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Abstract. Ab initio calculations of dielectronic recombination (DR) processes from the
ground state 1s2 of He-like argon ion through doubly excited states 1s2snl, 1s2pnl
(n=2 to 9) of Li-like argon ions are performed using the multi-configuration Hatree-
Fock method with relativistic correction. The theoretical method and its corresponding
computation will be outlined. For higher doubly excited states with n >9, the scaling
law is used to extrapolate the Auger and radiative transition rates. The total and state-
to-state cross sections with corresponding rate coefficients in the temperature from 102

eV to 106 eV are presented, as well as the DR strengths for all the separate resonances.
Moreover, peculiarities of the DR from doubly excited 1s2s3l′ configurations are ana-
lyzed and the contributions of two-electron-one-photo (TEOP) radiative transitions to
the DR cross sections are also investigated, such as 1s2s2 → 1s22p, due to the strong
configuration interactions. Our theoretical results appear to be in excellent agreement
with the previous and recent experimental measurements.

PACS (2006): 34.80.Lx
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1 Introduction

Dielectronic recombination was first proposed by Massey and Bates [1] to explain rapid
electron-ion recombination rates in the ionosphere. In this process the radiationless cap-
ture of a free electron by a recombining ion, forming a doubly excited state, is followed
by radiation emission to form a stable singly excited state in the recombined ion. It is
an important recombination mechanism to affect the ionization balance and radiative
properties in high-temperature dilute plasmas, such as the solar corona [2,3] and ther-
monuclear fusion plasmas [4]. In recent years, DR is also found to be very significant in
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high density plasmas, such as for X-ray lasers and Inertial Confinement Fusion. The di-
electronic satellites also apply to diagnose plasma densities [5] and electron temperatures
[6,7] in the high density plasmas.

Argon is frequently employed in fusion devices, since it can easily be injected into
the devices, efficiently pumped out and served as a tracer for diagnosing ion tempera-
ture by Doppler broadening measurements [8] and plasma rotation profiles by Doppler
shifts of x-ray lines [9]. Especially, the characteristic x-ray emission from He-like Argon
has been utilized to diagnose the hot plasmas ranging from the magnetically confined
or laser-produced plasmas in laboratory, to plasmas of astrophysical objects, such as su-
pernova remnants or solar flares. The experimental studies of DR processes in He-like
ions have been performed for several elements by using EBIT, EBIS, or heavy-ion storage
ring devices [10-16]. A recent DR experiment on He-like argon at EBIT by Zou et al. [17]
shows that the TEOP transition 1s2s2 → 1s22p has an anomalous high intensity. Such
transition has also been observed in a DR experiment by Rosmej [18]. Because the TEOP
transition has high sensitivity to the multi-electron wave functions used in theoretical
calculations, the experimental studies for these processes may provide a critical test for
different theoretical models.

In this paper, using the multi-configuration Hatree-Fock method with relativistic cor-
rection [19], we study numerically the DR cross sections and rate coefficients of a He-like
Ar16+ in its ground state 1s2, through a Ar17+ 1s2snl, 1s2pnl (n=2 to 9). The relativis-
tic correction is introduced into the radial equations simply by adding the mass-velocity
term and the Darwin term. The self-consistency in the present calculation gets improved.
Furthermore, an extrapolation technique is applied to estimate contributions of the very
high n complexes. In order to optimize the extrapolation method, the n, l dependence
of the DR strengths are investigated, and the contributions of TEOP radiative transitions
to the DR cross sections are calculated. Finally, the total and state-to-state DR rate coeffi-
cients are presented and analyzed.

2 Theory and computation

In the isolated-resonance approximation, the DR cross sections from initial state i into a
final state f through an intermediate doubly excited state d is written as (atomic units are
used throughout unless specified) [20]

σid f =
π2h̄3

meε id

gd

2gi

Aa
di ·A

r
d f

∑
f ′

Ar
d f ′+∑

i′
Aa

di′
δ(ε−ε id). (2.1)

Here me is the mass of electron, ε id is the resonance energy, and also the Auger electron
energy, gi and gd are the statistical weights of the states i and d, respectively, Aa

di is the
Auger decay rate (inverse resonant capture), which can be calculated by Fermi’s golden
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since the resonant doubly excited state may autoionized with a rate Aa
di by reemitting
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where ω (=E f−Ed) is photon energy and T(l) electronic dipole operator. In (2.2) and (2.3),
Ψj (j=d, f ) is the atomic wave function for the j-state, and Ψiε id

the wave function for the
i-state plus a free electron. Ψj can be taken as a linear combination of the configuration
wave functions (CSFs) denoted by Φ(Γ, JM) with mixing coefficients Cjλ

Ψj =
λ̄

∑
λ=1

CjλΦ(Γλ, JM), (2.4)

where λ̄ is the number of CSFs; Γ represents quantum numbers nrlrnl and the parity
Π. The CSFs are constituted as anti-symmetrized product-type sets from single electron
central-field Hatree-Fock orbitals in terms of appropriate angular momentum coupling.
Then from (2.2) we have
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where the Auger decay matrix element Ma
idλ is defined as
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From (2.3) we also have
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The DR strength as an integral of the DR cross section over the natural width of the
resonance, is hence derived as

Sid f =
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Here the summation i′ is over all possible initial states, and the summation f ′ corresponds
to the whole possible final states with energy below the ionization threshold.

When the velocity distribution of free electrons is taken to be of Maxwell-Boltzmann
type, the DR rate coefficients can be easily obtained as [19]

αDR
id f =

(

2πh̄2
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)

3
2

·
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diA
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where Te is the electron temperature and κ the Boltzmann constant.

The essential parts of practical calculations for the DR cross sections and rates in-
volve the computation of corresponding atomic wave functions and the free electron
wave function in the collision system, especially radial wave functions of one electron
in central field with self-consistent potential, where such an electron may lie in bound
states or in continuum state. The energies and wave functions of a single electron for
bound states are computed in the light of MCHF model with extended averaged level
scheme, in which a set of coupled integro-differential equations called HF Eqs., were de-
duced from the variation principle by minimizing the averaged energy of all the levels
[19]. In terms of the conventional difference method and a suitable iterative procedure
for numerically solving the HF Eqs. we perform the computation of related radial wave
functions for bound states, and through some needed calculations of coupling factors on
angular momentum quantum numbers we obtain all the necessary configuration state
wave functions (CSFs). Finally the atomic wave function in specified states and the re-
lated mixing coefficients Cjλ can be determined through diaqonalizing the energy matrix
by using the Ritz variation approach. In the present computation, the number of CSFs is
chosen to be more than 40 for the summation in (2.4). In addition, for any given electron
kinetic energy ε, numerically solving HF equation of one electron in the self-consistent
field provides the electron wave function for continuum state, which is also done by us-
ing a common difference method without any iteration.

Once the calculational tasks mentioned above are complete, the final numerical re-
sults on DR process can be easily obtained. Our computation involves some improved
treatment such as:

1. In the modeling based on the framework of MCHF, the relativistic correction is
included in the computation not only for bound states but also for the continuum
state. Therefore, the self-consistency is improved and the modeling becomes more
physically reasonable.

2. In order to increase the accuracy in computing wave functions for bound states, the
principal quantum number n has been chosen as large as possible. By improving
discretization in solving the radial equation, the maximum value of n has been
chosen up to 9. In the cases of n>9, the extrapolation has been adopted to estimate
the Auger and radiative transition rate with related scaling law.
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3. In solving the electron radial wave function for the continuum state, the condition
of energy normalization has been guaranteed by strictly numerical means, which
avoids any errors relevant to the cross section calculations.

3 Results and discussion

The DR process for He-like argon can be expressed as

1s2+e→1s2lnl′→

{

1s2ln′ l′′+hν1 A,
1s2nl′+hν2 B.

(3.1)

The resonance energy, Auger and radiative transition rates of the doubly excited state
were explicitly calculated for the following cases: n=2-9, l=0,1, l′=0-8. For higher n, up to
n=20, the n−3 scaling law [21] is used in the extrapolation for obtaining the Auger rates.
The radiative transition is classified as types A and B in Eq. (3.1) [21]. For the A type,
namely the outer-shell electronic transitions 1s2lnl′-1s2ln′ l′′, the n−3 scaling law is also
used in the similar way to obtain the radiative transition rates. For the B type, namely the
inner-shell electronic transitions 1s2lnl′-1s2nl′, the radiative transition rates are almost
unchanged with n in a channel [21]. Neglecting the l spreading of the resonances for a
given principal quantum number n, the corresponding resonance energy for these high-n
doubly excited states are calculated with

Eid(n)=Eid(9)+
13.6×Z2

1
92 −

1
n2

,

where Eid(9) is the resonance energy of n=9 from explicit calculation, Z is the charge of
argon, here Z=16.

3.1 Total DR cross section

Fig. 1 displays the present theoretical DR cross sections for He-like argon and its com-
parison with the experimental measurements [16]. The theoretical results are obtained
by folding into a Gaussian function with an experimental energy resolution of 18 eV [16].
The dielectronic resonances are distributed over the energy range of 2-3.2 keV. Compared
with the experimental measurement, the current theoretical prediction shows an excel-
lent agreement in the whole energy domain of 1s2lnl′ . The 1s3lnl′ resonances lie in the
energy region over 3.3 keV, which is not discussed in the present paper. Within each res-
onance group, as KLL (1s2l2l′), KLM (1s2l3l′) or KLN (1s2l4l′), only a few resonances
possess large resonance strengths to contribute significantly to the distributions. For
example, the KLM resonance group is associated with 60 resonance energy levels and
343 possible transitions to nonautoionizing levels. Of these, only 14 resonances behave
like strong enough to make a noticeable contribution. The dominant transition in the
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Figure 1: Cross sections for dielectronic recombination on He-like argon. The present work: solid line, total;
dotted line, A type transitions; dashed line, B type transitions. The experimental results are from [16].

KLM resonance group is 1s2p(1P)3p(2D5/2)→ 1s2(1S)3p(2P3/2). In the KLL and KLN
resonance groups the dominant transition is 1s2p2(1D)(2D5/2)→ 1s2(1S)2p(2P3/2) and
1s2p(1P)4p(2D5/2)→1s2(1S)4p(2P3/2), respectively. The KLL and KLM peaks dominate
over the other high-n resonances, and they contribute to more than 70% of the total cross
sections. An interesting phenomenon is that the KLM peak is larger than KLL, which is
different from the DR of high Z ions [23-25], this is due to the fact that the 1s2l3d reso-
nances in KLM creat larger contribution, while the d electron does not exist in the KLL
resonances. In Fig. 1, the separate contributions from A type and B type radiative transi-
tions are also plotted. The B type (inner-shell electronic radiative transitions) dominates,
whose cross section is about five times of that in A type (outer-shell electronic transitions).

Compared with the earlier theoretical DR cross sections [16], some discrepancies are
observed from the bumps composed of unresolved resonances up to n=20 near the series
limits. Our computational results are higher than the earlier ones. One reason may be
that the extrapolation of n−3 scaling in [16] does not distinguish the radiative transitions
between the A type and the B type. As discussed before, the radiative transition rates for
B type are almost unchanged as n increases, so that the extrapolation of n−3 scaling will
underestimate the DR cross sections from B type for the higher Rydberg states.

3.2 The DR strength Sid and its variation with n and l for resonances 1s2lnl′

Table 1 lists the current theoretical resonance strengths together with the measured ones
for comparison. Most of the theoretical resonance strengths are in an excellent agreement
with the measurements [16,17] within the experimental uncertainties. It is interesting
to note that the state 1s2s2 2S1/2 given in Table 1 decays radiatively into the state 1s22p
only by TEOP transitions, which means that in the transition one photo is emitted and
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Table 1: The current theoretical DR strengths Sid and comparison with the experimental measurements and
other theoretical results [16,17]. The unit is 10−19 cm2 eV.

Resonances Expt. [16] Expt. [17] Theory [17]
Theory

This work

KLL 5.942±0.535 6.34±0.75 6.42 6.384

KLM 6.160±0.554 6.882

KLN 2.663±0.240 2.954

1s2s2 2S1/2 0.105±0.01 0.0974 0.101

1s2s2p 1.28±0.13 1.31 1.03

1s2p2 4.95±0.60 5.01 5.26
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Figure 2: The dielectronic recombination strength Sid for the resonances 1s2lnl ′ as a function of n.

the two-electron orbits change from the initial configuration to the final one. It is caused
by configuration interactions between 1s2s2 and 1s2p2. The unexpected configuration
mixing produces the resonance strengths of 1s2s2 2S1/2 as shown in Table 1, which is
about 1.5% of the total KLL resonance strengths. For the DR processes of the multi-
electron ions, the TEOP transitions become more important [26], where the configuration
interactions are much larger.

Fig. 2 indicates the dependence of the DR strength Sid on n for resonances 1s2lnl′ .
The main contributions to the DR strengths come from the resonances with relatively
small n (≤ 5). When n ≥ 3, Sid decreases with increasing n, but it does not change as
n−3 scaling law, so that the simple extrapolation in [22] will produce an error of 2%-15%
and this error increases with increasing n. The reason would be that the B type (inner-
shell electron) radiative transitions become more important as n increase, which is almost
unchanged with n.

The l-dependence of the DR resonance strengths is plotted in Fig. 3. The contribution
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Table 2: The Auger rates (Aa), radiative transition rates (Ar) and DR strengths Sid f for a few prominent

transitions of doubly excited states 1s2s3l.

Transition Aa(s−1) Ar(s−1) Sid(10−20cm2/eV)
1s2s(3S)3s(2S1/2)→1s2(1S)2p(2P1/2) 0.3980×1014 0.4390×1012 0.078
1s2s(3S)3s(2S1/2)→1s2(1S)2p(2P3/2) 0.3980×1014 0.6625×1012 0.118
1s2s(1S)3s(2S1/2)→1s2(1S)2p(2P1/2) 0.2219×1014 0.2896×1013 0.384
1s2s(1S)3s(2S1/2)→1s2(1S)2p(2P3/2) 0.2219×1014 0.4978×1013 0.660

1s2s(3S)3d(2D3/2)→1s2(1S)2p(2P1/2) 0.5007×1013 0.1421×1013 0.386
1s2s(3S)3d(2D3/2)→1s2(1S)2p(2P3/2) 0.5007×1013 0.1845×1012 0.050
1s2s(3S)3d(2D5/2)→1s2(1S)2p(2P3/2) 0.4655×1013 0.1220×1013 0.527
1s2s(1S)3d(2D3/2)→1s2(1S)2p(2P1/2) 0.2156×1013 0.5405×1013 0.142
1s2s(1S)3d(2D3/2)→1s2(1S)2p(2P3/2) 0.2156×1013 0.2171×1013 0.057
1s2s(1S)3d(2D3/2)→1s2(1S)3p(2P1/2) 0.2156×1013 0.1434×1014 0.376
1s2s(1S)3d(2D3/2)→1s2(1S)3p(2P3/2) 0.2156×1013 0.5647×1013 0.148
1s2s(1S)3d(2D5/2)→1s2(1S)3p(2P3/2) 0.4553×1012 0.1057×1014 0.230

1s2s(3S)3p(4P3/2)→1s2(1S)2s(2S1/2) 0.1636×1012 0.1307×1013 0.050
1s2s(3S)3p(2P3/2)→1s2(1S)2s(2S1/2) 0.1487×1013 0.1464×1014 0.440
1s2s(3S)3p(2P3/2)→1s2(1S)3s(2S1/2) 0.1487×1013 0.1976×1013 0.059
1s2s(3S)3p(2P1/2)→1s2(1S)2s(2S1/2) 0.1308×1013 0.1509×1014 0.204
1s2s(1S)3p(2P3/2)→1s2(1S)2s(2S1/2) 0.5530×1012 0.1174×1014 0.126
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Figure 3: The dielectronic recombination strength Sid with different n as a function of l. (a) for 1s2pnl
resonances, (b) for 1s2snl resonances.

of high l (l >3) resonances seams to be very small, which is only about 0.05% of the total
n resonances, thereby it can be neglected in the practical applications. The resonances
strengths for the doubly excited states of 1s2lnp are the largest because the radiative
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Figure 4: Total DR rate coefficient as a function of electron temperature through doubly excited states 1s2pnl,
1s2snl.
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Figure 5: State-to-state DR rate coefficient as a function of electron temperature through doubly excited states
1s2pnl, 1s2sn.

transition rates from np to 1s is the largest, except for 1s2s3p. Differing from others, the
DR strength for resonances 1s2s3p is smaller than 1s2s3s and 1s2s3d as shown in Fig. 3(b).
In Table 2, the Auger rates, radiative transition rates and the DR resonance strengths for
each state in 1s2s3s, 1s2s3d and 1s2s3p are presented. It is quite unexpected that the
TEOP radiative transition rates from 1s2s3s to 1s22p and 1s23p, and from 1s2s3d to 1s22p
and 1s23p are almost in the same magnitude as that from 1s2s3p to 1s22s. Meanwhile, the
Auger rates of 1s2s3s and 1s2s3d are larger than that of 1s2s3p, so that the DR strengths for
1s2s3s and 1s2s3d resonances are larger than that for 1s2s3p. We check this result carefully
and also calculate 1s2s3l resonances for the other He-like ions, and find it reliable not only
for the He-like argon but also for other He-Like ions with Z close to 18.
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3.3 Total and state-to-state DR rate coefficients

The total DR rate coefficients and the partial DR rate coefficients from doubly excited
states 1s2pnl, 1s2snl increase with temperature, reach a maximum at approximately 1500-
2000 eV, and then decrease quickly, as shown in Fig. 4. In the whole energy range, the DR
processes through the doubly excited states 1s2pnl dominate over 1s2snl.

The state-to-state DR rate coefficients through doubly excited states 1s2pnl, 1s2snl are
displayed in Fig. 5. The DR processes including the radiative transitions 2p→1s and 3p→
1s are the dominated DR channels. The contribution from the TEOP transitions 1s2s2 →
1s22p to the total DR rate coefficient is approximately equal to 0.5%, but for multielectron
ions such contribution would be approximately 10% [26].

4 Summary

In this paper, the multi-configuration Hatree-Fock method with relativistic correction is
used to study the dielectronic recombination processes of He-like argon, and the total
and state-to-state cross sections and rate coefficients are presented. The current theoret-
ical prediction gives an excellent agreement with the previous and recent experimental
measurements. The n- and l-dependence of resonance strengths are discussed. Although
the contribution of TEOP to KLL is only 1.5%, it is one of the reasons that cause the bigger
resonance strengths for 1s2s3s and 1s2s3d than that for 1s2s3p.
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