
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 3, pp. 545-576

Commun. Comput. Phys.
June 2007

Use of the Spatial kD-Tree in Computational Physics

Applications

A. Khamayseh1,∗ and G. Hansen2

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA.
2 Multiphysics Methods Group, Idaho National Laboratory, Idaho Falls, ID, USA.

Received 13 July 2006; Accepted (in revised version) 8 November 2006

Available online 4 December 2006

Abstract. The need to perform spatial queries and searches is commonly encountered
within the field of computational physics. The development of applications ranging
from scientific visualization to finite element analysis requires efficient methods of lo-
cating domain objects relative to general locations in space. Much of the time, it is
possible to form and maintain spatial relationships between objects either explicitly
or by using relative motion constraints as the application evolves in time. Occasion-
ally, either due to unpredictable relative motion or the lack of state information, an
application must perform a general search (or ordering) of geometric objects without
any explicit spatial relationship information as a basis. If previous state information
involving domain geometric objects is not available, it is typically an involved and
time consuming process to create object adjacency information or to order the objects
in space. Further, as the number of objects and the spatial dimension of the problem
domain is increased, the time required to search increases greatly. This paper proposes
an implementation of a spatial k-d tree (skD-tree) for use by various applications when
a general domain search is required. The skD-tree proposed in this paper is a spatial
access method where successive tree levels are split along different dimensions. Ob-
jects are indexed by their centroid, and the minimum bounding box of objects in a
node are stored in the tree node. The paper focuses on a discussion of efficient and
practical algorithms for multidimensional spatial data structures for fast spatial query
processing. These functions include the construction of a skD-tree of geometric objects,
intersection query, containment query, and nearest neighbor query operations.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Geometric query, bounding volume hierarchy, skD-tree, containment query, mesh
generation, h-refinement, remapping.

∗Corresponding author. Email addresses: khamaysehak@ornl.gov (A. Khamayseh), Glen.Hansen@inl.gov
(G. Hansen)

http://www.global-sci.com/ 545 c©2007 Global-Science Press

546 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

1 Introduction

Computational physics applications are rapidly increasing in complexity to address evolv-
ing requirements to include more realistic models and more detailed domain represen-
tations. Requirements often include the incorporation of more complex geometric forms
of the parts and components within the model along with a larger number of parts and
components being used to form the computational domain. Indeed, the simple two-
dimensional models of the recent past that typically employed structured mesh dis-
cretizations in which geometric objects were represented by line segments, have been
replaced by complex three-dimensional unstructured meshes containing general objects
defined by compositions of parametric curves and surfaces.

Common across a wide variety of applications is the need to perform spatial queries
involving the geometric objects contained within the domain with respect to computa-
tional abstractions employed within the simulation application. For example, it is nec-
essary to track the movement of objects with respect to the elements in a transient Eu-
lerian finite element analysis application. Many other applications, including biological
population modeling, molecular dynamics, multiphase fluid dynamics, scientific visual-
ization, and solid modeling also require spatial query capabilities. Typically, there is a
spectrum of application requirements for spatial query functionality, which range from a
very general geometry query to the need to perform highly localized searches of nearby
objects. In the general problem, the state and relationship of the geometric objects are
unknown. This query problem involves determining the relationship between the do-
main objects and simulation abstractions in the most general case. In the latter localized
search, the state of the objects and their relationships to each other are typically known
to some degree. Perhaps the spatial location of the objects were known at a previous
time step, for example. For this application, it is typically more efficient to make use of
this known state information to economize the spatial query processing; a general search
each time step is usually too costly. However, a general search is usually needed when
the application initializes to construct the local information.

It is always preferable to use spatial adjacency information if it is available, instead
of general spatial searching. For example, the use of an Eulerian Walk [1] for the transfer
of data from one distinct mesh to another in a multiphysics application has a complexity
of O(m+n), where m is the number of elements in the source mesh, and n is the num-
ber of elements in the target mesh. Generalized spatial searching, such as the algorithm
proposed here, can determine element intersection in O(mlogn) time. Clearly, as the
number of objects in the source and target meshes increase, the time required to perform
the general search increases at a faster rate when the general approach is used. This pa-
per proposes an implementation of a general search method; a spatial k-d tree (skD-tree)
for use by various applications when a general domain search is required.

In the parlance of geometric modeling, objects are usually described by their associ-
ated spatial attributes (e.g. location). Within a given modeling configuration, objects may
“intersect” each other, be “adjacent” to one-another, and may “contain” other objects.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 547

These relationships are “spatial” in nature. Further, these objects may also have “aspa-
tial” attributes (e.g. the object’s name). They may be grouped into three generic spatial
object classes; namely “point”, “line”, and “region”. The classification of an object into
the above three classes is closely related to the object’s extent (e.g. convex hull). The ex-
tent, which is the area of interest, may vary according to the application. One of the most
fundamental problems in computational geometry involves queries that identify the as-
patial attributes of entities based on their spatial attributes and the relationships between
the entities.

Forming and maintaining the connection between the mathematics and the geometry
of a physics simulation often consumes a significant portion of the total computation
time necessary to perform the simulation. This “connection” appears in two basic forms;
calculating the spatial relationship between two geometric entities (e.g. containment or
nearest neighbor relationships), and associating simulation data with a geometric query
region (e.g. determining the temperature at a particular spatial location).

This paper presents a spatial search structure, called a spatial kd-Tree or skD-tree, that
is designed to handle both of these classes of queries. Also included in this discussion
is a presentation of robust data retrieval algorithms based on the skD-tree for nearest
neighbor, point containment, line-tree intersection, box-tree intersection, and tree-tree
intersection operations. The skD-tree and the algorithms associated with it are dimen-
sionally independent, have space requirements that are a linear function of the input
size, and often exhibit logarithmic query behavior in time. The emphasis of this paper is
on algorithms that are theoretically and practically efficient, both in execution time and
in implementation complexity, and on the description of the use of these algorithms for
selected applications including:

1. geometric intersection calculation,

2. point location testing,

3. calculating minimum distances, and

4. adaptive mesh refinement.

Experience with these applications show the skD-tree to be robust and computation-
ally efficient for general query use. These applications will be discussed in more detail in
Section 6.

2 Overview of the skD-tree

The skD-tree is intended for use on a set G of geometric “entities,” where an entity is
any geometric object with finite spatial extent. Examples of entities include points, line
segments, polygons, polyhedra, and parametric surface patches. Objects with infinite ex-
tent, such as planes and lines, are excluded from this set G. Some of the skD-tree support
algorithms presume that there are relationships between the entities in G. For example,
a point-in-body algorithm might presume that G represents the (closed) boundary of a

548 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

solid object. However, the internal mechanics of the skD-tree search structure itself make
no such assumption. One limiting restriction to this implementation of the skD-tree is
that the members of G are not allowed to move relative to one another after the tree is
built. Rigid body transformations on the entire set G is permissible, however.

One of the more expensive spatial query operations of interest to simulation applica-
tions is determining the closest boundary point to a given query point. To obtain the clos-
est boundary point typically requires efficient methods to perform the following queries:

(i) Given a query point q and a surface ∂S , what is a nearest point to q on ∂S?

(ii) Given a query ray r and a surface ∂S , what is the nearest point to q along r, if any?

One class of search structures that have utility in the implementation of query capa-
bilities similar to the above is known as a bounding volume hierarchy (BVH). Each node
of a BVH structure contains a bounding volume for some subset of the boundary ge-
ometry. The nodes are generally arranged in an oriented tree, where child nodes bound
non-empty subsets of their parents’ geometry. The bounding volumes are selected to
minimize the cost of query operations (e.g. proximity, intersection, or containment) while
providing a close fit to the underlying geometry. The skD-tree proposed in this paper is
one implementation of a BVH search structure.

The top-down constructive definition of a BVH begins by enclosing G in a tight-fitting
bounding volume (BV), such as a box or a sphere. This “top-level” BV forms the root
of a search tree. The elements of G are then partitioned into subsets, and the process
is repeated recursively, where the bounding volume of each subset becomes a child of
the current BV node. Bounding volume hierarchies are characterized by the type of the
BVs used, the number of children at each interior node, the partitioning strategy, the
depth to which the recursion is carried out, and their ability to support update (inser-
tions/deletions).

Bounding volume hierarchies come in many forms: Swept Spheres [2], OBB-Trees [3],
Sphere Trees [4, 5], and spatial kD-trees [6] are all examples. Analyzing the asymptotic
behavior of BVHs is typically a challenging exercise. In the best case, BVH queries may
be answered in constant time. In the worst case, each node of the tree may have to be
visited, resulting in O(2n-1) work for the example of a binary tree with n leaf nodes. On
average, the effort for intersection testing queries appears to be O(logn), while nearest
feature queries appear to be O(αn), where α≤1.

The skD-tree uses isothetic (i.e., axis-aligned) bounding boxes, arranged in a binary
tree, using a strategy that balances the number of nodes in each child. Further, the skD-
tree recurses completely. This construction results in a height-balanced binary tree, with
bounding volumes at each interior node, and a single geometric element at each leaf
node. The skD-tree does not support insertions or deletions, so it is best suited for static
data. skD-tree construction will be detailed later in the paper in Section 3.1, and the
various query algorithms will be discussed in Sections 4 and 5.

A similar search structure to the skD-tree is the oriented bounding box tree (OBBTree)
of Gottschalk [3]. The primary differences between the OBBTree and the skD-tree is that

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 549

the OBBTree uses oriented (non-isothetic) bounding boxes and attempts to balance spatial
extent rather than tree height. The skd-Tree of Ooi [6] is also similar to the skD-tree
presented in this paper, however it supports dynamic insertion and deletion and does
not fully recurse. Most BVHs stem from the kD-tree originated by Bentley [7]. Many
other examples BVHs of exist today, differing in all the parameters listed above (see,
e.g., [2, 5, 8, 9]). The skD-tree presented here is a competitor to these other approaches;
this method may perform better for some applications and may not be competitive for
others, depending on the nature and requirements of the final application. The skD-
tree is a good match for applications that do not require dynamic tree modification and
that map well to the use of isothetic bounding volumes. Indeed, for these problems, the
skD-tree provides quick tree construction, is simple to implement, and has good search
characteristics on uniformly-distributed elements, such as mesh volumes.

Both the tree construction and various query algorithms are theoretically and practi-
cally efficient. In particular, the geometric query algorithms based on the skD-tree may
generally be performed in logarithmic time. For an skD-tree consisting of N elements,
there are a total of 2N-1 nodes (internal and leaf) in the tree. For this case, the tree may
be constructed in O(N logN) time. This paper also presents various retrieval algorithms
based on the skD-tree for nearest neighbor, point containment, line-tree intersection, box-
tree intersection, and tree-tree intersection. Each of these algorithms requires approxi-
mately logN time.

3 Geometric partitioning using the skD-tree

In the field of computational simulation and modeling, spatial data is characterized as
geometric or mesh data. Geometric objects consist of points, curves, surfaces, and solids;
where mesh data might be in the form of vertices, lines, triangles, quads, tetrahedra,
hexahedra or any other type of polygonal or polyhedral elements in R

2and R
3, respec-

tively. Most applications mandate that geometric query be performed in a fast and effi-
cient manner; ideally with a logarithmic worst-time performance. However, spatial data
access remains a challenge; there are often important requirements in addition to execu-
tion time minimization. Additional requirements might include the support for a variety
(i.e. multiple) query operations and the storage efficiency of the algorithm.

To support simulation applications, mesh data typically involves the computational
grid used in the physics simulation application. For the purposes of connecting mesh
data to a general geometric query library, a regionR=

⋃n
i=1 Ei, is composed of n geometric

or mesh elements Ei. Further, this development assumes that R is not self-intersecting
and oriented in a fashion consistent with the orientations of the individual geometric
elements Ei.

It is often essential for the spatial query mechanism to support a variety of query op-
erations. Several types of point, line, and range queries that might be applied to spatial
data include:

550 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Exact match query: Find all geometric objects that have the same
spatial extent as the target query object q.

Overlap or intersection query: Find all geometric objects that have at least
one point in common with the object q.

Enclosure query: Find all geometric objects that enclose an ob-
ject q.

Containment query: Find all geometric objects that are enclosed
by an object q.

Adjacency query: Find all geometric objects that have common
boundaries with an object q.

Nearest-neighbor query: Find all geometric objects that have a mini-
mum distance from an object q.

3.1 skD-tree construction for general objects

This section presents the algorithm and a brief description of the method for construct-
ing the skD-tree for a set of N geometric objects. The skD-tree construction algorithm
produces a link array L and a safety box array S. These arrays are linear representations
of binary trees, and each contain 2N-1 nodes. For a node i, the link element Li contains
the index of the children of i, or the index of one of the geometric objects if node i is a
leaf node. The safety box element Si contains the “safety box” of all of the objects found
below node i.

This derivation employs the term “safety box” rather than “bounding box” to indicate
that the box is the tightest practical isothetic bounding box from an implementation per-
spective. Indeed, a safety box is the actual minimum bounding box of the entity, inflated
by 2ǫ. This expansion allows the implementation to avoid various degenerate cases at the
boundary of the box. For example, a line segment contained within a safety box is known
not to intersect the walls of the box, which are at least ǫ away from the line segment.

Algorithm 3.1 is used to construct an skD-tree containing general d-dimensional dis-
crete objects. The creation of the tree uses a stack data structure (depth-first; last-in first-
out), and the tree traversal may use either a stack or queue (breadth-first; first-in first-out)
data structure. The approach computes the safety boxes for the individual geometric ob-
jects and stores them in a temporary array. For efficiency purposes, the centroid of each
safety box is also calculated and stored in a separate array. This information could be
computed on demand when required by the algorithm if space is a concern. An integer
array perm is constructed, that contains a permutation of the integers {1,··· ,N}. This per-
mutation will be modified as the balanced binary tree is constructed; the final state of the
permutation array indicates the order of the objects in the leaf nodes.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 551

Algorithm 3.1: General object skD-tree construction.

Input: d-dimensional tree elements Ti, 1≤ i≤N
For each element Ti, 1≤ i≤N

Bi← safety box of Ti

ci← centroid of Bi

perm(i)← i
Allocate tree safety box array S1:2N, and tree link array L1:2N

S1← safety box of
⋃N

i=1 Bi

Push {node 1, perm(1 : N)} onto the stack.
next←2
Do until stack is empty

Pop {parent node, perm(imin : imax)} off stack

imed← imin+imax
2

If (imax−imin)=0
Sparent←Bperm(imed)

Lparent←pointer to leaf node Tperm(imed)

Else
Choose longest dimension j of Si (1≤ j≤d)
Reorder perm(imin : imax) so that

c
j

perm(k)
≤ c

j

perm(imed)
, k≤ imed

c
j

perm(imed)
≤ c

j

perm(k)
, imed+1≤k

Lparent←next

Snext+0←
⋃imed

k=imin Bperm(k)

Snext+1←
⋃imax

k=imed+1Bperm(k)

Push {node next+0, perm(imin : imed)} onto the stack
Push {node next+1, perm(imed+1 : imax)} onto the stack
next←next+2

Output: skD-tree consisting of S1:2N and L1:2N

3.2 Details of the algorithm

Assume that the target query space consists of geometric objects that may be decomposed
into N d-dimensional elements. In most physics applications, d = 3, and the discrete
elements are typically restricted to points, lines, triangles, surface patches, quadrilatera,
tetrahedra, hexahedra, or some other type of polyhedral element. To employ the skD-tree,
one associates with each element a representative point (or “key”) which is the center of
the bounding box of that element. By alternately locating the median coordinate of the
keys in the three coordinate directions, one bisects the set of keys, producing a median
skD-tree. Constructed in this manner, the tree is a balanced binary tree with exactly 2N-
1 nodes on logN levels and allows geometric queries in logarithmic time. Each mesh
element is associated with a unique leaf. The tree is constructed in O(N logN) time.

552 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

The body of the construction algorithm begins by removing the current (node, range)
pair from the stack. If the range is of length one, the node is a leaf, and the algorithm
creates a link entry referring to the geometric object contained by the safety box describ-
ing this node. If the range contains more than one element, the node partitioning stage
of the algorithm is invoked. The goal of this stage is to partition the objects contained
in the current safety box into two distinct sets. This is accomplished by identifying the
longest axis of the safety box, say the j axis. The median value of the jth component of
the centroids of the safety boxes is computed (see, e.g., [10]), then the permutation subset
is partially ordered about this value. New safety boxes are created for the nodes in the
left half and the right half of the permutation subset, and the respective node values are
pushed on to the stack. The algorithm continues until the stack is empty.

The above discussion is valid independent of the actual type of objects that the algo-
rithm is processing. It is probably easier to understand if the object type is restricted to tri-
angles. For clarity, the remainder of this presentation assumes that the discrete elements
that form the target query space are triangles, arbitrarily-oriented in three dimensional
space.

The skD-tree algorithm accepts a set of N triangles and produces an skD-tree that is
stored in a link array Li of size 2N-1. Leaf nodes in L each contain exactly one triangle
index. Because of the possibility of triangle overlap, the algorithm also produces an array
S of size 2N-1 which contains the safety boxes. Associated with each node i of the tree is
the safety box Si which is the smallest isothetic rectangular box which fully encloses all
the mesh elements in the subtree associated with node i.

• If node i is a leaf, Si is the safety box of its associated element.

• S1 (the box corresponding to the root node) is the safety box of the entire mesh.

Again, the collection {Si} of nested overlapping boxes guarantees that geometrical queries
against the skD-tree are rigorous.

The safety box associated with the root node S1 contains all the triangle bounding
boxes below it in the tree. The centroids of the triangle bounding boxes are stored in ci. If
there is only one triangle in the tree, the root node is a leaf. In the actual implementation,
the algorithm employs the convention that the value of the handle corresponding to a
leaf is set to the negative of the unique triangle contained in that leaf. If the root node is a
leaf, the tree is complete at this stage. An integer array perm is used as a stack to contain a
permutation of the integers {1,··· ,N}. The root node “1” is initially pushed onto the top
of the stack. As other elements are added, the array subset of perm (i.e., subset of triangles
associated with this node) is formed. This permutation of elements will be altered as the
balanced binary tree is constructed.

As the algorithm continues, the “cutting direction” for bisecting the set of triangles
corresponding to this node is stored. This direction is one of the coordinate directions
(x̂j, where j = 1,··· ,d), depending on which dimension of the bounding box is largest.
As elements are added, nodes are popped off the stack to create children nodes, which
are modified and then subsequently placed back onto the stack. This process continues

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 553

until the skD-tree has been created and all target elements have been added. A detailed
presentation of this portion of the algorithm begins with the median selection algorithm.

Median selection is used to partition the triangle subset associated with the current
node of the tree. Using the selected cutting direction, the select list is used to reorder
perm such that the triangle with the median bounding box center coordinate is denoted
Timed, while the triangles {Ti, i<imed} have smaller (or equal) bounding box coordinates,
and the triangles with {Ti, i> imed} have greater (or equal) bounding box coordinates.
Floyd and Rivest [11], Hoare [12], and Knuth [10] present other efficient median selection
approaches.

If the first child node’s subset of triangles is a singleton, the child is a leaf. In this case,
initialize the child’s link to point to the negative of the triangle number and initialize
the child’s bounding box to be equal to the triangle’s bounding box. In the case that the
subset of triangles corresponding to the first child is more than one triangle, the child is
not a leaf. For this outcome, the bounding box of this child is computed as the smallest
box containing all the bounding boxes of the subordinate triangles.

Given the constructed child node, push the child onto the stack. Store the associated
triangle subset in imin and imax and the cutting direction in ict. Repeat this process for
each additional child node to complete the tree construction.

In practice, this skD-tree construction technique often represents a good balance of
tree construction time and query efficiency. Defining optimality for a BVH structure is
challenging because of the relationship between the spatial distribution of the geometric
elements in the BVH and the spatial distribution (and extent) of query elements. The con-
struction algorithm presented above creates a height-balanced binary tree in the number
of geometric elements: 2N-1 nodes and a maximum path length of ⌈logN⌉. Balancing in
terms of tree-height works well when the geometric elements are approximately equal in
extent and distributed uniformly across space.

Algorithm 3.2 presents a modification to the basic tree construction method. The
modification adds a convenience feature; the concept of a stateless query. For the purposes
of this paper, a stateless query simply adds the capability to query the tree using the
same function call as that used to build it. This algorithm is a blend between the tree
construction method and an element query algorithm that is presented in the following
section; its operation will become clear in the following discussion.

4 Proximity query against the skD-tree

The basic algorithm for querying against the skD-tree concerns the retrieval of geometric
elements in the search tree that are guaranteed to contain the nearest point to a given
query point. The nearest point query uses the skD-tree structure corresponding to a geo-
metric surface (the tree contains surface patches that span the surface of interest; stored
in the tree using Algorithm 3.1) to accelerate finding the nearest point on the surface to
the given query point q. What is actually returned is a small subset of leaves (patches

554 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Algorithm 3.2: Build-on-query skD-tree construction.

Input: d-dimensional tree elements Ti, 1≤ i≤N
d-dimensional query element Q

Do once on first tree query
For each element Ti, 1≤ i≤N

Bi← safety box of Ti

ci← centroid of Bi

perm(i)← i
Allocate tree safety box array S1:2N, and tree link array L1:2N

S1← safety box of
⋃N

i=1 Bi

next←2
Push {node 1, perm(1 : N)} onto the stack.
Do until stack is empty

Pop {parent node, perm(imin : imax)} off stack
If Q intersects with Sparent

If Lparent indicates a leaf
Locate Ti pointed to by Lparent

Add {Ti} to the collision list
Else

Do once on first node query

imed← imin+imax
2

If (imax−imin)=0
Sparent←Bperm(imed)

Lparent←pointer to leaf node TP(imed)

Else
Choose longest dimension j of Si (1≤ j≤d)
Reorder perm(imin : imax) so that

c
j

perm(k)
≤ c

j

perm(imed)
, k≤ imed

c
j

perm(imed)
≤ c

j

perm(k)
, imed+1≤k

Lparent←next

Snext+0←
⋃imed

k=imin BP(k)

Snext+1←
⋃imax

k=imed BP(k)

next←next+2
Push {node Lparent+0, perm(imin : imed)} onto the stack
Push {node Lparent+1, perm(imed+1 : imax)} onto the stack

Output: Collision list of tree elements Ti and a subtree in S1:2N and L1:2N

or individual triangles) that feasibly could contain the nearest point. The user must then
perform the relevant geometric tests on this small subset to actually determine the nearest
point as required by the ultimate application.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 555

4.1 Point query

Consider a query originating at a point in space, with the goal of obtaining the closest
point on a surface (actually the closest safety box contained in the tree) to the query point
in d-dimensional space.

First, initialize the minimum distance dmax to the surface to be the distance from the
query point to the point most distant in the collection of safety boxes forming the skD-
tree. Indeed, given even one element in the tree, dmax is always well-defined.

Given a d-dimensional point q = (q1,q2,··· ,qd) and an isothetic bounding box B =
Πd

i=1[ai,bi] in Cartesian space, the minimum distance between q and B is computed using
the generalized Pythagorean Theorem. The minimum distance from q to B will be the
length of the straight line path from q to the nearest point x = (x1,x2,··· ,xd)∈ B. If one
views this path as the sum of the subpaths parallel to each of the d coordinate directions
x̂i, then each subpath will be the shortest path between qi and the interval [ai,bi]. That is,
each subpath

−→qx=
d

∑
i=1

(x1,··· ,xi−1,qi,··· ,qd)(x1,··· ,xi,qi+1,··· ,qd)

has the shortest length if

xi =











ai if qi≤ ai,

qi if ai <qi <bi,

bi if bi≤qi.

Each of these possible subpaths have the minimum length; hence x is the closest point.
Thus, the minimum distance between p and B may be computed using the expression

dmin(q,B)= min
x∈Πd

i=1[ai,bi]
‖q−x‖

=

√

√

√

√

d

∑
i=1

min
xi∈[ai,bi]

(qi−xi)2 =

√

√

√

√

d

∑
i=1

(max{0,ai−qi,qi−bi})2
.

Similar to the above, computing the the maximum distance between p and B is based on
the observation that each subpath has the longest length if

xi =

{

ai if |qi−ai|≥ |qi−bi|,
bi if |qi−ai|< |qi−bi|.

In this case, each possible subpath has the maximum length, and hence x is the far-
thest point from B. Thus, the maximum distance between p and B may be computed

556 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

using the expression

dmax(q,B)= max
x∈Πd

i=1[ai,bi]
‖q−x‖

=

√

√

√

√

d

∑
i=1

max
xi∈[ai,bi]

(qi−xi)2 =

√

√

√

√

d

∑
i=1

(max{qi−ai,bi−qi})2
.

4.2 Sphere query

Given a d-dimensional sphere S = {c,r} and an isothetic bounding box B in Cartesian
space, where

c=(c1,c2,··· ,cd) and B=
d

∏
i=1

[ai,bi],

the minimum distance between S and B may be computed using the expression

dmin(S,B)=max
{

0,dmin(c,B)−r
}

,

dmax(S,B)=dmax(c,B)+r.

Given two d-dimensional axi-symmetric bounding boxes Bα = ∏
d
i=1[a

α
i ,bα

i] and Bβ =

∏
d
i=1[a

β
i ,b

β
i] in Cartesian space, the minimum distance between Bα and Bβ is computed

using the generalized Pythagorean Theorem. The minimum distance from Bα to Bβ is the
length of the straight line path between the nearest two points xff = (xα

1 ,xα
2 ,··· ,xα

d)∈ Bα

and xfi =(x
β
1 ,x

β
2 ,··· ,xβ

d)∈Bβ.

Again, if one views this path as the sum of the subpaths parallel to each of the d
coordinate directions x̂i; each subpath will be the shortest path between the intervals

[aα
i ,bα

i] and [a
β
i ,b

β
i]. That is, each subpath

−−→
xffxfi =

d

∑
i=1

(xα
1 ,··· ,xα

i−1,x
β
i ,··· ,xβ

d)(xα
1 ,··· ,xα

i ,x
β
i+1,··· ,xβ

d)

has the shortest length if

xα
i =























aα
i if a

β
i ≤ aα

i ,

a
β
i if aα

i < a
β
i <bα

i ,

b
β
i if aα

i <b
β
i <bα

i ,

bα
i if bα

i ≤b
β
i ,

, and x
β
i =























a
β
i if aα

i ≤ a
β
i ,

aα
i if a

β
i < aα

i <b
β
i ,

bα
i if a

β
i <bα

i <b
β
i ,

b
β
i if b

β
i ≤bα

i .

Each possible subpath has the minimum possible length, hence xα and xβ are the closest
two points. Thus, the minimum distance between Bα and Bβ may be computed using the

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 557

expression

dmin(Bα,Bβ)= min
xα∈Πd

i=1[a
α
i ,bα

i]

xβ∈Πd
i=1[a

β
i ,b

β
i]

‖xα−xβ‖

=

√

√

√

√

√

d

∑
i=1

min
xα∈[aα

i ,bα
i]

xβ∈[a
β
i ,b

β
i]

(xα
i −x

β
i)2 =

√

√

√

√

d

∑
i=1

(

max{0,aα
i −b

β
i ,a

β
i −bα

i }
)2

.

To compute the maximum distance between Bα and Bβ requires that each subpath has
the longest length if

xα
i =

{

aα
i if |bβ

i −aα
i |≥ |a

β
i −bα

i |,
bα

i if |bβ
i −aα

i |< |a
β
i −bα

i |,
and

x
β
i =

{

a
β
i if |bα

i −a
β
i |≥ |aα

i −b
β
i |,

b
β
i if |bα

i −a
β
i |< |aα

i −b
β
i |.

Each possible subpath has the maximum length; hence xα and xβ are the farthest two
points. Thus, the maximum distance between xα and xβ may be computed using the
expressions

dmax(Bα,Bβ)= max
xα∈Πd

i=1[a
α
i ,bα

i]

xβ∈Πd
i=1[a

β
i ,b

β
i]

‖xα−xβ‖

=

√

√

√

√

√

d

∑
i=1

max
xα∈[aα

i ,bα
i]

xβ∈[a
β
i ,b

β
i]

(xα
i −x

β
i)2 =

√

√

√

√

d

∑
i=1

(

max{bβ
i −aα

i ,bα
i −a

β
i }

)2
,

dmin(Bα,Bβ)=

√

√

√

√

d

∑
i=1

(

max{0,aα
i −b

β
i ,a

β
i −bα

i }
)2

,

and

dmax(Bα,Bβ)=

√

√

√

√

d

∑
i=1

(

max{bβ
i −aα

i ,bα
i −a

β
i }

)2
.

5 Nearest object query with respect to the skD-tree

Algorithm 5.1 uses the skD-tree structure to represent a geometric surface. The query
algorithm attempts to locate all the bounding boxes representing surface elements (i.e.

558 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Algorithm 5.1: Nearest object query against skD-tree.

Input: d-dimensional tree elements Ti, 1≤ i≤N
skD-tree consisting of S1:2N and L1:2N

d-dimensional query element Q
dknown←maxdist(q,S1)
Push {node 1} onto the stack
Do until stack is empty

Pop {parent node} off the stack
dmin←mindist(q,Sparent)
If dmin < (dknown+ǫ)

dmax←maxdist(q,Sparent)
dknown←min(dknown,dmax)
If Lparent indicates a leaf

Find Ti pointed to by Lparent

Add {Ti,dmin} to the temporary collision list
Else

Add {Lparent+0} to the stack
Add {Lparent+1} to the stack

For all entries j in the temporary collision list

Examine jth entry
{

Ti,dmin

}

If dmin < (dknown+ǫ)
Add non-duplicate {Ti} to the final collision list

Output: Final collision list of tree elements Ti

triangles) that may contain the closest point to the query point. This list of boxes are
candidates to contain the nearest point; one of them will, but the user must perform ge-
ometric tests on this small collection of objects to actually determine which one contains
the closest point and what that location is.

The query simply returns the set of isothetic boxes in the tree that are “close to” the
query box. The user must then determine the actual box that contains the closest point,
and find the point on the actual object surface representation (not using the bounding box
or discrete element approximation). One might initially question the advantages of using
the skD-tree at this point, if one must use a root finding (or optimization) approach to
actually locate the closest point. Indeed, the query algorithm greatly localizes the search
space that must be examined with the root finding algorithm. Thus, the combination of
the query and the conventional root finding algorithm should generally be much faster
than using the conventional approach alone.

To accelerate the tree traversal, a reference point p on the surface is often used to
reduce the time spent searching the tree. It may be possible to “guess” this reference point
rather easily, given the specifics of the objects stored in the tree and/or prior knowledge
of the search process. The logic behind the reference point selection is to short-circuit the
tree search by establishing a representative dmin. This trick can significantly speed up the

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 559

search if p is almost the closest point. Caution is indicated however; if a reference point
was chosen in error resulting in a dmin being less than the closest distance between the
query point and the surface, the algorithm will fail.

Algorithm 5.1 details the general nearest-object query function. The search partially
traverses the skD-tree using a stack until completed. A tree node is only of interest if
the minimum “optimistic” distance for the node is less than the known “pessimistic”
distance for the whole surface. The use of a search ǫ insures a conservative process; it is
necessary to avoid discarding a valid node because of machine precision issues.

The algorithm proceeds as follows. For each child of a given tree node, compute
the pessimistic and optimistic distances. Reduce the global pessimistic distance dmin if
appropriate. Order the children such that the child with the smaller optimistic distance
will be placed above the other child when they are placed on the stack. Loop through the
children and verify that all children remain candidates (ignore those whose optimistic
distance is less than dmin). If the child is a leaf, add it to triangle list, and add its optimistic
distance to the leaf array maintaining these distances. If the child is not a leaf, place it on
the stack.

Next, compress the list of candidate leaves by rejecting any leaves whose optimistic
distance is less than dmin (dmin may have decreased since a particular leaf was added
to the list). During the compression step, convert the leaf addresses to triangle indices
simultaneously.

5.1 Line segment intersection query against the skD-tree

The algorithm developed in this section uses the skD-tree structure to represent a geo-
metric surface. The query algorithm attempts to compute all intersections of the surface
with an input ray or line segment. Again, the skD-tree is traversed using a stack. The
query algorithm returns a small subset of leaves (i.e. triangles) that may contain an inter-
section with the line segment. Using the skD-tree, the ray/triangle intersection requires
O(logN) operations. As with the previous query algorithm, the user must perform geo-
metric tests on the small subset of objects to actually determine the points of intersection
of the underlying computational surface (if there indeed are any).

Algorithm 5.2 begins with the perturbation of the endpoints of the line segment such
that the endpoints have a projection distance on the three coordinate axes of at least ǫ;
this projection is compared with the tree. If the minimum line segment coordinate is
greater than the maximum bounding box coordinate, or conversely, if the maximum line
segment coordinate is less than the minimum bounding box coordinate, an intersection
cannot exist between the objects.

Generally, there are two methods to test if a ray or line segment intersects a box. First,
a bounding box may be created for the line segment and tested against the given box.
Secondly, the line segment may be intersected with the six plane faces of the box. It is
usually more efficient to use the bounding box approach. This technique is based on,
for each of the x, y, and z directions, projecting the “safety box” of the node onto the

560 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Algorithm 5.2: Line segment intersection query against the skD-tree.

Input: d-dimensional tree elements Ti,1≤ i≤N
skD-tree consisting of S1:2N and L1:2N

Insure width of L in each coordinate direction x̂j, 1≤ j≤d, is at least ǫ

Push {node 1} onto the stack
Do until stack is empty

Pop {parent node} off the stack
For each coordinate direction x̂j,1≤ j≤d

Ij← projection of (Sparent+2ǫ) along the x̂j-axis onto L
(Ij is an interval in the parametric space of L)

If
(

([0,1]
⋂d

j=1 Ij

)

6=∅

If Lparent indicates a leaf
Find Ti pointed to by Lparent

Add {Ti} to the collision list
Else

Add {Lparent+0} onto the stack
Add {Lparent+1} onto the stack

Output: Collision list of tree elements Ti

one-dimensional subspace spanned by the line segment as follows:

1. Define the bounding box B=Πd
i=1[ai,bi] and line segment L={tu+(1−t)v|t∈[0,1]},

where u=(ui,··· ,ud) and v=(v1,··· ,vd).

2. For each coordinate direction x̂i, 1≤ i≤ d, set Ii = projection of B along the x̂i-axis
onto L (Ii is an interval in the parametric space of L).

3. The orthogonal projection PL onto the one-dimensional subspace spanned by the

line segment L, is PL(B)= [0,1]
⋂d

i=1 Ii, where Ii =
[

ai−ui
vi−ui

, bi−ui
vi−ui

]

.

In the above, the parameter for the one-dimensional subspace has (by convention) a value
of zero at one endpoint and a value of one at the other endpoint of the segment. After ob-
taining three such projection intervals, one may conclude that the line segment intersects
the box if the three intervals have a nonempty intersection which includes some point in
[0,1], i.e., L∩B 6=∅⇐⇒ [0,1]

⋂d
i=1 Ii 6=∅.

Again, all “safety boxes” are bounding boxes which have been 2ǫ inflated. This ap-
proach is required as: (1) it is necessary to verify that the original line segment intersects
with an ǫ-inflated bounding box, and (2) the line segment endpoints being tested may
differ by as much as ǫ/2 in each coordinate direction from the original line segment,
resulting in a maximum difference between the two segments of between

√
3/2ǫ and ǫ.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 561

Algorithm 5.3: Bounding box intersection query against the skD-tree.

Input: d-dimensional tree elements Ti, 1≤ i≤N
skD-tree consisting of S1:2N and L1:2N

d-dimensional query bounding box B
Push {node 1} onto the stack
Do until stack is empty

Pop {parent node} off the stack
If B∩(Sparent+ǫ) 6=∅

If Lparent indicates a leaf
Find Ti pointed to by Lparent

Add {Ti} to the collision list
Else

Add {Lparent+0} onto the stack
Add {Lparent+1} onto the stack

Output: Collision list of tree elements Ti

5.2 Bounding box intersection query against the skD-tree

The next algorithm presented (Algorithm 5.3) uses the skD-tree structure to represent a
surface. This routine is designed to calculate possible intersections of the surface geomet-
ric elements with a d-dimensional box B. The algorithm returns a subset of leaves (e.g.
triangles) that may contain an intersection with the box. The user must perform further
tests on this subset to actually determine the intersection set. This algorithm is similar to
Algorithm 5.2; the details of its operation will not be presented here.

5.3 Tree Intersection Query Against the skD-tree

The final query algorithm (Algorithm 5.4) uses the skD-tree structure to determine the
intersection with another input skD-tree, to determine the intersections of the geometric
elements between the trees. Again, this algorithm returns a subset of leaves that are
candidate objects in which an intersection may occur. The user must perform further
tests on this subset to actually determine the intersection set. This algorithm is similar to
Algorithm 5.2; further details of operation will not be presented here.

6 Applications

The skD-tree has been employed by the authors in several applications to date. The appli-
cations range from simple tools that respond with point location information to a compre-
hensive computational geometry capability in the form of a query library that provides a
parallel adaptive mesh generation (AMR) capability to a large physics simulation code.
This paper will provide an implementation overview to the use of the skD-tree in the

562 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Algorithm 5.4: skD-tree intersection query against skD-tree.

Input: dα-dimensional tree elements Tα
i , 1≤ i≤Nα

skD-tree consisting of Sα
1:2Nα

and Lα
1:2Nα

Query Object: dβ-dimensional tree elements T
β
j , 1≤ j≤Nβ

skD-tree consisting of S
β
1:2Nβ

and L
β
1:2Nβ

Push {node 1,Tβ} onto the stack
Do until stack is empty

Pop {parent node} off the stack
If {parent node}∩Tα 6=∅

If L
β
parent indicates a leaf

Find T
β
j pointed to by L

β
parent

Add pair T
β
j and {parent node}∩Tα to the collision list

Else

Add {Lβ
parent+0} onto the stack

Add {Lβ
parent+1} onto the stack

Output: Collision list of pairs T
β
j and T

β
j ∩Tα

following contexts:

1. a curve-curve intersection algorithm

2. a curve-surface intersection algorithm

3. a point in-out test

4. a minimum distance algorithm

5. an AMR mesh generation algorithm

To prepare for the presentation of the above approaches, it is necessary to make some
definitions. These applications are based on computing the degree of overlap of the safety
box of the current object against the safety boxes of target objects that have been stored in
the skD-tree. To state this differently, one wishes to calculate the potential volume of
intersection, if any, between an arbitrary object (actually, its safety box) and any objects
that have been previously placed in the skD-tree. The geometric form and representation
of the objects are not critical to the discussion, but are important to consider during the
actual implementation of the algorithms to follow. With this in mind, this paper will sup-
ply details of the implementation to allow other researchers to duplicate the approaches
if desired.

6.1 Curve-curve intersection

The curve-curve intersection problem is defined as an approach to determine if the cur-
rent curve, Co(s)→[xo(s),yo(s),zo(s)] intersects one or more target curves in R

3, represented

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 563

as Cn(s)→ [xn(s),yn(s),zn(s)], where n =1,2,··· ,N. Further, if the current curve does in-
tersect one or more of the target curves, the application requires that the algorithm return
the target curves that were intersected, and information about the region of intersection
R(x,y,z).

The algorithm proceeds as follows:

1. Select the curves Cn(s),n=1,2,··· ,N that occupy the target space.

2. Discretize the curves [13]. Depending on the complexity of each curve, the dis-
cretization process will result in one, or perhaps a large number of line segments
that approximate the curve. One desires that the discretization process be suffi-
ciently fine such that the points on the curve are no further than some δ away from
the corresponding location on the approximating line segment.

3. Create a safety box data structure for each line segment approximating each curve.
The safety box must be at least 2ǫ larger than the line segment that it is enclos-
ing. The safety box data structure should also contain an index to associate it with
the particular line segment that it contains and a pointer to the particular curve to
which it belongs.

4. Construct the skD-tree, by placing the safety boxes of the line segments into the
target tree. When all the data is stored, the tree may be finalized and the query
process may begin.

5. Discretize the current curve, Co(s), such that the curve is no further than δ away
from its corresponding line segment(s). Create a collection of safety boxes that are
at least 2ǫ larger than the line segments.

6. For each of these safety boxes, query the skD-tree to determine if there is an inter-
section between the safety box and any of the safety boxes currently contained in
the target tree.

With the safety boxes of the discrete segments of the target curves entered into the
skD-tree, it is possible to query the safety boxes of the discrete segments of the current
curve against the tree. As discussed earlier in the paper, the query function will return
indices for all the safety boxes in the skD-tree that potentially intersect with the current
segment used in the query. Further, assuming that there are m segments from the target
curves in the skD-tree, and n segments that make up the current curve (thus n queries are
made to the skD-tree), the algorithmic complexity of the global search is O(nlogm).

The query function returns indices for all safety boxes contained in the tree that have
any measure of intersection with the query box. If there is zero overlap between the query
box and the skD-tree, the query function does not return any indices. At this point, one
is certain that there cannot be any intersection of the actual geometric entities involved,
given an intelligent choice of the ǫ value used to construct the safety boxes. This is a
very useful result; given a curve in space, it is possible to determine conclusively that
the curve in question does not intersect any of the curves represented in the skD-tree in

564 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

O(nlogm) operations. Indeed, for the general problem of curve-curve intersection in R
3,

this is by far the most common outcome of a query.

The other possibility is that the nth safety box intersects one or more of the safety boxes
contained in the skD-tree. In this case, the query function will return the indices of all of
the k safety boxes in the tree that are intersected by the query. Given this information, it
is up to the user of the skD-tree library to use this information to determine if the portions
of the curve represented by each of the k safety boxes actually intersect the curve segment
represented by the nth safety box.

The authors typically use a two step process to determine if the curves actually inter-
sect, and if so, to obtain the actual point(s) of intersection. This algorithm is as follows:

1. Develop a tighter set of bounding volumes for the line segments contained in the
nth and kth isothetic safety boxes.

2. Determine if there is any intersection between these “tighter” boxes.

3. If so, use some root-finding algorithm appropriate for the representation of the ac-
tual curves to locate the actual point(s) of intersection if there are any.

Consider that, in the general case, it is statistically rare that the curves actually overlap
when overlap is indicated between the isothetic safety boxes. Thus, it is worthwhile
to eliminate as many of these non-overlapping cases as possible before proceeding to
the root-finding approach. In the case of the isothetic safety boxes approximating a line
segment which, in turn, approximates the true curve, one may first consider the problem
of determining if there is an intersection between more representative bounding volumes
surrounding the line segments. Recall that the line segments are no further than δ away
from the true curve. Thus, if the line segments are represented by a bounding cylinder
with a radius of δ+ǫ, where ǫ is again the safety parameter, the curve must be fully
contained within the cylinder. Indeed, if this is the case, one may consider the problem
of determining if there is a region of intersection between the safety cylinders of the line
segments approximated by the isothetic safety boxes. Furthermore, one only needs to
pursue further analysis of the case where the safety cylinders overlap.

For this final case, where the safety cylinders overlap, one typically pursues a root-
finding approach to locate the point(s) of intersection between the native forms of the
two curves, if any exist. The authors typically use a Newton method to locate the in-
tersection, but there are many other alternatives that may be more appropriate for the
application in question. The authors acknowledge that Newton’s method is problematic
for the general root finding problem given both the general nature of the curves and the
need to supply an initial guess for the method that is within the radius of convergence
of Newton’s Method. In this application, these theoretical limitations are not generally
encountered in practice. Indeed, Newton’s method is not used to locate the point(s) of
intersection (if any exist) between the endpoints of two general curves; it is used only on
rather short segments of the curves defined by the endpoints of the line segment used
to approximate the curve locally. Further, over these small regions of the curve that the

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 565

line segment approximates, the curve is not truly general. Indeed, the curve is well-
approximated (within a tolerance δ) by a linear approximation. Given this tight bound
on the local behavior of the curve, and using the approximating line segment endpoints
as an initial guess for the Newton method, convergence is typically rapidly and reliably
achieved if a single root exists. Further, divergence typically indicates that a root does
not exist in the region. These two results, however, do not provide an indication of the
existence of multiple roots if that information is required by the application.

This completes the discussion of the mechanics of a curve-curve intersection algo-
rithm in R

3. There are several other applications that may be developed using this ap-
proach as a base concept. Indeed, the next application to be considered (curve-surface
intersection) is a straightforward generalization of the method presented above.

6.2 Curve-surface intersection

The curve-surface intersection problem is defined as an approach to determine if the
current curve,

Co(s)→[xo(s),yo(s),zo(s)],

intersects one or more target surfaces in R
3, represented as

Sn(s,t)→[xn(s,t),yn(s,t),zn(s,t)],

where n=1,2,··· ,N. Further, if the current curve does intersect one or more of the target
surfaces, the application requires that the algorithm return the target surfaces that were
intersected, and information about the region of intersection R(x,y,z).

The algorithm proceeds as follows:

1. Select the surfaces Sn(s,t), n=1,2,··· ,N that occupy the target space.

2. Discretize the surfaces. Generally, the surfaces may be rather complex in nature,
and may actually wrap around to share a common edge, forming a closed volume.
Indeed, if the domain geometry is obtained from a commercial solid-modeling
package or computer-aided design (CAD) tool, the domain geometry may be rep-
resented in the form of trimmed parametric surfaces. For the purposes of the query,
the surfaces (within the trimming region) are often triangulated to form a discrete
approximation. This process typically results in the creation of a large number of
triangles approximating each surface. Again, one desires that the discretization
process be sufficiently fine such that the furthest points on the actual surface are no
further than some δ away from the corresponding location on the approximating
triangle.

3. Create a safety box data structure for each triangle approximating each surface. The
safety box must be at least 2ǫ larger than the triangle that it is enclosing. The safety
box data structure should also contain an index to associate it with the particular
triangle that it contains and a pointer to the particular surface to which it belongs.

566 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

4. Construct the skD-tree, by placing the safety boxes of the triangles into the target
tree. When all the data is stored, the tree may be finalized and the query process
may begin.

5. Discretize the current curve, Co(s), such that the curve in no further than δ away
from its corresponding line segment. Create a collection of safety boxes that are at
least 2ǫ larger than the line segments.

6. For each of these safety boxes, query the skD-tree to determine if there is an inter-
section between the safety box and any of the safety boxes currently contained in
the target tree.

Aside from the details involving the surface discretization, it is clear that the curve-
surface intersection algorithm is very similar to the curve-curve algorithm considered in
the previous section. As such, a detailed discussion of this method will not be repeated
here.

6.3 Point in/out test

The point in/out test is a query to determine if a particular domain coordinate (x,y,z) lies
inside or outside of a body contained within the computational domain. Alternatively,
this test may be viewed as a query to determine which “part” within the domain contains
a particular location (if any).

The mechanics of this test is based on the particular representation of the domain
geometry. Two models are possible:

1. If regions are defined in terms of boundary-represented parts that do not have an
explicit relationship to some underlying mesh discretizing the domain, it is neces-
sary to use the part definition directly to determine the status of the query.

2. If the parts contained within the domain are explicitly associated with a computa-
tional mesh (e.g. a body-fitted mesh), the mesh elements contained within the body
could share the aspatial attributes associated with the body.

For the first case, only the basic part definition may be used to determine where a
query point lies. The general problem, in this case, exists when the domain contains an
arbitrary number of parts. Each part is assumed to be represented by some boundary def-
inition; usually a list of surfaces (perhaps trimmed parametric surfaces) that completely
enclose the volume of the part. Further, the part definition is assumed to be airtight; the
surfaces fit perfectly at seams such that there are no gaps or overlaps between surfaces
and the volume is completely closed.

There are two possible states in which the query point may exist: (1) it is contained
within one of the parts (that part, in turn, may be contained in another, and so on), or (2)
the location is outside of all the domain parts, in the interstitial region that separates the
parts. In either case, the algorithm to compute the status of the point is as follows:

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 567

1. Build the skD-tree by discretizing the surfaces contained in the computational model.

2. Beginning at the (x,y,z) location of the query point, cast a ray in an arbitrary direc-
tion outward to the boundary of the problem domain.

3. Decompose the ray into a set of line segments, build safety boxes for the segments,
and intersect these safety boxes against the skD-tree. The number of line segments
used to decompose the ray depend on the direction of the ray and other aspects of
the application.

4. Determine the actual distinct bounding surfaces intersected by the ray. If the ray
intersects an even number of distinct part surfaces as it reaches the boundary of the
problem, the query point (x,y,z) was not interior to any of the parts in the domain
(it is in the interstitial region). If an odd number of surfaces were intersected, the
query point (x,y,z) is located inside of the part whose surface was intersected by
the ray an odd number of times.

As introduced above, the number of line segments used to decompose the ray is a
based on the ray direction and other application requirements. Given a ray cast in an
arbitrary direction, there is a compromise between the desire to use only a few (or per-
haps only one) line segment to decompose the ray for simplicity, and the use of a large
number of segments to minimize the number of collisions returned by the skD-tree that
will require further (and slower) processing. Indeed, consider the case of a query point
(0,0,0), with the ray cast out the first octant equidistant from each of the principal axes.
Further, only one line segment will be used to decompose the ray, resulting in a safety
box that is the first octant. The skD-tree query against the surface safety boxes will return
all boxes that intersect with the first octant. This would not be a very useful result. Given
a random ray cast direction, it is typically better to decompose the ray into a large num-
ber of segments to reduce the number of collisions returned by the tree (and the amount
of further processing that is required). Note, however, that if the ray is cast along one
of the coordinate directions, only one segment is required, which would result in a long,
narrow safety box along that axis. Indeed, this safety box is almost one-dimensional; it
is of thickness 2ǫ on two of its three dimensions. Clearly, casting rays parallel to the co-
ordinate axes often provides excellent economy for point topological query operations
without sacrificing robustness or accuracy. Unfortunately, one is limited to six rays for
each query; this may not be a sufficient number of “random” raycasts for every applica-
tion.

In a typical application, there are two issues that complicate this strategy. First, the
boundary-represented parts are generally not airtight. Indeed, requiring the model to
be airtight is not reasonable nor achievable, given that solid models are constructed on
a computer. Secondly, the ray cast may intersect the surface at one point, as it passes
through the surface moving from one part to another. The ray may encounter a large
number (theoretically infinite) number of points if it encounters the surface nearly tan-
gent and travels tangent to the surface for any distance. Additionally, the ray may only
encounter the surface once, exactly tangent, and emerge back into the same part from

568 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

which it came. Given these issues, an implementation needs to cast many rays, in quasi-
random directions, to statistically determine the number of surfaces that are encountered
as the ray proceeds to the boundary from the point of origin (x,y,z). Typically, on the
order of ten rays are needed to stochastically-determine the status of the query point.

The second form of model representation is one where the parts are associated ex-
plicitly with a computational mesh; typically called a body-fitted discretization. This
problem is significantly less complex; it is only necessary to locate which mesh element
contains the query point to know which part it is located in (or know that it is within
the interstitial region). Such a spatial query requires a point-in-polyhedra query test. To
locate the query point in this case, the following steps are used:

1. Load the skD-tree with safety boxes enclosing the mesh elements.

2. Intersect the one dimensional query point against the skD-tree.

3. Determine which element the query point lies in, given the set of safety boxes re-
turned by the query.

Note that a safety box around the query point is not necessary in this application, as the
query point is a one dimensional object that will lie in the safety box of one of the tree
elements if there is any possibility that the point lies within an object contained within
the tree.

This application requires a general spatial search if there is no a-priori knowledge
about the spatial relationship of subsequent query locations (x,y,z). Often, these query
locations may be spatially-related; for example, the first query may be a general query,
but subsequent queries may involve points associated with the initial query location (i.e.,
they may be the endpoint of a line that begins with the initial query point). In this case,
the use of an Eulerian Walk [1] may be more efficient than the skD-tree for subsequent
queries.

6.4 Minimum distance algorithm

The minimum distance query algorithm was discussed in detail earlier in this paper in
Section 4. Many computational applications are interested in determining the closest
boundary point to an interior location. The steps for using the minimum distance query
algorithm are:

1. Discretize the boundary surfaces (or objects) of interest. Typically, the surfaces will
be triangulated, but the actual form of the discretization is not important.

2. Construct safety boxes for the boundary objects (i.e. triangles).

3. Load the safety boxes into the skD-tree.

4. Construct a safety box around the query location. Query the tree, specifying a ref-
erence point if desired.

5. Locate the closest point using the safety boxes returned in the collision list.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 569

Figure 1: Example of the use of h-refined adaptive hybrid mesh generation for climate modeling. Note how
refinement is used to capture altitude gradient detail in the region of the Alps and Himalayas mountains on
this earth surface model shown in the upper-left figure. Moving clockwise, the upper-right figure shows an
icosahedral mesh, the lower-right is a polygonal element mesh, followed by a triangle surface mesh in the
lower-left figure.

6.5 Adaptive mesh refinement (AMR)

The adaptive mesh is growing in popularity for the simulation of complex multiphysics
problems due to its ability to capture fine geometric detail in the problem specification
simultaneously with resolving various length scales in the evolving physics simulation.
Further, the tree-based adaptive mesh refinement method (AMR) is often automatic; the
algorithm may be posed in such a way that it always terminates to yield a finished mesh.
The same cannot be said for other mesh generation methods.

The AMR method may also be used to refine an existing mesh to capture fine geomet-
ric or solution detail present in the simulation. Fig. 1 illustrates the use of this approach
to refine a mesh based on the height variation of mountains above a reference datum in
an earth surface model.

The AMR approach begins with the definition of the basic mesh that spans the com-

570 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

putational domain. This mesh may be as simple as the user specifying a level of refine-
ment in each of the three coordinate directions, along with the domain length, width,
and height. A uniform, rectilinear base mesh can be generated directly from this infor-
mation. Secondly, the user supplies a geometric problem statement, which details the
components that define the simulation to be performed. The geometric model may be
as complex as a complete CAD model of a detailed assembly. Lastly, the user supplies
an initial statement of the physics state, which may include things like temperature pro-
files, the location of shock waves, or other solution features. More typically, however,
the user just specifies the initial and boundary conditions for the simulation to begin at
some initial state. The AMR method uses both the geometry statement, and any solution
features (if supplied), to determine where AMR refinement must occur to capture the
length scales important to the problem. The skD-tree may be used quite effectively for
the initial refinement calculation to match the geometric detail of interest. One approach
is as follows:

1. Loop over all the parts of the geometric assembly, discretizing the surfaces (or other
geometric objects). Construct safety boxes for these discrete elements, and insert
them into the skD-tree.

2. Loop over all the basic mesh elements. Treat each (axis-aligned) element as a safety
box; intersect each of these boxes in turn with the skD-tree.

3. If there is a potential intersection with one of the geometric objects in the tree and
the mesh element, at least one collision will be returned. One could test at this point
if there is truly an intersection between the mesh element and the geometry.

4. If there is an intersection, refine that particular mesh element. If there is not an
intersection, select the next basic mesh element and repeat.

5. If there was an intersection, above, create a new set of safety boxes that represent
the refined octants of the original base element. Intersect these with the skD-tree to
determine which of these to refine further. Continue to recurse in this manner until
the maximum level of refinement is achieved (this is a user-supplied value).

This algorithm may be further improved by reconsidering the third step of the pro-
cess, above. With some loss of rigor, the authors propose that if any collisions are returned
from the mesh element/geometry intersection process, that the element be blindly sub-
divided in lieu of performing further (and more expensive) analysis to determine if the
geometry actually bisects the element. Clearly, this approach will result in some excessive
refinement at geometric interfaces, but it will save much time in more detailed analysis.
The run-time penalty incurred by this refinement is typically much smaller than that re-
quired to perform the more detailed testing inherent in a higher precision intersection
algorithm. Further, as the simulation using the adaptive mesh algorithm evolves, re-
finement will occur near geometric interfaces anyway due to boundary-layer resolution.
Thus, any run-time penalty due to excessive refinement is typically only of concern for
the first few time cycles of a simulation.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 571

6.6 Multi-physics solution data transfer (remapping)

In addition to applications in mesh generation and refinement, the skD-tree may be effec-
tively applied to mapping a physics solution present on one mesh to another, topological-
ly-distinct mesh. It is a common requirement in multiphysics and adaptive analysis
applications to transfer solution fields and their derivatives between meshes and/or
to other applications. This process requires the evaluation of field variables and their
derivatives at particular target locations, based on data associated with the donor or
source mesh. For each target location, the solution transfer process must (i) identify the
mesh entities in the donor mesh from which data is required; (ii) determine the local co-
ordinates of the target point on the donor mesh entities; and (iii) evaluate the required
field components on the donor mesh at that location. In some cases, the field may be
preprocessed on the donor mesh to improve the accuracy of this data, and/or the level of
continuity between mesh entities. Solution transfer is performed by integrating aspects
of geometry (mesh) sorting and searching, interpolation of kernels (fields), and various
implementations of geometry, mesh, and field interfaces. As an aside, this solution trans-
fer process is often called a remapping of the physics field data from one distinct mesh to
another.

The literature is rich with discussion of methods to perform remapping; ranging
from discussions of geometric approaches to calculating intersection volumes between
the donor and target meshes, to approaches of accurately computing the data transfer
integration process given these intersection regions. It is immediately clear that one
must exercise care in hosting data from one mesh upon another; one should conserve
the transferred physical quantities during the transfer process. Li [14] proposes a remap-
ping method for multiphysics applications where the target mesh is topologically related
to the donor. In this approach, both meshes share a base discretization level, where the
donor and target meshes differ in the amount of inter-element refinement of this base
connectivity reference. Li presents both solution criteria and geometric approaches used
to implement the algorithm, along with several examples.

A second class of methods arise when the donor and target meshes are not obviously
related; i.e., they are topologically distinct. Dukowicz [15], Ramshaw [16], and Miller
et.al. [1] discuss approaches based on mapping of intensive physical values q(x) from a
donor mesh to a new field q′(x) on the target mesh using an integration,

q′k(x)=
1

Ak

∫

Ak

q(x)dA,

where k is the element index of the target element, and Ak is the area of the target element.

Jiao and Heath [17] provide a detailed comparison of several popular one- and two-
dimensional remapping approaches on topologically-distinct donor and target meshes.
They propose a method based on an intersection (common refinement) between the two
meshes, and compare this to other methods. All of these methods require determining
the geometric overlap (intersection) region between donor and target elements.

572 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

Figure 2: An orographic map provides an indication of the average height of land. This illustration depicts a
contoured orographic relief of the Earth’s surface.

When the meshes are truly distinct, a general search is required to locate the position
of a selected object of the donor mesh in the space of the target, or vice versa. Typically,
however, locality of data will allow an algorithm such as an Eulerian walk to be used in
the integration method employed as part of the remap algorithm. Exceptions to this occur
when an application requires the mapping of data with no clear spatial relationship to a
target mesh. An example of this is the mapping of orographic field data (discrete altitude
data) as shown in Fig. 2 to a distinct mesh to drive an r-adaptive mesh motion algorithm.

Fig. 3 shows a computational mesh generated on the Earth surface model. In this
illustration, there is no correspondence between the orography field data and the posi-
tion or concentration of node points of the mesh; the mesh is equidistributed across the
globe. The process of r-adaptation involves movement of the mesh nodes towards re-
gions where additional refinement is desired to capture the orographic field shown by
the coloration of the globe. Such r-adaptive algorithms require the transfer of solution
data (in this case represented by the orographic field) to the nodes of the computational
mesh. For this example, the skD-tree is used to map the data onto the mesh. The mapping
process is described by the following algorithm:

1. The orography field data is stored in the skD-tree, using Algorithm 3.1.

2. For each element in the mesh, a query of the tree is performed, which returns all
the field values that are contained within the element.

3. The mean orographic value for the element is calculated as the average of the values
obtained from the query.

4. The r-adaptive algorithm is applied to move the mesh node points based on the
mean orographic data within the elements.

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 573

Figure 3: Examples of triangle and polygonal surface meshes superimposed on the Earth’s surface. Globe
coloration indicates orography.

Figure 4: r-adapted surface mesh using the skD-tree spatial query to map discrete orography data to the mesh
as it adapts to the data. Clockwise from the orography data shown in the upper-left figure is an adapted
structured quadrilateral mesh, then a polygonal mesh, then finally an adapted triangular mesh.

574 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

5. As the elements now overlap with different orographic values (the element has
moved as a result of the previous operation), it is necessary to refresh the mean
orographic value for each element. Proceed back to step 2, and repeat until the
algorithm converges.

Convergence of this algorithm results in the adapted meshes shown in Fig. 4. Note how
the adapted mesh has moved to the areas of the globe where the change in elevation is
the greatest. In this example, the skD-tree provides an effective mechanism to transfer
the orography data onto the evolving surface mesh to drive the r-adaptive process. This
mapping mechanism may be readily applied to other solution transfer problems of a sim-
ilar nature. Note that, although this is a dynamic application, the skD-tree is formed only
once. In this case, the orographic data is static but the mesh moves “across it” (as con-
vergence proceeds, the elemental mean orographic value changes as the element moves
with respect to the data). Each time the mesh moves, the bounding boxes that describe
the elements must be re-constructed and queried against the static tree.

These example applications indicate the utility of searching and query using the skD-
tree. There are many other applications that could take advantage of efficient spatial
search algorithms. To list a few possibilities:

• Graphics, interfaces, and scientific visualization - use of the mouse for picking and
object selection, and collision detection.

• Point status - various point location and query activities, implementing particle
tracers, point probe, and line probe functions. Providing arbitrary polyhedral cell
support in particle tracer, line probe, and point probe methods.

• Geometric processing - intersection, projection, computational topology, and ray
casting.

• Grid generation: point in body, AMR, volume fraction calculation, advancing front,
duplicate feature removal, material interface resolution (cell splitting), and grid
transformation.

• Other physics applications - Monte Carlo, smooth particle hydrodynamics (SPH),
hydrodynamic front collision, and front propagation methods.

7 Conclusions

This paper develops a set of algorithms potentially useful for spatial searching in various
computational physics applications. The data structure that is the basis for this work
is an skD-tree, which is a member of a family of methods based on bounding volume
hierarchies (BVHs). The skD-tree was introduced for its rapid general search behavior,
its simplicity, and the ease with which it may be implemented and linked to various
applications. However, one must carefully weigh the limitations of any method; the
skD-tree is best used with static data for general queries. If the target query set changes

A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576 575

during the query process, the skD-tree is likely not the best choice. Further, if the search
may be localized or if previous state information is known, a general search method like
the skD-tree may not be the most effective strategy for the particular application.

This work presents and discusses several algorithms that may be used to construct
the tree, and subsequently query the tree for potential collisions. The collisions are only
candidates for intersection; further (user-defined) processing is usually required to be
certain of an intersection and learn of its true character. If zero candidates are returned,
the user may be certain that an intersection does not exist if the strategy for construction
of the “safety boxes” was followed correctly.

Much of this paper focused on discussing the use of the skD-tree and various query al-
gorithms for applications that support scientific simulation. Several searching and prox-
imity query applications were discussed, along with the use of query for mesh generation
and solution transfer (remapping). These are only a small selection of applications that
can possibly use a general, efficient spatial search mechanism to good effect.

Acknowledgments

The submitted manuscript has been authored by contractors of the U.S. Government
under Contract Nos. DE-AC05-00OR22725 and DE-AC07-05ID14517. Accordingly, the
U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
the published form of this contribution, or allow others to do so, for U.S. Government
purposes.

References

[1] D. S. Miller, D. E. Burton and J. S. Oliviera, Efficient second order remapping on arbitrary
two dimensional meshes, Technical Report UCRL-ID-123530, Lawrence Livermore National
Laboratory, 1996.

[2] E. Larsen, S. Gottschalk, M. C. Lin and D. Manocha, Fast proximity queries with swept
sphere volumes, Technical Report TR99-018, University of North Carolina, Chapel Hill, 1999.

[3] S. Gottschalk, M. C. Lin and D. Manocha, OBBTree: A hierarchical structure for rapid inter-
ference detection, in: Proceedings of ACM SIGGRAPH ’96, 1996, pp. 171-180.

[4] P. M. Hubbard, Approximating polyhedra with spheres for time-critical collision detection,
ACM T. Graphics, 15(3) (1996), 179-210.

[5] P. G. Xavier, A generic algorithm for constructing hierarchical representations of geometric
objects, in: Proc. IEEE ICRA 1996, vol. 4, Minneapolis, 1996, pp. 3644-3651.

[6] B. C. Ooi, Efficient query processing in geographic information systems, in: Lecture Notes
in Computer Science, vol. 471, Spring-Verlag, 1990.

[7] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun.
ACM, 18 (1975), 509-517.

[8] P. M. Hubbard, Collision detection for interactive graphics applications, PhD thesis, Depart-
ment of Computer Science, Brown University, 1995.

576 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

[9] T. Sellis, N. Roussopoulos and C. Faloutsos, The R+-tree: A dynamic index for multi-
dimensional objects, in: Proc. 13th Int. Conf. Very Large Data Bases, Brighton, 1987, pp.
507-518.

[10] D. E. Knuth, The Art of Computer Programming, vol. 3, 2 ed., Addison-Wesley, Reading,
1998.

[11] R. L. Floyd and R. W. Rivest, Expected time bounds for selection, Commun. ACM, 18(3)
(1975), 165-172.

[12] C. A. R. Hoare, Quicksort, Comput. J., 5(1) (1962), 10-15.
[13] A. Khamayseh and A. Kuprat, Hybrid curve point distribution algorithms, SIAM J. Sci.

Comput., 23 (2002), 1464-1484.
[14] R. Li, On multi-mesh h-adaptive methods, J. Sci. Comput., 24(3) (2005), 321-341.
[15] J. K. Dukowicz, Conservative rezoning (remapping) for general quadrilateral meshes, J.

Comput. Phys., 54 (1984), 411-424.
[16] J. D. Ramshaw, Conservative rezoning algorithm for generalized two-dimensional meshes,

J. Comput. Phys., 59 (1985), 193-199.
[17] X. Jiao and M. T. Heath, Common-refinement-based data transfer between non-matching

meshes in multiphysics simulations, Int. J. Numer. Meth. Engrg., 61 (2004), 2402-2427.

