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Abstract. In this paper we study numerical issues related to the Schrödinger equation
with sinusoidal potentials at infinity. An exact absorbing boundary condition in a form
of Dirichlet-to-Neumann mapping is derived. This boundary condition is based on an
analytical expression of the logarithmic derivative of the Floquet solution to Mathieu’s
equation, which is completely new to the author’s knowledge. The implementation
of this exact boundary condition is discussed, and a fast evaluation method is used to
reduce the computation burden arising from the involved half-order derivative opera-
tor. Some numerical tests are given to show the performance of the proposed absorbing
boundary conditions.
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1 Introduction

Wave propagation is usually modeled by partial differential equations on unbounded do-
mains. For a practical numerical treatment, however, the equations need to be confined
to a bounded computational domain in a neighborhood of the region of physical inter-
est. This can be achieved by introducing artificial boundaries, which then necessitates
imposing boundary conditions. The ideal boundary conditions should not only present
well-posed problems, but also mimic the perfect absorption of waves traveling out of
the computational domain through the artificial boundaries. Right in this context, these
boundary conditions are usually called absorbing (or transparent, non-reflecting in the
same spirit) in the literature.
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Absorbing boundary condition for the Schrödinger equation and related problems
has been a hot research topic for many years. From one-dimensional [2, 3, 6, 7, 10, 12, 15,
19–22, 24, 26] to high-dimensional [5, 8, 11, 13, 18, 23, 28], from linear to nonlinear [4, 14,
25, 27, 29], many developments have been made on the designing and implementing of
various absorbing boundary conditions. In this paper we will consider the Schrödinger
equation of the form

iut+uxx =V(x)u, x∈R, (1.1)

u(x,0)=u0(x), x∈R, (1.2)

u(x,t)→0, x→±∞. (1.3)

The initial function u0 is assumed to be compactly supported in an interval [xL,xR], with
xL < xR, and the real potential function V is supposed to be sinusoidal on (−∞,xL] and
[xR,+∞). More precisely, we assume

V(x)=VL+2qL cos
2π(xL−x)

SL
, ∀x∈ (−∞,xL],

V(x)=VR+2qR cos
2π(x−xR)

SR
, ∀x∈ [xR,+∞),

where SL and SR are the periods, VL and VR are the average potentials, and the non-
negative numbers qL and qR relate to the amplitudes of sinusoidal part of the potential
function V on (−∞,xL] and [xR,+∞), respectively.

The Schrödinger equation with periodic potentials has wide applications in quantum
mechanics and solid physics. For example, it can be used to model electrons immersed
in optical lattices, or simulate quantum dots embedded in crystals. The problem (1.1)-
(1.3) is linear, and the tool of Laplace transform is thus applicable. Formally an exact
relation can be built at each boundary point. This relation expresses a convolution, with
its kernel defined by the inverse Laplace transform of the logarithmic derivative of the
Floquet solution to Mathieu’s equation. However, if the property of this kernel is not
fully explored, this formal exact relation has little practical use. Recently, Galicher [16]
considered the same problem but with a general periodic potential. Formally he set up at
each artificial boundary point an exact Dirichlet-to-Dirichlet mapping, which is nonlocal
in both time and space.

The organization of the rest is as follows. In Section 2, we conjecture an elegant an-
alytical expression of the logarithmic derivative of the Floquet solution. Based on this
expression, an exact absorbing boundary condition in a form of Dirichlet-to-Neumann
mapping is presented in Section 3. The related numerical issues are discussed in Section
4. A fast evaluation method is employed to reduce the computation burden arising from
the convolution operations. Some numerical tests are given in Section 5 to demonstrate
the performance of our absorbing boundary condition. The results show that highly ac-
curate numerical solutions can be computed. We conclude this paper in Section 6.
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2 A conjecture related to Mathieu’s equation

The canonical form of Mathieu’s equation reads

y′′+(z−2qcos2x)y=0, (2.1)

where q is a nonnegative real number. Let us first consider the characteristic value prob-
lem: Find λ∈R and y∈C2[0,2π], such that

y′′+(λ−2qcos2x)y=0, x∈ [0,2π], (2.2)

y(0)=y(2π), y′(0)=y′(2π). (2.3)

It is known that for a fixed q>0, there are a series of characteristic values ar(q) and br(q),
real, distinct and satisfying

a0(q)<b1(q)< a1(q)<b2(q)< a2(q)< ··· .

The characteristic function associated with ar(q) is an even function cer(x,q), while that
with br(q) is an odd function ser(x,q). For q relatively small, the power series approxima-
tions for ar(q), br(q), cer(x,q) and ser(x,q) can be found in [1, p. 724].

Mathieu’s equation can be transformed into a first-order ODE system

(

y
y′

)′
=

(

0 1
2qcos2x−z 0

)(

y
y′

)

. (2.4)

It has two linearly independent fundamental solutions y1(x) and y2(x) which satisfy the
following initial conditions,

y1(0)=1, y′1(0)=0,

y2(0)=0, y′2(0)=1.

Let us set

A=

(

y1(π) y2(π)
y′1(π) y′2(π)

)

.

For any z with ℑz > 0, the matrix A has two characteristic values eµπ and e−µπ, with
ℜµ < 0. Suppose (c,d)T is a characteristic vector associated with eµπ. Then the solution
y(x) of (2.4) with the initial conditions

y(0)= c, y′(0)=d, (2.5)

satisfies y(π) = ceµπ and y′(π) = deµπ . As a matter of fact, y(x), denoted by F(x,z,q) in
the following, is one of the Floquet solutions in a form of

y(x)= eµxφ(x),
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Figure 1: Plot of the computed K(z,0).
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Figure 2: Plot of the computed K(z,0.1).

where φ is a π-periodic function and µ is the periodicity exponent. See [9, p. 29] for more
detail. Another Floquet solution is F(−x,z,q). Thus the general solution of (2.1) with
ℑz>0 is

y(x)= AF(x,z,q)+BF(−x,z,q).

Note that F(x,z,q) is bounded on [0,+∞), while F(−x,z,q) is not.
In this paper, what we are really concerned with is not the Floquet solution F itself,

but its logarithmic derivative at x=0, i.e.,

K(z,q)
de f
=

Fx(0,z,q)

F(0,z,q)
.

For q=0, the Floquet solution is

F(x,z,0)= e−
√
−zx, ℑz>0. (2.6)
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Figure 3: Plot of the computed K(z,0.1).
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Figure 4: Plot of the computed K(z,0.1).

Consequently,
K(z,0)=−

√
−z, ℑz>0. (2.7)

But for q>0, to the author’s knowledge, there are no such simple analytical expressions
like (2.6) and (2.7) for F(x,z,q) and K(z,q). Fortunately, in view of (2.5) we know K(z,q)=
d/c. Thus K at least can be evaluated numerically. The algorithm used in this paper
comprises two steps:

Step 1: compute the matrix A by integrating the ODE system (2.4) with the A-stable
2-stage 4-order implicit Runge-Kutta scheme (200 time steps);

Step 2: compute the characteristic values σ1, σ2 with |σ1|<1< |σ2|, derive the char-
acteristic vector (c,d)T associated with σ1, and set K(z,q)=d/c.

In Fig. 1, we depict the numerical value of K(z,0) with the above algorithm on the interval
[−10,10]+10−13 i. The maximal error on 4001 equidistant grid points is less than 4.22×
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Figure 5: Plot of the computed K(z,0.1).
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Figure 6: Plot of the computed K(z,0.1).

10−7, which is further reduced to 9.83×10−15 if the interval is changed to [−10,10]+i.
These evidences prove the accuracy of our numerical algorithm.

Now we use our numerical algorithm to study the property of K(z,q). Let q = 0.1.
Fig. 2 shows the computed K(z,q) on [−10,10]+10−13 i. We can see that in addition to
a non-smooth turning point a0, there also exists three almost singular points b1, b2 and
b3. A closer observation (see Figs. 3 to 6) reveals that corresponding to each singular
point br there is another non-smooth turning point ar, and the distance between ar and br

becomes smaller as r changes from 1 to 3. Our numerical tests demonstrate that ar is in
fact numerically equal to ar(q) for r=0,1,2,3, and br to br(q) for r=1,2,3, where ar(q) and
bi(q) are the characteristic values of the problem (2.2)-(2.3). Moreover, by data fitting we
find that the singularity of K at br behaves like O(1/

√
−z+br), and the smoothness of K
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at ar seems like O(
√−z+ar). Since

ar(q)= r2+o(q), br(q)= r2+o(q),

and zero potential can be taken as the limit of sinusoidal potential as q → 0, we boldly
conjecture that

K(z,q)=−
√

−z+a0(q)
+∞

∏
r=1

√

−z+ar(q)
√

−z+br(q)
, ℑz>0, q≥0. (2.8)

Though we cannot prove the relation (2.8) in a rigorous mathematical way, our numerical
tests strongly support its validity. For example, by setting

KN(z,q)
de f
= −

√

−z+a0(q)
N

∏
r=1

√

−z+ar(q)
√

−z+br(q)
, ℑz>0, q≥0, (2.9)

in the interval [−10,10]+10−13 i, the maximal error between K2 and K at 4001 equidistant
grid points is less than 7.5×10−2, and the maximal error between K3 and K is less than
7.4×10−6. Now change the interval to [−10,10]+i. The error between K2 and K at 4001
equidistant grid points is less than 4.7×10−5, the error between K3 and K less than 2.2×
10−8, and the error between K4 and K less than 1.8×10−9. Other tests with different q
have also been carried out, and all the results support our conjecture. We should remark
that there is a subroutine in the FORTRAN code library IMSL which computes ar(q) and
br(q) for any q≥0.

3 An exact absorbing boundary condition

Considering the symmetry of the problem (1.1)-(1.3), we need only study how to design
absorbing boundary condition at the right boundary point xR. With our assumption, the
initial function u0 vanishes on [xR,+∞). Doing the Laplace transform on both sides of
(1.1) we get the Mathieu equation

ûxx+

(

is−VR−2qR cos
2π(x−xR)

SR

)

û=0, x∈ [xR,+∞), (3.1)

where û = L(u), and s is the dual variable of t. Subject to the boundary condition at
infinity (1.3), for any given s with ℜs>0, we have ℑ(is−VR)>0 and the solution of (3.1)
is thus

û(x,s)= AF

(

π(x−xR)

SR
,
S2

R(is−VR)

π2
,
S2

RqR

π2

)

, x∈ [xR,+∞), (3.2)
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where A is independent of x, and F is the Floquet solution decaying as x goes to +∞.
Differentiating (3.2) with respect to x and using the expression of K (2.8), we obtain

ûx(xR,s) =
π

SR
K

(

S2
R(is−VR)

π2
,
S2

RqR

π2

)

û(xR,s)

= −
√

−is+ ãR
0

+∞

∏
r=1

√

−is+ ãR
r

√

−is+ b̃R
r

û(xR,s), ℜs>0, (3.3)

where

ãR
r =VR+

π2

S2
R

ar

(

S2
RqR

π2

)

, b̃R
r =VR+

π2

S2
R

br

(

S2
RqR

π2

)

.

In a form of Dirichlet-to-Neumann mapping, the equation (3.3) expresses an exact absorb-
ing boundary condition at x=xR in the transformed space. By introducing a sequence of
auxiliary functions wR

k as

ŵR
k (s)

de f
=

+∞

∏
r=k

√

−is+ ãR
r

√

−is+ b̃R
r

û(xR,s), k=1,2,··· , (3.4)

we rewrite the equation (3.3) into an equivalent form,

ûx(xR,s)+
√

−is+ ãR
0 ŵR

1 (s)=0,
√

−is+ b̃R
k ŵR

k =
√

−is+ ãR
k ŵR

k+1, k=1,2,··· .

Returning to the physical space yields

ux(xR,t)+e−iπ/4e−iãR
0 t∂

1
2
t

(

eiãR
0 twR

1 (t)
)

=0, (3.5)

e−ib̃R
k t∂

1
2
t (eib̃R

k twR
k )= e−iãR

k t∂
1
2
t (eiãR

k twR
k+1), k=1,2,··· . (3.6)

Here ∂
1
2
t denotes the half-order derivative operator defined as

∂1/2
t v=

1√
π

∂t

∫ t

0

v(s)√
t−s

ds. (3.7)

The readers are referred to [17] for detail.
An exact absorbing boundary condition at x = xL can be analogously derived by the

above procedure. The final result reads

−ux(xL,t)+e−iπ/4e−iãL
0 t∂

1
2
t

(

eiãL
0 twL

1 (t)
)

=0, (3.8)

e−ib̃L
k t∂

1
2
t (eib̃L

k twL
k )= e−iãL

k t∂
1
2
t (eiãL

k twL
k+1), k=1,2,··· , (3.9)

where

ãL
r =VL+

π2

S2
L

ar

(

S2
LqL

π2

)

, b̃L
r =VL+

π2

S2
L

br

(

S2
LqL

π2

)

.
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4 Numerical issues

We consider the time discretization first. Let ∆t be the time step, tn =n∆t the time points,
and un(x) the approximation of u(tn,x). The Crank-Nicolson scheme is a popular choice
for the Schrödinger equation, which reads

i
un−un−1

∆t
+

un
xx+un−1

xx

2
=V(x)

un+un−1

2
, n=1,2,··· . (4.1)

At each time step, solving the ODE (4.1) necessitates two boundary conditions at x = xL

and x = xR. We confine ourselves to the right boundary point, since the left one can be
considered analogously. For conciseness of notation, we will omit the superscript “R” in
the right boundary condition (3.5)-(3.6).

An infinite number of auxiliary functions get involved in (3.5)-(3.6), which are not
realizable in the numerical implementation. Considering that KN (see (2.9)) is a good
approximation to K (see (2.8)), a natural solution to this problem is to take

wk(t)=u(xR,t), ∀ k> NR,

where NR is a positive integer. Since ar ∼r2 and br∼r2 as r→+∞, for a given tolerance ǫ
we determine NR as the first integer such that

|ar−br|
|ar |+|br |

≤ǫ, ∀r> NR.

Our numerical tests suggest that NR is a nondecreasing function of q, which means for
larger value of q=S2

RqR/π2 we need more auxiliary functions to ensure the approximat-
ing accuracy. In Table 1 we list the number of auxiliary functions for some prescribed
ǫ.

Table 1: Number of auxiliary functions needed in the computation.

q=0.1 q=1 q=10 q=100 q=1000

ǫ=10−6 3 4 8 17 46
ǫ=10−9 4 6 10 20 49
ǫ=10−12 5 7 12 22 52

Another important issue on the implementing of boundary condition (3.5)-(3.6) is

the discrete approximation of the half-order derivative operator ∂1/2
t . For any smooth

function v=v(t) with v(0)=v′(0)=0, it is known that

D
1
2
t v(tn)

de f
=

√

2

∆t

n

∑
m=0

αmv(tn−m)
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with

αm =







βk =
(2k)!

22k(k!)2
, m=2k,

−βk, m=2k+1
(4.2)

presents a second-order approximation of ∂1/2
t v(tn) (see [3, 31]). By replacing ∂1/2

t with

D1/2
t in (3.5)-(3.6), we derive a second-order approximation,

un
x(xR)+e−iπ/4e−iã0tn D

1
2
t

(

eiã0tw1(t)
)

(tn)=0,

e−ib̃ktn D
1
2
t (eib̃ktwk)(tn)= e−iãktn D

1
2
t (eiãk twk+1)(tn), k=1,2,··· ,NR.

Or equivalently,

un
x(xR)+e−iπ/4

√

2

∆t

(

wn
1−e−iã0∆twn−1

1 +e−iã0tn

n

∑
m=2

αm

(

eiã0tw1(t)
)

(tn−m)

)

=0,

wn
k −e−ib̃k∆twn−1

k +e−ib̃ktn

n

∑
m=2

αm

(

eib̃ktwk(t)
)

(tn−m)=

wn
k+1−e−iãk∆twn−1

k+1 +e−iãktn

n

∑
m=2

αm

(

eiãk twk+1(t)
)

(tn−m), k=1,2,··· ,NR.

Recalling wn
NR+1 =un(xR) we have

un
x(xR)+e−iπ/4

√

2

∆t
(un(xR)+RES)=0, (4.3)

where

RES
de f
=

NR+1

∑
k=1

(

−e−iãk−1∆twn−1
k +e−iãk−1tn

n

∑
m=2

αm

(

eiãk−1twk(t)
)

(tn−m)

)

−
NR

∑
k=1

(

−e−ib̃k∆twn−1
k +e−ib̃ktn

n

∑
m=2

αm

(

eib̃ktwk(t)
)

(tn−m)

)

. (4.4)

Since RES can be computed explicitly at the n-th time step, the equation (4.3) defines a
Robin-type boundary condition at x=xR. The ODE problem (4.1) is then solved with any
spatial discretization method. In the computation we use the standard central difference
scheme. The overall scheme is thus expected to have second-order accuracy in both time
and space.

At the n-th time step, we need to calculate 2×NR+1 discrete convolutions at the right
boundary point like

n

∑
m=2

αmvn−m. (4.5)
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When the total number of time steps is large, this operation is very costly. A fast evalua-
tion method has been proposed in [31] for (4.5). To make this paper more self-contained,
we formulate the basic idea in the following.

Suppose there exists a sum of decaying exponentials satisfying

β̃k =
L

∑
j=1

wje
−s jk, sj >0, |βk− β̃k|≤ǫ, k=0,1,··· ,[N/2] . (4.6)

Here N denotes the total number of time steps. If ǫ is small enough, it is reasonable to
approximate (4.5) with

n

∑
m=2

α̃mvn−m, (4.7)

where

α̃m =

{

β̃k, m=2k,
−β̃k, m=2k+1.

(4.8)

Define

Fodd(w,s;v,k)
de f
=

k

∑
m=1

we−smv2k+1−2m

and

Feven(w,s;v,k)
de f
=

k

∑
m=1

we−smv2k−2m.

Thus Fodd(w,s;v,0)=Feven(w,s;v,0)=0. In addition, we have the following recursions:

Fodd(w,s;v,k)= e−s [wv2k−1+Fodd(w,s;v,k−1)],

Feven(w,s;v,k)= e−s [wv2k−2+Feven(w,s;v,k−1)] .

The summation (4.7) is then computed within O(L) operations as

n

∑
m=2

α̃mvn−m =























L

∑
j=1

Feven(wj,sj;v,k)−
L

∑
j=1

Fodd(wj,sj;v,k−1), n=2k,

L

∑
j=1

Fodd(wj,sj;v,k)−
L

∑
j=1

Feven(wj,sj;v,k), n=2k+1.

In [31] for N =106, the authors found a sum of 81 decaying exponentials which approxi-
mates βk with an error less than 5.0×10−11. In our numerical experiments we use them
to evaluate RES in (4.4).
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Table 2: Parameters of the numerical tests.

Case A B C D E F G

SL π π π π π π
20

π
20

qL 5 20 50 100 5 200 1000

SR π π π π π π
20

π
20

qR 5 20 50 100 100 200 1000

5 Numerical experiments

Our first numerical test is intended to demonstrating the accuracy of our absorbing bound-
ary conditions. The potential function is V(x) = 2cos2x and the computational domain

is [xL,xR]= [−2π,2π]. The initial function is u0 = e−x2+2ix. For comparison we compute a
reference solution on [xL,xR] by setting NL = NR =10 and using fairly small spatial and
temporal step sizes, h=π/65536 and ∆t=0.0001. Remember that NL and NR denote the
number of auxiliary functions at the left and right boundary points, respectively. Fig. 7
shows the amplitude of wave function until t =4. In Figs. 8 and 9 we depict the relative
L2-error of the computed wave function, denoted by Err, for different spatial and tempo-
ral step sizes. It can be seen that in the regime of parameters used in our computation,
our numerical scheme is second order in both space and time, if the absorbing boundary
conditions are accurate enough, i.e., NL= NR≥4.

We now use our scheme to study the propagation of a Gaussian beam

u0(x)= e−x2+8ix,

under the influence of the potential function

V(x)=



















2qL cos
2π(x+2π)

SL
, x∈

(

−∞,−2π+ SL
4

)

,

0, x∈
(

−2π+ SL
4 ,2π− SR

4

)

,

2qR cos
2π(x−2π)

SR
, x∈

(

2π− SR
4 ,+∞

)

.

The computational domain is set as [xL,xR]= [−2π,2π]. We let NL = NR = 20. Seven
cases will be considered, of which the parameters are listed in Table 2. Figs. 10-13 show
the amplitude of the computed wave function in the time interval [0,4]. The spatial step
size is h = 4π

M = π
4096 , and the temporal step size is ∆t = 0.001. We can see that when the

potential is weak, the Gaussian beam travels out of the computational domain without
significant reflection. As the amplitude of V(x) increases, more wave energy will be
bounced back into the computational domain. Besides, the waves traveling in opposite
direction interact with each other, and later on, some interference waves will be pro-
duced. If the periodic potential is strong enough, see Fig. 13, almost all the wave energy
will be trapped in the computational domain. In Fig. 14 we depict the numerical solution
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Figure 7: Amplitude of the computed wave function.
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Figure 8: Error plot at the time point t=1.6, ∆t=0.0001 with h= 4π
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Figure 9: Error plot at the time point t=1.6 with h= π
65536 .
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Figure 10: Amplitude of the computed wave function for case A. h= π
4096 . ∆t=0.001.

Figure 11: Amplitude of the computed wave function for case B. h= π
4096 . ∆t=0.001.

Figure 12: Amplitude of the computed wave function for case C. h= π
4096 . ∆t=0.001.
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Figure 13: Amplitude of the computed wave function for case D. h= π
4096 . ∆t=0.001.

Figure 14: Amplitude of the computed wave function for case E. h= π
4096 . ∆t=0.001.

Figure 15: Amplitude of the computed wave function for case F. h= π
4096 . ∆t=0.001.
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Figure 16: Amplitude of the computed wave function for case G. h= π
4096 . ∆t=0.001.
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Figure 17: Computation time in seconds. h= π
1024 . ∆t= 4

MT .

when a weak potential is placed on the left of the computational domain. It can be seen
that after the wave is bounced back from the first ridge of the right potential, it travels
out of the computational domain through the left boundary point without obvious reflec-
tion. We also study the high energy potential with small period. For case F and case G,
the wave function is shown in Figs. 15-16. Similar observations as those from Figs. 12-13
can be made.

Our last numerical experiment makes statistics on the computation cost. We consider
the first numerical test, and fix the grid points to 4096. The time interval [0,4] is divided
into MT equidistant time steps, and we set NL=NR=5. In Fig. 17, we show the compu-
tation time in seconds for different MT. Our computation is performed on a PC with an
Intel Core 2 Duo E6600 CPU of 2.4GHz and a memory of 3GB. It can be seen clearly that
the computation time increases linearly with respect to the number of total time steps.
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6 Conclusion

In this paper we have derived an exact Dirichlet-to-Neumann absorbing boundary con-
dition for the Schrödinger equation with sinusoidal potentials at infinity. The key point
of success lies in an analytical expression of the logarithmic derivative of the Floquet so-
lution of Mathieu’s equation. Our numerical tests have strongly supported the validity
of this expression, though at this time we cannot prove it theoretically. Since the exact
absorbing boundary condition involves an infinite product, we have simply truncated it
by keeping the first several terms, thus then obtained a series of approximate boundary
conditions. These boundary conditions involve the half-order time derivative operator,
which is hard to compute when the number of time steps is large. To reduce the compu-
tation burden, we have applied the fast evaluation method proposed in [31]. Other kinds
of methods are also applicable.

It is tempting to generalize the result in this paper to other periodic potential prob-
lems. But our first investigation on this issue suggests that the generalization might not
be straightforward.
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