+1≤7=7δβV ,

δβF =2n̄≤12=12δβV ,

δβT = n̄≤6=6δβV .

(4.11)

The desired inequality (3.2) follows from (4.11), (4.4) and (4.5). This completes the proof.

5 Distributed data storage and parallel matrix-vector

multiplications

In our method, with the local assignment of the index of FE interpolating nodes the gen-
eration and storage of matrices are distributed locally on the processors. Each processor
i constructs the local matrix Mi serially on its own sub-mesh Ti without exchanging any
data with others. In this way the holistic matrix is divided into P local matrices, P is
the number of sub-domains. The nodes shared by the neighboring sub-meshes result
in the overlap of the local matrices. These overlapping parts need not to be summed
up, each processor treats its own local matrix only. The holistic matrix M = ∑i Mi is not
stored. The storage of vectors is also distributed over all processors, each for its own sub-
domain, repetitively for the overlapping part. Note that the array elements of the vector
on the shared nodes should be saved repetitively in each processor. Fig. 9 shows a sketch
for the storage of the matrix and vector for 2 processors.

Figure 9: The matrices and vectors are stored locally on each processor, with the overlapping parts of the shared
nodes of the neighboring sub-domains.

The matrix-vector multiplication is also localized. Suppose the holistic matrix M =

∑i Mi and the vector x is distributed over all processors as xi. The matrix-vector multipli-
cation y= Mx=∑i Mixi is calculated in 2 steps:

1100 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Figure 10: The parallel efficiency in H2 calculation.

1. Calculate the serial matrix-vector multiplication, that is, ỹi = Mixi;

2. Exchange the vector values of ỹi on the overlapping nodes between the neighboring
processors and sum them up, that is yi(z)=∑i ỹi(z) for any node z∈Ti.

In this way, the cost of the data exchange is reduced. The repetitive calculations of
matrix-vector multiplication are determined by the number of the overlapping nodes.
Here an example for parallel efficiency and the proportion of overlapping nodes depend-
ing on the number of sub-domains in the calculation of H2 molecular is shown in Fig. 10.
In such a calculation matrix-vector multiplication in solving the Kohn-Sham equation [24]
consumes about 90% of the resource.

6 Numerical experiments

In this section, three typical examples are presented to show the efficiency of our par-
allel adaptive refinement algorithm: face centered cubic (fcc) super-cell with 32 carbon
atoms (Fig. 11) demonstrating the periodic system, the C60 cluster (Fig. 2) demonstrating
the finite system, and the carbon nano-tube with 72 atoms (Fig. 12) demonstrating the
transport problem respectively.

In practice, the first example deals with the electronic properties of crystal, i.e. the
periodic structure. One super-cell consisting of 32 carbon atoms, together with periodic
boundary condition, is adopted. A 2×2×2 super-cell is taken as a domain. In the sec-
ond example, the domain is a large cuboid to model a cluster in vacuum. The size of
the domain is optional but large enough. In the last example, the carbon nano-tube is
considered with special boundary condition along the axis of the tube. The size of the
domain along this direction is determined by the boundary condition, while along other
directions, the size is optional as for the second example.

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1101

Figure 11: Domain containing 2×2×2 super-cell of
fcc crystal.

Figure 12: Carbon nano-tube with 72 atoms in a
cuboid domain.

All the numerical experiments were carried out on SGI O300 machine with 16 pro-
cessors. The efficiency of parallel calculation is tested by increasing the number of pro-
cessors from 1 to 2, 4, 8, 12 and 16. The refinement of the mesh is based on an error
estimator [13] for the wave functions. The wave functions are the eigenvectors of a non-
linear Schrödinger equation [24, 25],

[

−1

2
∇2+Veff(r)

]

ψi(r)=ǫiψi(r), (6.1)

Veff(r)=∑
s

Vs
ion(r−R

s)+VHartree(ρ)+Vxc(ρ(r)), (6.2)

where the first, second, and third terms on the right side of Eq. (6.2) are the ionic potential,
Hartree potential, and exchange-correlation potential respectively. Moreover,

ρ(r)=
M

∑
i

ni|ψi(r)|2, (6.3)

where ni is the occupation number of state i. Only the first M smallest eigenvalues need
to be calculated, where M is half of the valence electron number. In our previous works
[12, 26], we presented the FE solutions for (6.1)-(6.3) on adaptive mesh.

The Hartree potential is the Coulomb interaction of electrons,

VHartree(r)=
∫

ρ(r
′)

|r−r′|dr
′ (6.4)

satisfying the Poisson equation

−∆VHartree =4πρ. (6.5)

1102 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

The computational procedure of our examples is sketched in the following:

1. Generate the initial mesh.

2. Calculate the wave functions.

3. Estimate the local error indicators.

4. If the error estimated is not small enough, then refine the mesh and go to Step
2.

For all the three examples, the domain is partitioned into P sub-domains, where P is
the number of processors. Each sub-domain is a unit cuboid. All the initial sub-meshes
are regular. The boundary of each sub-mesh is unchanged throughout the refinements.

Table 1: Test results from SGI Origin 300 computer.

fcc super-cell 217,728 tetrahedra generated

No. processor tetrahedra/Sec. wall time (Sec.) efficiency

1 62,565 3.48 1.00
2 127,007 1.71 1.02
4 250,260 0.87 1.00
8 471,490 0.46 0.94

12 603,627 0.36 0.80
16 820,853 0.27 0.82

C60 cluster 711,412 tetrahedra generated

No. processor tetrahedra/Sec. wall time (Sec.) efficiency

1 63,095 11.28 1.00
2 123,540 5.76 0.98
4 251,118 2.83 0.99
8 469,932 1.51 0.93

12 595,718 1.19 0.79
16 710,601 1.00 0.70

nano-tube 717,776 tetrahedra generated

No. processor tetrahedra/Sec. wall time (Sec.) efficiency

1 65,001 11.04 1.00
2 122,019 5.56 0.94
4 262,864 2.73 1.01
8 494,163 1.45 0.95

12 705,443 1.02 0.90
16 894,102 0.80 0.86

The number of tetrahedra in the final mesh, the parallel refinement time, and the aver-
age number of tetrahedra created per second with different processor are listed in Table

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1103

1 2 4 8 12 16
0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16

10
5

10
6

fcc

nano tube

C60

number of processors

n
u
m

b
er

 o
f

te
tr

ah
ed

ra
/s

ec
o
n
d

fcc

nano tube

C60

number of processors

p
ar

al
le

l
ef

fi
ci

en
cy

Figure 13: Number of tetrahedra/second and parallel efficiency versus number of processors.

Figure 14: Domain subdivision of carbon nano-
tube with 16 (= 4×2×2) sub-meshes. The dark
region shows the more refined part of the mesh
where the nano-tube is located.

Figure 15: Domain subdivision of fcc super-cell
with 16 (=4×2×2) sub-meshes. The refined mesh
shows more dense grids around the atoms.

1, while the speedup and parallel efficiency obtained are shown in Fig. 13. In the first
example, the initial mesh contains 384 tetrahedra, while the final number of tetrahedra
increases to 218,112. The parallel refinements are efficient until the number of processors
reaches 16. Other two examples give similar results.

Compared with the regions far from the atoms, the regions around the atomic nuclei
and those between atoms connected by chemical bonds are more important. The self-
adaptive method based on posterior-error analysis of the wave functions places more
nodes within such critical regions. As shown in Fig. 14, the dark region shows that more
refined meshes are presented in the area where the nano-tube is located.

The domain subdivision takes the character of the specific physical problems under
consideration into account by putting roughly the same number of atoms in each sub-
domain. The final meshes for 16 processors are demonstrated in Figs. 14 and 15 respec-
tively. It is observed that the resulting subdivisions are balanced.

1104 D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105

7 Conclusion

In this paper, we present a parallel algorithm for adaptive mesh refinement in finite ele-
ment calculations of electronic structure. The algorithm allows simultaneous refinement
of sub-meshes before synchronization between sub-meshes, without the need of a global
index assignment and a central coordinator processor. Numerical experiments are car-
ried out to demonstrate the efficiency of the proposed algorithm.

Acknowledgments

The authors are thankful to the discussions with Prof. Wei-Guo Gao, Prof. Lin-bo Zhang,
Prof. Pingwen Zhang, Prof. Lihua Shen and Dr. Xiaoying Dai. This work is partially
supported by NSF of China, the National Basic Research Program of China, MOE and
Shanghai basic research project.

References

[1] R. M. Martin, Electronic Structure Basic Theory and Practical Methods, Cambridge Univer-
sity Press, 2004, 236.

[2] E. Tsuchida and M. Tsuukada, Electronic-structure calculations based on the finite-element
method, Phys. Rev. B, 52 (1995), 5573–5578.

[3] E. Tsuchida and M. Tsuukada, Adaptive finite-element method for electronic-structure cal-
culations, Phys. Rev. B, 54 (1996), 7602–7605.

[4] E. Tsuchida and M. Tesukada, Large-scale electronic-structure calculations based on the
adaptive finite element methods, J. Phy. Soc. Jpn., 67 (1998), 3844–3858.

[5] T. L. Beck, Real-space mesh techniques in density-function theory, Rev. Modern Phys., 72
(2000), 1041–1080.

[6] J. E. Pask, B. M. Klein, P.A. Sterne and C.Y. Fong, Finite-element methods in electronic-
structure theory, Comput. Phys. Commun., 135 (2001), 1–34.

[7] E. Tsuchida, Ab initio molecular-dynamics study of liquid formamide, J. Chem. Phys., 121
(2004), 4740–4746.

[8] J. E. Pask and P. A. Sterne, Finite element methods in ab initio electronic structure calcula-
tions, Modelling Simul. Mater. Sci. Eng., 13 (2005), R7–R96.

[9] T. Torsti, T. Eirola, J. Enkovaara1, T. Hakala, P. Havu, V. Havu, T. Höynälänmaa, J. Ig-
natius, M. Lyly, I. Makkonen, T. T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Räsänen, H.
Saarikoski, and M. J. Puska, Three real-space discretization techniques in electronic structure
calculations, Phys. Stat. Sol., B243 (2006), 1016-1053.

[10] S. R. White, J.W. Wilkinsand and M.P. Teter, Finite-element method for electronic structure,
Phys. Rev. B, 39 (1989), 5819–5833.

[11] T. L. Beck, Multigrid high-order mesh refinement techniques for composite grid electrostat-
ics calculations, J. Comput. Chem., 20 (1999), 1731–1739.

[12] D. Zhang, L. Shen, A. Zhou and X. G. Gong, Finite element method for solving Kohn-Sham
equations based on self-adaptive simplex mesh, Phys. Lett. A., to appear.

D. Zhang, A. Zhou and X.-G. Gong / Commun. Comput. Phys., 4 (2008), pp. 1086-1105 1105

[13] D. Mao, L. Shen and A. Zhou, Adaptive finite element algorithms for eigenvalue problems
based on local averaging type a posteriori error estimates, Adv. Comp. Math., 25, (2006),
135–160.

[14] M. T. Jones and P.E. Plassmann, Parallel algorithms for adaptive mesh refinement, SIAM J.
Sci. Comput., 18 (1997), 686–708.

[15] J. G. Castaños and J.E. Savage, Parallel refinement of unstructured meshes, Proceedings of
the IASTED International Conference on Parallel and Distributed Computing and Systems,
November 3–6, (1999), MIT, Boston, USA.

[16] L. Zhang, A parallel algorithm for adaptive local refinement of tetrahedral meshes using
bisection, Preprint ICM–05–09, (2005).

[17] E. Bänsch, An adaptive finite-element strategy for the three dimensional time dependent
Navier-Stokes equations, J. Comput. Appl. Math., 36 (1991), 3–28.

[18] J. M. Maubach, Local bisection refinement for N-simplicial grids generated by reflection,
SIAM J. Sci. Comput., 16 (1995), 210–227.

[19] R. Horst, On generalized bisection of n-simplices, Math. Comp., 66 (1997), 691–698.
[20] I. Kossaczky, A recursive approach to local mesh refinement in two and three dimensions,

J. Comput. Appl. Math., 55 (1994), 275–288.
[21] A. Liu and B. Joe, Quality local refinement of tetrahedral meshes based on bisection, SIAM

J. Sci. Comput., 16 (1995), 1269–1291.
[22] D. N. Arnold, A. Mukherjee and L. Pouly, Locally adapted tetrahedral meshes using bisec-

tion, SIAM J. Sci. Comput., 22 (2000), 431–448.
[23] A. Khamayseh and G. Hansen, Use of the spatial kD-tree in computational physics applica-

tions, Commun. Comput. Phys., 2 (2007), 545–576.
[24] W. Kohn, Noble lecture: electronic structure of matter wave functions and density function-

als, Rev. Mod. Phys., 71 (1999) 1253.
[25] R. O. Jones and O. Gunnarsson, Density-functional formalism: Sources of error in local-

density approximations, Phys. Rev. Lett. 55 (1985) 107.
[26] X. G. Gong, L. Shen, D. Zhang and A. Zhou, Finit element approximations for schrodinger

equations with applications to electronic structure computations, J. Comput. Math., 26
(2008), 310–323.

