
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 5, No. 4, pp. 442-460

DOI: 10.4208/aamm.13-13S03
August 2013

The Crank-Nicolson Hermite Cubic Orthogonal Spline

Collocation Method for the Heat Equation with

Nonlocal Boundary Conditions

B. Bialecki1,∗, G. Fairweather2 and J. C. López-Marcos3
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Abstract. We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal
spline collocation method for the solution of the heat equation in one space variable
with nonlocal boundary conditions involving integrals of the unknown solution over
the spatial interval. Using an extension of the analysis of Douglas and Dupont [23] for
Dirichlet boundary conditions, we derive optimal order error estimates in the discrete
maximum norm in time and the continuous maximum norm in space. We discuss
the solution of the linear system arising at each time level via the capacitance matrix
technique and the package COLROW for solving almost block diagonal linear systems.
We present numerical examples that confirm the theoretical global error estimates and
exhibit superconvergence phenomena.
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1 Introduction

Consider the heat equation

ut−uxx= f (x,t), x∈ [0,1], t∈ [0,T], (1.1)
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subject to the initial condition

u(x,0)= g(x), x∈ [0,1], (1.2)

and the nonlocal boundary conditions

u(0,t)=
∫ 1

0
α(x)u(x,t)dx+g0(t), u(1,t)=

∫ 1

0
β(x)u(x,t)dx+g1(t), t∈ [0,T], (1.3)

where α,β∈C[0,1] and

‖α‖L1(0,1)<1, ‖β‖L1(0,1)<1. (1.4)

It is shown in [14] that such problems arise in thermoelasticity. The existence, uniqueness
and properties of solutions, even in several space variables, have been studied in [14, 15,
28, 31].

Finite difference methods have been used frequently for the numerical solution of
(1.1)-(1.3). One of the first was that of Wang and Lin [48] who formulated a method based
on the Crank-Nicolson (CN) method with Simpson’s rule to approximate the integrals in
(1.3). No analysis was provided. Ekolin [24] considered the forward and backward Euler
methods and the CN method, each with the trapezoidal rule for the approximation of the
integrals, and derived error estimates for all three methods. Ekolin’s analysis of the CN
method requires the condition

‖α‖L2(0,1)+‖β‖L2(0,1)<

√
3

2
, (1.5)

in addition to (1.4). Liu [36] considered θ-methods with θ ≥ 1/2 and derived error esti-
mates with (1.5) replaced by the weaker condition

‖α‖2
L2(0,1)+‖β‖2

L2(0,1)<2. (1.6)

In [43], Pan provided analyses of the forward and backward Euler methods without con-
straints on the functions α and β. Sun [47] derived a method which is fourth-order accu-
rate in space and second-order in time under the condition

‖α‖L2(0,1)+‖β‖L2(0,1)<
√

0.432. (1.7)

This method is based on the high-order method (HOM) of Douglas [21] (which is not
referenced in [47]) together with Simpson’s rule for the approximation of the integrals.
In [40], the method claimed by Dehghan [17] to be fourth-order in space is shown to be
only second-order, and the correct fourth-order method is derived, a method which is
similar to that of Sun [47]. In [17, 40], this implicit method is called Crandall’s method
when in fact it is also based on the HOM of Douglas of which the method of Crandall [13]
is the special case in which a specific value of the mesh ratio yields an explicit method. A
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new fourth-order explicit method is considered in [38] together with the method of Cran-
dall [13]. To obtain accuracy higher than second-order in time, multi-time level methods
are derived in [41]. Richardson extrapolation is used in [7] to improve the accuracy of
finite difference approximations based on the θ-method. In [27], a method based on
Keller’s box scheme [32] is formulated in which the problem is rewritten as a first or-
der system in which no integral terms appear. Stability analyses of basic finite difference
methods are given in [5, 11, 30, 45].

With the assumption that

‖α‖L2(0,1)<1, ‖β‖L2(0,1)<1,

the CN and extrapolated CN schemes for the quasilinear equation

ut−(a(x)ux)x = f (x,t,u), x∈ [0,1], t∈ [0,T],

with a finite element Galerkin discretization in space were formulated and analyzed
in [25]. See also [8], where methods based on the θ-method instead of the CN method
are analyzed in a similar fashion.

Other numerical techniques for the solution of (1.1)-(1.3) include methods based on
Laplace transforms [1, 3], radial basis functions [18], nodal spline collocation methods in
which the approximate solution is expressed in terms of B-splines in both x and t [33],
the Adomian decomposition method [4, 16], a spectral collocation method [29], and a
reproducing kernel method [42]. Ang [2] adopted a method of lines approach in which
the problem is first reformulated as an integro-differential equation by integrating (1.1)
with respect to x, which is approximated using a nodal collocation method. The time-
stepping is then performed using a multi-step method. Yousefi et al. [49] also recast the
problem as an integrodifferential equation, which they solve using a nodal collocation
method on the space-time domain in which the approximate solution is expressed in
terms of Bernstein polynomials in each variable. A brief numerical comparison of some
methods is given in [9].

In this paper, we formulate and analyze a new method in which orthogonal spline
collocation with Hermite cubic splines is used for the spatial discretization and the time-
stepping is performed using the CN method. For the approximation of the integrals
in (1.3), the composite two-point Gauss quadrature rule is employed. To describe this
method, we assume that {xi}N

i=0 is a uniform partition of [0,1]; that is,

xi = ih, i=0,··· ,N, h=1/N.

The space Vh of piecewise Hermite cubic splines on [0,1] is defined by

Vh=
{

v∈C1[0,1] : v|[xi−1 ,xi]∈P3, i=1,··· ,N
}

, (1.8)

where P3 is the set of polynomials of degree ≤3. Let G= {ξi,k}N,2
i=1,k=1 be the set of collo-

cation (Gauss) points defined by

ξi,1= xi−1+ξ1h, ξi,2= xi−1+ξ2h, i=1,··· ,N,
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where

ξ1=
3−

√
3

6
, ξ2=

3+
√

3

6
. (1.9)

Assume {tn}M
n=0 is a uniform partition of [0,T] with tn=nτ, n=0,··· ,M, where τ=T/M,

and let tn−1/2=(tn−1+tn)/2, n=1,··· ,M.

In the CN method, we seek {Un}M
n=0⊂Vh such that

∂tU
n(ξ)−Un−1/2

xx (ξ)= f (ξ,tn−1/2), ξ∈G , n=1,··· ,M, (1.10)

where

∂tU
n=

Un−Un−1

τ
, Un−1/2=

Un+Un−1

2
,

with U0 defined by

U0
xx(ξ)= g′′(ξ), ξ∈G , (1.11)

and the nonlocal boundary conditions

Un(0)= 〈α,Un〉+g0(tn), Un(1)= 〈β,Un〉+g1(tn), n=0,··· ,M, (1.12)

where

〈w,z〉= h

2

N

∑
i=1

2

∑
k=1

(wz)(ξi,k). (1.13)

An outline of the remainder of this paper is as follows. In the next section, some basic
results are presented. The existence and uniqueness of the approximate solution defined
by the CN scheme (1.10)-(1.12) are proved in Section 3, followed by convergence analyses
in Section 4. The analyses are carried out under the Assumptions (1.4) and (1.6), and that
u, α, β are sufficiently smooth so that

∫ 1

0
α(x)u(x,tn)dx−〈α,u(·,tn)〉=O(h4); (1.14)

see, for example, [12, (7.54b)]. In Section 5, an algorithm for the solution of the linear
equations arising at each time step is described, and in Section 6 results of numerical ex-
periments are presented which confirm the theoretical global error estimates and exhibit
superconvergence. In the final section, Section 7, the paper is summarized and future
research outlined.
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2 Preliminaries

Throughout the paper, C denotes a positive constant which is independent of h and τ.
Let the subspace V0

h of Vh in (1.8) be defined by

V0
h ={v∈Vh : v(0)=v(1)=0}.

It follows from [23, Lemmas 3.1, 3.3] that

〈v′′,z〉= 〈v,z′′〉, v,z∈V0
h , (2.1)

and

‖v′‖2
L2(0,1)≤−〈v′′,v〉, v∈V0

h . (2.2)

Since ξ1 and ξ2 of (1.9) satisfy the inequalities

0< ξ1 <
1

2
,

1

2
< ξ2<1,

it follows that 〈w,z〉 of (1.13) is a Riemann sum of wz : [0,1]→ R corresponding to the
partition {ih/2}2N

i=0 of [0,1]. Hence, since α,β∈C[0,1], we have

lim
h→0

〈|α|,1〉=‖α‖L1 (0,1), lim
h→0

〈|β|,1〉=‖β‖L1 (0,1), (2.3a)

lim
h→0

[

〈α,α〉+〈β,β〉
]

=‖α‖2
L2(0,1)+‖β‖2

L2(0,1). (2.3b)

It follows from (1.6) and (2.3b) that, for all h sufficiently small,

〈α,α〉+〈β,β〉<2. (2.4)

We introduce the following averages:

ρα =
‖α‖L1(0,1)+1

2
, ρβ =

‖β‖L1(0,1)+1

2
, ρ=

‖α‖2
L2(0,1)

+‖β‖2
L2(0,1)

+2

2
. (2.5)

It follows from (2.5), (1.4), and (1.6) that

‖α‖L1(0,1)<ρα <1, ‖β‖L1(0,1)<ρβ <1, ‖α‖2
L2(0,1)+‖β‖2

L2(0,1)<ρ<2. (2.6)

Using (2.6), (2.3a), and (2.3b), for all h sufficiently small, we have

〈|α|,1〉≤ρα , 〈|β|,1〉≤ρβ , 〈α,α〉+〈β,β〉≤ρ. (2.7)

Since, by (2.6), ρ < 2, the last inequality in (2.7) is stronger than the inequality in (2.4).
While the inequality in (2.4) is used to prove existence and uniqueness of the approximate
solution, the last inequality in (2.7) is used in our convergence analysis.
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Consider the functions

φ0(x)=1−x, φ1(x)= x. (2.8)

Since the two-point Gauss quadrature rule is exact for polynomials of degree ≤ 3, we
have

〈φi,φi〉=‖φ2
i ‖2

L2(0,1)=
1

3
, i=0,1, 〈φ0,φ1〉=‖φ0‖2

L2(0,1)=
1

6
. (2.9)

In the following analysis, frequent use is made of the inequality

ab≤ǫa2+
b2

4ǫ
, a,b∈R, ǫ>0. (2.10)

In the remainder of this section, we assume that u is a sufficiently smooth function on
[0,1] and W and U in Vh are defined by

W(xi)=u(xi), W ′(xi)=u′(xi), i=0,··· ,N,

the Hermite cubic spline interpolant of u, and

U′′(ξ)=u′′(ξ), ξ∈G , U(0)=u(0), U(1)=u(1), (2.11)

respectively. Then it follows from the first line of (5.6) in [22] that

〈u′′−W ′′,ν〉≤Ch4
N

∑
i=1

(

h1/2‖ν′‖L2(xi−1,xi)
+h1/2〈ν,ν〉1/2

i

)

, ν∈V0
h , (2.12)

where

〈w,z〉i =
h

2

2

∑
k=1

(wz)(ξi,k), i=1,··· ,N.

Using (2.12), the Cauchy-Schwarz inequality, (1.13), the inequality [22, (2.6)], namely

〈ν,ν〉1/2 ≤C‖ν‖L2(0,1), ν∈V0
h ,

and the Poincaré inequality, we have

〈u′′−W ′′,ν〉≤Ch4
(

‖ν′‖L2(0,1)+〈ν,ν〉1/2
)

≤Ch4‖ν′‖L2(0,1), ν∈V0
h . (2.13)

It follows from (2.2), (2.11), and (2.13) with ν=W−U that

‖W ′−U′‖2
L2(0,1)≤−〈U′′−W ′′,U−W〉= 〈u′′−W ′′,W−U〉≤Ch4‖W ′−U′‖L2(0,1),

which gives
‖W ′−U′‖L2(0,1)≤Ch4. (2.14)
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Then, using Sobolev’s inequality

‖W−U‖L∞(0,1)≤‖W ′−U′‖L2(0,1)

(since (W−U)(0)=0) and (2.14), we obtain

‖W−U‖L∞(0,1)≤Ch4. (2.15)

Also, we have the well-known property of the Hermite cubic spline interpolant (cf. [12,
(6.78)]) that

‖u−W‖L∞(0,1)≤Ch4. (2.16)

Using the triangle inequality, (2.15) and (2.16), we have

‖u−U‖L∞(0,1)≤‖u−W‖L∞(0,1)+‖W−U‖L∞(0,1)≤Ch4. (2.17)

(The bound ‖u−U‖L∞(0,1)≤Ch4 is derived in [6] using a different approach.) Using (2.13),
(2.10) and (2.2), we also obtain

〈u′′−W ′′,ν〉≤ǫ‖ν′‖2
L2(0,1)+Ch8≤ǫ〈−ν′′,ν〉+Ch8, ν∈V0

h , ǫ>0. (2.18)

3 Existence and uniqueness of approximate solution

To show uniqueness, and hence existence, of the approximate solution Un, n= 1,··· ,M,
satisfying (1.10) and (1.12), we consider U∈Vh such that

2U(ξ)−τU′′(ξ)=0, ξ∈G , U(0)= 〈α,U〉, U(1)= 〈β,U〉; (3.1)

cf. (1.10) and (1.12) with Un−1= f = g0= g1=0, and U replacing Un. Introduce

U=U−
[

U(0)φ0+U(1)φ1

]

, (3.2)

where φ0, φ1 are defined in (2.8). Since U′′=U
′′

and U∈V0
h , we have from (3.1) and (2.2)

that

0=2〈U,U〉−τ〈U′′
,U〉≥2〈U,U〉= 〈U,U〉+〈U,U〉−〈U−U,U−U〉. (3.3)

Using (3.2), (2.9), (2.10), (3.1), the Cauchy-Schwarz inequality, and (2.4), for all h suffi-
ciently small, we have

〈U−U,U−U〉=U2(0)〈φ0,φ0〉+U2(1)〈φ1,φ1〉+2U(0)U(1)〈φ0,φ1〉

=
1

3
[U2(0)+U2(1)+U(0)U(1)]≤ 1

2
[U2(0)+U2(1)]

=
1

2

[

〈α,U〉2+〈β,U〉2
]

≤ 1

2

[

〈α,α〉+〈β,β〉
]

〈U,U〉
≤〈U,U〉. (3.4)



B. Bialecki, G. Fairweather and J. C. López-Marcos / Adv. Appl. Math. Mech., 5 (2013), pp. 442-460 449

Combining (3.3) and (3.4), we obtain 〈U,U〉≤0 which, by [23, Lemma 2.3] (since U∈V0
h ),

implies U=0. Hence by (3.2) and (2.8),

‖U‖L∞(0,1)=‖U(0)φ0+U(1)φ1‖L∞(0,1)=max{|U(0)|,|U(1)|}. (3.5)

Using (3.1), (1.13), and the triangle inequality, we have

|U(0)|= |〈α,U〉|≤〈|α|,1〉‖U‖L∞ (0,1), |U(1)|= |〈β,U〉|≤〈|β|,1〉‖U‖L∞ (0,1). (3.6)

It follows from (3.5), (3.6), and (2.7) that, for all h sufficiently small, we have

‖U‖L∞(0,1)≤max{ρα,ρβ}‖U‖L∞(0,1). (3.7)

But, by (2.6), max{ρα ,ρβ}<1. Hence ‖U‖L∞(0,1)=0 and U=0. This completes the proof
of the existence and uniqueness of the approximate solution Un, n = 1,··· ,M, for all h
sufficiently small.

To show uniqueness, and hence existence, of U0∈Vh satisfying (1.11) and (1.12) with
n=0, consider U∈Vh such that

U′′(ξ)=0, ξ∈G , U(0)= 〈α,U〉, U(1)= 〈β,U〉; (3.8)

cf. (1.11) and (1.12) with n= 0, g′′= g0 = g1 = 0, and U replacing U0. With U defined in

(3.2), using (3.8), U′′=U
′′
, U∈V0

h , and (2.2), we have

0= 〈−U
′′
,U〉≥‖U

′‖2
L2(0,1),

which, by a Poincaré inequality, implies U=0. Hence, by the arguments in (3.5)-(3.7), we
have U=0. This completes the proof of the existence and uniqueness of the approximate
solution U0 for all h sufficiently small.

We summarize the preceding in the following theorem.

Theorem 3.1. Assume that α,β∈C[0,1], g∈C2[0,1], and that (1.4) and (1.6) hold. Then, for all
h sufficiently small, the CN scheme (1.10)-(1.12) has a unique solution.

4 Convergence analysis

To bound the error between the exact solution u of (1.1)-(1.3) and the approximate solu-
tion {Un}N

n=0 of (1.10)-(1.12), we introduce

νn =Wn−Un, ηn =un−Wn, n=0,··· ,M, (4.1)

where un(·)=u(·,tn), and Wn(·)=W(·,tn), with W(·,t)∈Vh, t∈ [0,T], defined by

Wxx(ξ,t)=uxx(ξ,t), ξ∈G , W(0,t)=u(0,t), W(1,t)=u(1,t), t∈ [0,T]. (4.2)
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It follows from (4.2) and (2.17) and then from replacing u and W with ut and Wt, respec-
tively, that

‖u(·,t)−W(·,t)‖L∞ (0,1)≤Ch4, ‖(u−W)t(·,t)‖L∞(0,1)≤Ch4, t∈ [0,T]. (4.3)

The inequalities in (4.3) and the identity

∂tη
n(·)=τ−1

∫ tn

tn−1

(u−W)t(·,s)ds

give

‖ηn‖L∞(0,1)≤Ch4, n=0,··· ,M, ‖∂tη
n‖L∞(0,1)≤Ch4, n=1,··· ,M. (4.4)

Using (4.1), (1.10), (4.2), (1.1), (4.4), and Taylor’s theorem, we have

∂tν
n(ξ)−νn−1/2

xx (ξ)=∂tW
n(ξ)−Wn−1/2

xx (ξ)− f (ξ,tn−1/2)

=−∂tη
n(ξ)+∂tu

n(ξ)−ut(ξ,tn−1/2)+uxx(ξ,tn−1/2)−un−1/2
xx (ξ)

=O(h4+τ2), ξ∈G , n=1,··· ,M. (4.5)

Let

νn =νn−[νn(0)φ0+νn(1)φ1], n=0,··· ,M, (4.6)

where φ0 and φ1 are defined in (2.8). Then on using (4.5) and νn−1/2
xx =νn−1/2

xx , we have

2〈∂tν
n,∂tν

n〉−2〈νn−1/2
xx ,∂tν

n〉= 〈O(h4+τ2),∂tν
n〉, n=1,··· ,M. (4.7)

It is easy to verify that

2〈∂tν
n,∂tν

n〉= 〈∂tν
n,∂tν

n〉+〈∂tν
n,∂tν

n〉−〈∂t(ν
n−νn),∂t(ν

n−νn)〉, n=1,··· ,M. (4.8)

Using (4.6), we have

∂t(ν
n−νn)=∂tν

n(0)φ0+∂tν
n(1)φ1,

and following derivations in (3.4), we obtain

〈∂t(ν
n−νn),∂t(ν

n−νn)〉≤ 1

2

([

∂tν
n(0)

]2
+
[

∂tν
n(1)

]2)
, n=1,··· ,M. (4.9)

It follows from (4.1), (4.2), (1.3), (1.12), (1.14), (1.13), the boundedness of α, and (4.4) that

νn(0)=un(0)−Un(0)=
∫ 1

0
α(x)un(x)dx−〈α,Un〉

=
∫ 1

0
α(x)un(x)dx−〈α,un〉+〈α,ηn〉+〈α,νn〉

=O(h4)+〈α,νn〉, n=0,··· ,M. (4.10)
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In a similar way and using also Taylor’s theorem, we obtain

∂tν
n(0)=

∫ 1

0
α(x)∂tu

n(x)dx−〈α,∂tu
n〉+〈α,∂tη

n〉+〈α,∂tν
n〉

=
∫ 1

0
α(x)

[

∂tu
n(x)−ut(x,tn−1/2)

]

dx+
∫ 1

0
α(x)ut(x,tn−1/2)dx−〈α,ut(·,tn−1/2)〉

−〈α,
[

∂tu
n−ut(·,tn−1/2)

]

〉+〈α,∂tη
n〉+〈α,∂tν

n〉,
=O(h4+τ2)+〈α,∂tν

n〉, n=1,··· ,M. (4.11)

Using (4.11), a similar relation for ∂tν
n(1), (2.10), the Cauchy-Schwarz inequality, and

(2.7), for all h sufficiently small, we obtain

[

∂tν
n(0)

]2
+
[

∂tν
n(1)

]2

≤〈α,∂tν
n〉2+〈α,∂tν

n〉O(h4+τ2)+〈β,∂tν
n〉2+〈β,∂tν

n〉O(h4+τ2)+C(h8+τ4)

≤(1+ǫ)
[

〈α,∂tν
n〉2+〈β,∂tν

n〉2
]

+C(h8+τ4)

≤(1+ǫ)
[

〈α,α〉+〈β,β〉
]

〈∂tν
n,∂tν

n〉+C(h8+τ4)

≤(1+ǫ)ρ〈∂tν
n,∂tν

n〉+C(h8+τ4), n=1,··· ,M, ǫ>0. (4.12)

It follows from (2.6) that 0<ρ<2. Hence, for ǫ=(2−ρ)/ρ, we have ǫ>0 and (1+ǫ)ρ=2.
Therefore (4.12) gives

1

2

([

∂tν
n(0)

]2
+
[

∂tν
n(1)

]2)≤〈∂tν
n,∂tν

n〉+C(h8+τ4), n=1,··· ,M. (4.13)

Using (4.8), (4.9), (4.13), we have

2〈∂tν
n,∂tν

n〉≥〈∂tν
n,∂tν

n〉−C(h8+τ4), n=1,··· ,M. (4.14)

For the right-hand side of (4.7), using the Cauchy-Schwarz inequality, (2.10), we have

〈O(h4+τ2),∂tν
n〉≤〈∂tν

n,∂tν
n〉+C(h8+τ4), n=1,··· ,M. (4.15)

Using (4.7), (4.14), and (4.15), we obtain

−2〈νn−1/2
xx ,∂tν

n〉≤C(h8+τ4), n=1,··· ,M,

which, on using νn ∈V0
h and (2.1), gives

〈−νn
xx,νn〉≤〈−νn−1

xx ,νn−1〉+Cτ(h8+τ4), n=1,··· ,M. (4.16)

Applying (4.16) repeatedly, we obtain

〈−νn
xx,νn〉≤〈−ν0

xx,ν0〉+C(h8+τ4), n=0,··· ,M. (4.17)
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Using ν0
xx=ν0

xx, (4.2), (1.2), and (1.11), we see that ν0
xx(ξ)=0, ξ∈G , and hence (4.17) yields

〈−νn
xx,νn〉1/2≤C(h4+τ2), n=0,··· ,M. (4.18)

It follows from (4.6), the triangle inequality, and (2.8), that

‖νn‖L∞(0,1)≤‖νn‖L∞(0,1)+max{|νn(0)|,|νn(1)|}, n=0,··· ,M. (4.19)

Using (4.10), a similar relation for νn(1), (1.13), and the triangle inequality, we have

|νn(0)|≤Ch4+〈|α|,1〉‖νn‖L∞(0,1), |νn(1)|≤Ch4+〈|β|,1〉‖νn‖L∞(0,1), n=0,··· ,M,

which, on using (2.7) gives, for all h sufficiently small,

max{|νn(0)|,|νn(1)|}≤Ch4+max{ρα,ρβ}‖νn‖L∞(0,1), n=0,··· ,M. (4.20)

Since, by (2.6), max{ρα,ρβ}<1, (4.19) and (4.20) imply

‖νn‖L∞(0,1)≤C‖νn‖L∞(0,1)+Ch4, n=0,··· ,M. (4.21)

Using Sobolev’s inequality

‖νn‖L∞(0,1)≤‖νn
x‖L2(0,1)

(since νn(0)=0), νn∈V0
h , and (2.2), we have

‖νn‖L∞(0,1)≤〈−νn
xx,νn〉1/2, n=0,··· ,M. (4.22)

Hence (4.21), (4.22), and (4.18) give

‖νn‖L∞(0,1)≤C(h4+τ2), n=0,··· ,M. (4.23)

Finally, it follows from (4.1), the triangle inequality, (4.4), and (4.23) that, for all h suffi-
ciently small,

‖un−Un‖L∞(0,1)=‖ηn‖L∞(0,1)+‖νn‖L∞(0,1)≤C(h4+τ2), n=0,··· ,M, (4.24)

which shows that the scheme (1.10)-(1.12) is fourth-order accurate in x and second-order
accurate in t.

This completes the proof of the following theorem.

Theorem 4.1. Assume that α,β ∈ C4[0,1], (1.4) and (1.6) hold, u ∈ C0,3([0,1]×[0,T]), u ∈
C2,2([0,1]×[0,T]), u ∈ C([0,T];H6(0,1)), ut ∈ C([0,T];H6(0,1)). Then, for all h sufficiently
small, we have (4.24).
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In the remainder of this section, we re-examine the CN scheme and its convergence
analysis, with U0∈Vh satisfying (1.12) for n=0 and (1.11) replaced by

U0
xx(ξ)= g̃′′(ξ), ξ∈G , (4.25)

where g̃∈Vh is defined by

g̃(xi)= g(xi), g̃′(xi)= g′(xi), i=0,··· ,N; (4.26)

that is, g̃ is the Hermite cubic spline interpolant of g. In this case W(·,t)∈Vh, t∈ [0,T], is
defined as in [22, 23] by

W(xi,t)=u(xi,t), Wx(xi,t)=ux(xi,t), i=0,··· ,N. (4.27)

In place of (4.5), we have

∂tν
n(ξ)−νn−1/2

xx (ξ)=O(h4+τ2)+ηn−1/2
xx (ξ), ξ∈G , n=1,··· ,M.

Consequently, in place of (4.16), we have

〈−νn
xx,νn〉≤〈−νn−1

xx ,νn−1〉+Cτ(h8+τ4)+2τ〈ηn−1/2
xx ,∂tν

n〉, n=1,··· ,M,

whose repeated application yields

〈−νn
xx,νn〉≤〈−ν0

xx,ν0〉+C(h8+τ4)+2τ
n

∑
k=1

〈ηk−1/2
xx ,∂tν

k〉, n=1,··· ,M. (4.28)

We now follow closely the approach of [23]. First we verify directly that

τ
n

∑
k=1

〈ηk−1/2
xx ,∂tν

k〉= 〈ηn−1/2
xx ,νn〉−〈η1/2

xx ,ν0〉− 1

2

n−1

∑
k=1

〈ηk+1
xx −ηk−1

xx ,νk〉, n=1,··· ,M. (4.29)

Next, the relation

ηk+1
xx (ξ)−ηk−1

xx (ξ)=
∫ tk+1

tk−1

ηxxt(ξ,s)ds, ξ∈G , k=1,··· ,M−1,

yields

〈ηk+1
xx −ηk−1

xx ,νk〉=
∫ tk+1

tk−1

〈ηtxx(·,s),νk〉ds, k=1,··· ,M−1. (4.30)

Using (2.18), we have

〈ηn−1/2
xx ,νn〉≤ǫ〈−νn

xx,νn〉+Ch8, 〈η1/2
xx ,−ν0〉≤〈−ν0

xx,ν0〉+Ch8. (4.31)

Using also (2.18) but with u and W replaced with ut and Wt, respectively, we have

〈ηtxx(·,s),−νk〉≤〈−νk
xx,νk〉+Ch8, s∈ [tk−1,tk+1], k=1,··· ,M−1,
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which along with (4.30) gives

〈ηk+1
xx −ηk−1

xx ,−νk〉≤2τ〈−νk
xx,νk〉+Cτh8, k=1,··· ,M−1. (4.32)

Combining (4.29), (4.31), and (4.32), we have

τ
n

∑
k=1

〈ηk−1/2
xx ,∂tν

k〉≤ǫ〈−νn
xx,νn〉+〈−ν0

xx,ν0〉+τ
n−1

∑
k=1

〈−νk
xx,νk〉+Ch8, n=1,··· ,M. (4.33)

Using (4.28) and (4.33) with ǫ sufficiently small, we obtain

〈−νn
xx,νn〉≤C〈−ν0

xx,ν0〉+C(h8+τ4)+Cτ
n−1

∑
k=0

〈−νk
xx,νk〉, n=0,··· ,M. (4.34)

The discrete Gronwall inequality states that if αn≥0 and βn≥0 for n=0,··· ,M, βn≤βn+1

for n=0,··· ,M−1, and

αn ≤βn+Cτ
n−1

∑
k=0

αk, n=0,··· ,M,

then

αn ≤ eCτnβn, n=0,··· ,M.

Applying the discrete Gronwall inequality to (4.34), we get (cf. (4.17))

〈−νn
xx,νn〉≤C〈−ν0

xx,ν0〉+C(h8+τ4), n=0,··· ,M. (4.35)

Using ν0
xx = ν0

xx, (4.27), (1.2), (4.25), and (4.26), we see that ν0
xx(ξ)= 0, ξ ∈G ; hence (4.35)

yields (4.18). Proceeding now as in the first convergence analysis we arrive at (4.24),
which shows that the scheme consisting of (1.10), (4.25), (4.26), and (1.12) is fourth-order
accurate in x and second order-accurate in t.

Note that U0 of (1.11) requires knowledge of g′′ while U0 of (4.25) and (4.26) requires
knowledge of g and g′. Hence the second choice of U0 seems more advantageous.

5 Algebraic problem

For n=0,··· ,M, Un ∈Vh and hence

Un(x)=
N

∑
i=0

[c2ivi(x)+c2i+1si(x)], x∈ [0,1],

where, with δij denoting the Kronecker delta, the value and scaled slope basis functions
vi and si for Vh are defined by

vi(xj)=δij, v′i(xj)=0, si(xj)=0, s′i(xj)=h−1δij, i, j=0,··· ,N.
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Finding Un, n= 1,··· ,M, which satisfy (1.10) and (1.12), is equivalent to solving a linear
system

Ac=d, (5.1)

where

c=[c0,··· ,c2N+1]
T , d=[d0,··· ,d2N+1]

T,

and the (2N+2)×(2N+2) nonsingular matrix A has the following form, displayed here
for N=4:

A=

































× × × × × × × × × ×
× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × × × × × × × × ×

































.

The first and last rows of A correspond to (1.12). Hence all matrix entries in these rows
are nonzero. The remaining rows of A form 2×4 nonzero blocks overlapping in two
columns. Assume that B is the matrix whose rows are the same as the corresponding
rows in A, except that the first and last rows of B are

[1,0,··· ,0,0,0,0], [0,0,··· ,0,0,1,0],

respectively. These two rows correspond to Dirichlet boundary conditions; that is, α=
β = 0 in (1.12). Then B is almost block diagonal (ABD) [26] and nonsingular [23]. A
linear system with coefficient matrix B can be solved at a cost O(N) using the package
COLROW of [19, 20] for solving ABD linear systems. Since A and B differ only in the
first and last rows, the system (5.1) can be solved using the capacitance matrix approach
of [10] as follows. We look for the solution c of (5.1) in the form

c= r+γ1p+γ2q, (5.2)

where the numbers γ1 and γ2 are to be determined and the vectors r, p, q satisfy

Br=[0,d1,··· ,d2N ,0]T , Bp=[1,0,··· ,0,0]T , Bq=[0,0,··· ,0,1]T . (5.3)

It follows from

A(i,:)=B(i,:), i=1,··· ,2N,
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and (5.3) that

A(i,:)(r+γ1p+γ2q)=di, i=1,··· ,2N,

for any γ1 and γ2. Moreover,

A(i,:)(r+γ1p+γ2q)=A(i,:)r+γ1A(i,:)p+γ2A(i,:)q, i=0,2N+1.

Hence c given by the right-hand side of (5.2) satisfies (5.1) if and only if γ1 and γ2 satisfy
the linear system

[

A(0,:)p A(0,:)q
A(2N+1,:)p A(2N+1,:)q

][

γ1

γ2

]

=

[

d0

d2N+1

]

−
[

A(0,:)r
A(2N+1,:)r

]

. (5.4)

Since A and B are nonsingular, it follows from Theorem 1 in [10] that the 2×2 matrix
in (5.4) is nonsingular also. Hence we obtain the solution c of the system (5.1) by first
computing, with the help of COLROW, r, p, and q of (5.3). Then we set up and solve
the system (5.4), and finally we form c using (5.2). The cost of the entire computation is
O(N).

6 Numerical results

Since, according to (4.24), the scheme (1.10)-(1.12) is fourth-order accurate in x and second-
order accurate in t with T=1, we set M=N2 so that τ2=h4 and solved a test problem in
which

u(x,t)= e−t[sin(πx)+cos(πx)], α(x)=2sin(πx), β(x)=−2cos(πx),

for which

f (x,t)=(π2−1)e−t[sin(πx)+(cosπx)], g(x)=sin(πx)+cos(πx), g0(t)= g1(t)=0,

cf. [38,48,49]. At the final time level tM=1, we computed the nodal and global errors for
u, defined by

En
N(u)= max

i=0,···,N
|u(xi,1)−UM(xi)|,

E
g
N(u)= max

i=0,···,N−1
j=0,···,10

|u(xi+ jh/10,1)−UM(xi+ jh/10)|≈‖u(·,1)−UM‖L∞(0,1),

and the nodal and global errors for ux defined by the same formulas but with ux and
UM

x replacing u and UM, respectively. We also computed the corresponding convergence
rates using the formula

Rate=
log(EN/2/EN)

log2
,
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Table 1: Nodal and global errors and convergence rates.

En
N(u) E

g
N(u) En

N(ux) E
g
N(ux)

N Error Rate Error Rate Error Rate Error Rate
10 8.93–06 1.61–05 3.07–05 4.13–04
20 5.59–07 3.998 1.08–06 3.904 1.92–06 3.998 5.10–05 3.019
30 1.10–07 3.999 2.17–07 3.950 3.80–07 3.996 1.51–05 3.002
40 3.49–08 4.000 6.94–08 3.966 1.20–07 4.000 6.36–06 3.007
50 1.43–08 4.000 2.86–08 3.974 4.92–08 4.001 3.25–06 3.001

where EN/2 and EN represent either the nodal or global errors for either u or ux. The
results presented in Table 1 show the fourth-order convergence rates for En

N(u), E
g
N(u),

En
N(ux), and the third-order convergence rate for E

g
N(ux). The fourth-order convergence

rate for En
N(ux) demonstrates superconvergence. We obtained essentially the same results

as in Table 1 for U0∈Vh defined by (1.11) and (1.12) replaced, for n=0, by

U0(0)= g(0), U0(1)= g(1). (6.1)

For this choice of U0, our theoretical convergence analysis is not applicable, since, for ex-
ample, (4.10) and (4.11) were obtained assuming (1.12) for all n, including n=0. In some
papers on the finite difference solution of (1.1)-(1.3), the initial finite difference approxi-
mation U0={U0

i }N
i=0 corresponding to t=0 is defined by

U0
i = g(xi), i=0,··· ,N. (6.2)

However, for such finite difference choice of the initial approximation, it is claimed incor-
rectly, for example, by Ekolin [24] and Liu [36], that their theoretical convergence anal-
yses give the optimal error bounds. These convergence analyses do yield the optimal
error bounds but for the finite difference initial approximation U0 defined by (6.2) with
i=1,··· ,N−1, and the two equations

U0
0 =

h

2
α(0)U0

0+h
N−1

∑
i=1

α(xi)U
0
i +

h

2
α(1)U0

N+g0(0),

U0
N =

h

2
β(0)U0

0+h
N−1

∑
i=1

β(xi)U
0
i +

h

2
β(1)U0

N+g1(0),

the composite trapezoidal rule discretizations of (1.3).
We obtained essentially the same results as in Table 1 for U0 ∈Vh defined by (1.12)

with n=0, (4.25) and (4.26), for U0 defined by U0= g̃, where g̃∈Vh is given by (4.26), as
well as for U0∈Vh defined by

U0(ξ)= g(ξ), ξ∈G , U0(0)= g(0), U0(1)= g(1).

Note that the last choice of U0 requires knowledge of g only.
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7 Concluding remarks

We have formulated and analyzed a CN method for the approximation of the heat equa-
tion with nonlocal boundary conditions. Two choices of the approximation to the initial
condition were analyzed and it was found that both gave the predicted accuracy. This
was confirmed by a numerical example from which it was also found that other choices
produced similar results.

Future work will involve the extension of the analysis to nonlocal boundary condi-
tions of the form

∫ 1

0
u(x,t)dx= g0(t),

corresponding to the specification of mass or energy (see [17] and references therein),
and to splines of degree r> 3 which are expected to produce superconvergent approxi-
mations of order h2r−2 to both u and ux at the nodes; cf. [23]. Nonlinear reaction-diffusion
equations of the form

c(x,t,u)ut−uxx+b(x,t,u)ux = f (x,t,u),

(cf. [35, 37, 39, 44]) and problems in higher dimensions (see [34], and [46] and references
therein) will also be considered.
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[39] J. MARTÌN-VAQUERO, A. QUEIRUGA-DIOS AND A. H. ENCINAS, Numerical algorithms for
diffusion-reaction problems with non-classical conditions, Appl. Math. Comput., 218 (2012), pp.
5487–5495.
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