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Abstract. A new multi-dimensional scheme for the Maxwell equations is established
by the CIP method in combination with the method of characteristics (CIP-MOC).
In addition, the CIP-MOC can be extended to arbitrary grid system by the Soroban
grid without losing the third-order accuracy. With the accuracy fixed, the grid
points required for the CIP are 40 times less than the conventional schemes like the
FDTD in three dimensions. Numerical solutions obtained by the CIP-MOC are com-
pared with analytical solution and the FDTD in plane-wave scattering by a per-
fectly-conducting circular cylinder, and the CIP-MOC agrees very well with analyti-
cal solutions. The Soroban grid is also applied to the Vlasov equation that de-
scribes the kinematics of plasmas that is frequently combined with the Maxwell
equation. The adaptively moving points in velocity space are similar to the particle
codes but can provide accurate solutions.

Key words: Maxwell equation; Vlasov equation; CIP method; method of characteristics; Soroban
grid.

1 Introduction

Although the research of electromagnetic waves has a long history, there is still grow-
ing interest in its numerical solution under complex shape boundary as well as material
properties of structures and so on. At the frontier of such simulation, we need a reli-
able numerical schemes that can provide the correct prediction even for a new regime not
explored before. Owing to unknown reliability of the numerical solutions, the details of
many unknown data are estimated on the basis of some experimental measurements.
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However, it is obvious that such empirical law obtained by measurements is not flexible
and it requires a lot of efforts and time. Therefore, in order to effectively cope with all
kinds of complex and usual phenomena, numerical analysis has been attracting attention
in order to overcome these problems. Since performance of computers has been increasing
these days, this option will be very promising for electromagnetic field analysis once a
reliable scheme is established.

A number of numerical schemes have been developed from a continuum version of
the Maxwell equations to a discretized version by using various differencing schemes in
time and space. Some of the well-known schemes are the Finite-Difference Time-Domain
(FDTD) method [1], the Finite Element Method (FEM) [2], and so forth. The ray-tracing
method can be applied to refraction and reflection on the material surface, however, when
there are some complicated structures in a domain, the number of lights that have to be
traced becomes huge.

The FDTD method has been commonly used because it is very easy to make the
program and treat current sources, dielectrics and conductors consistently. Since this
scheme has already been established for a long time, it has been employed for all kinds of
commercial software.

However, the FDTD method is the second order in time and space and its phase error
is quite large in short wavelength component. Since electromagnetic waves are composed
of arbitral wavelengths or frequencies and the numerical resolution of wave motions is
determined from the minimum wave number within the frequency spectrum, the required
number of grid should be enormous in order to provide adequate numerical resolution
beyond the Rayleigh into the resonance.

Therefore, the application of the CIP method [3–6] to the analysis of computational
electromagnetics seems to be promising because of its non-dispersive characteristics. Since
the CIP method can accurately solve the hyperbolic equations and the Maxwell equations
are also a system of hyperbolic partial differential equations (PDEs) , the CIP method can
be similarly applied to the propagation of characteristics that appears in electromagnetic
waves.

The objective of this study is to explore the benefits of using the theory of char-
acteristics in developping accurate and efficient numerical algorithms for computational
electromagnetics. The present work adopts the CIP method in combination with the nu-
merical method of characteristics (MOC). Hereafter, it is called the CIP-MOC method.
We have already applied the CIP-MOC method to the multi-dimensional shallow water
equations [7] with directional splitting, and the same procedure can be applied to the
Maxwell equations as well.

Although the CIP is the third-order in time and space in uniform grid, the accuracy
of any schemes including the CIP becomes the first-order in time and space for abruptly
changing the size of meshes once the metric tensors for coordinate transformation are
estimated by finite difference methods. In order to resolve this problem, a new body-
fitted grid system, the Soroban-grid was proposed in the previous paper [8]. One of the
advantages of the Soroban grid is that it can keep the third-order accuracy in time and
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space even in deformed mesh because it does not have to use coordinate transformation
that is the main cause of deteriorating accuracy. This new scheme is also like a mesh-free
scheme, or it seems to be similar to the point interpolation method among the mesh-
free schemes [9]. In contrast to these mesh-free schemes, however, the Soroban grid is
able to determine multi-dimensional CIP interpolation without shape functions or solving
moment matrix, and therefore we can easily construct a very accurate Maxwell solver with
the CIP-MOC method. The basic concept of the CIP-MOC is introduced in Section 2,
and the CIP-MOC in multi-dimensions will be explained in Section 3. The advantages of
the CIP-MOC and the Soroban grid will be discussed in Section 4.

Sometimes the Maxwell equations are coupled with the Vlasov equation that deter-
mines the kinetic motion of plasmas. Section 5 is devoted to the solution of such equation
in the Soroban grid.

2 CIP method for Maxwell equations

2.1 Basic CIP-MOC algorithm in one dimension

When we analyze the Maxwell equations, there are some dielectrics or conductors in simu-
lation domain in general. In this section, the basic CIP-MOC algorithm in one dimension
is introduced. The Maxwell equations for linear, homogeneous and dissipative media with
conductor in the one-dimensional TE (Transverse Electric) mode can be described as

∂Ey

∂t
+

1

ε

∂Hz

∂x
= −σ

ε
Ey, (2.1)

∂Hz

∂t
+

1

µ

∂Ey

∂x
= 0, (2.2)

where ε, µ and σ are the permittivity, permeability and the electrical conductivity, re-
spectively. We can use the same argument for the TM (Transverse Magnetic) mode as
well.

The basic equations Eqs. (2.1) and (2.2) can put into the following form.

D±Ey

Dt
±

√

µ

ε

D±Hz

Dt
= − ε

σ
Ey, C± :

D±

Dt
=

∂

∂t
+ c±

∂

∂x
, (2.3)

where c± = ±1/
√

ε±µ± is the speed of light in each medium. This form was originally
proposed by Beggs [10].

Unlike the case of free space in which there is no dielectrics and metals, there will be
a discontinuity between two different materials as in Fig. 1 and the differences the speed
of light, conductivity and so on between two materials , have to be taken into account in
numerical algorithms. Therefore, we should use the intrinsic impedance, the speed of light
and the conductivity of each material for left (+) and right (-) characteristics, respectively.
The characteristics speed on the right half space in Fig. 1 is different from the one on the
left half space dx± = ±c±dt, where c± = 1/

√

ε±µ± are the speed of light on both sides.
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Figure 1: The characteristic curve that includes dielectrics and conductors in (x-t) plane.

The other subject is how to deal with the right hand side of Eq. (2.3). The exact
integration of Eq. (2.3) along the characteristics curves can be expressed as

En+1
y − E±

y ±
√

µ±

ε±
(

Hn+1
z − H±

z

)

= −σ±

ε±

∫ ∆t

0
Ey

(

x − c±s, t + s
)

ds, (2.4)

where (+) and (-) mean the upstream departure points of the characterics in Fig. 1. The
simplest approximation for the integral is the time-averaged value between ± and n + 1
step as follows.

En+1
y − En

y ±
√

µ±

ε±
(

Hn+1
z − Hn

z

)

= −σ±

ε±
[(1 − λ)En+1

y + λE±

y ], (2.5)

where 0 ≤ λ ≤ 1.

The weight factor λ = 0 and 1 corresponds to the explicit and implicit schemes,
respectively. When the right half space in Fig. 1 is a perfect electric conductor(PEC), we
easily find that En+1

y and Hn+1
z will be approximated as

En+1
y → − λ

1 − λ
E−

y , (2.6)

Hn+1
z →

√

ε+

µ+

[

(

1 +
σ+∆t

ε+

)

E+
y +

√

µ+

ε+
H+

z +
λ

1 − λ
E−

y {1 +
σ+∆t

ε+
(1 − λ)}

]

. (2.7)

In such a case, En+1
y and Hn+1

z are unstable with the explicit scheme(λ = 1) for PEC.
Therefore, we should employ the implicit scheme(λ = 0) according to Beggs, and En+1

y
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and Hn+1
z are obtained as

En+1
y =

1

Ω

{

√

ε+

µ+
E+

y +

√

ε−

µ−
E−

y + H+
z − H−

z

}

(2.8)

Hn+1
z =

1

Ω

{

(

1 +
σ−∆t

ε−

)

√

µ+

ε+
H+

z +

(

1 +
σ+∆t

ε+

)

√

µ−

ε−
H−

z +

(

1 +
σ−∆t

ε−

)

E+
y −

(

1 +
σ+∆t

ε+

)

E−

y

}

(2.9)

where

Ω :=

√

ε+

µ+

(

1 +
σ+∆t

ε+

)

+

√

ε−

µ−

(

1 +
σ−∆t

ε−

)

.

For the TM mode, En+1
z and Hn+1

y can be similarly described as follows.

En+1
z =

1

Ω

{

√

ε+

µ+
E+

z +

√

ε−

µ−
E−

z + H−

y − H+
y

}

, (2.10)

Hn+1
y =

1

Ω

{

(

1 +
σ−∆t

ε−

)

√

µ+

ε+
H+

y +

(

1 +
σ+∆t

ε+

)

√

µ−

ε−
H−

y

−
(

1 +
σ−∆t

ε−

)

E+
z +

(

1 +
σ+∆t

ε+

)

E−

z

}

. (2.11)

Since the upstream points (Ey, Bz)
± or (Ez, By)

± are not always located at the grid points,
we need to employ some interpolations to predict the profile inside the grid cell. Beggs
employed two kinds of quadratic-Lagrange interpolation with the second-order accuracy
in time and space O

(

∆t2, ∆x2
)

(hereafter QUL1,2 in Ref. [10]). The upstream value can

be obtained as f (= Ey, Hz)
± = f±

QUL1,2 (xi − c±∆t), where f±

QUL1,2 (x) are the quadratic
interpolations. It can be easily found by the Taylor expansion that the QUL has the
equivalent order of accuracy as the FDTD method. On the contrary, since the CIP method
uses the spatial derivative for interpolation, its time evolution is also required, which can
be determined from the equations for spatial derivatives by taking a spatial derivative of
Eqs. (2.8-2.9) or (2.10-2.11). Therefore, the upstream point can be obtained by the CIP
as

f (= Ey, Hz)
± = f±

CIP

(

xi − c±∆t
)

(2.12)

∂

∂x
f (= Ey, Hz)

± =
∂

∂x
f±

CIP

(

xi − c±∆t
)

(2.13)

where f±

CIP (x) will be explicityly given later in Eq. (A.4). On the contrary, the cubic-
Lagrange method(hereafter CUL) that uses four grid points is also able to keep the third
order accuracy as the CIP. It is likely to imagine that there are few differences between



Ogata, Yabe and Odagaki / Commun. Comput. Phys., 1 (2006), pp. 311-335 316

them, but the CIP has some advantages than the CUL as mentioned in our previous
paper [7].

When the CIP-MOC is extened to multi-dimensions, Eqs. (2.8) to (2.11) are used by
directional splitting in the x-direction because multi-dimensional Maxwell equations can
be described by the combination of TE and TM modes. It will be discussed in section 3.

2.2 Numerical experiments in one dimension

2.2.1 Error analysis

One of the most important issues in the solution of the Maxwell equation is how error
depends on the grid size. In this section, we shall compare the errors of the CIP-MOC,
the FDTD method, the QUL1,2 and the CUL. Both the permittivity ε and permeability µ
are constant(= 1.0) and conductivity σ = 0 in homogeneous media. Therefore, the speed
of light c is 1.0.

The smooth initial profile is used for error analysis in the TE mode:

Ey (x, t = 0) = 1.0 + 0.5 exp

{

−
(

x − xc

h

)}

,

Ey = Hy = Hz (x, t = 0) = 0.0, (2.14)

where xc = Xmax/2 = 1.0 and h = 0.1. The grid size is ∆x = Xmax/NX, where NX is
the number of grid, and CFL ≡ c∆t/∆x is fixed to 0.2. The error is defined as

err ≡
NX
∑

i=1

∣

∣

∣

∣

Ey(CIP ) − Ey(Exact)

Ey(Exact)

∣

∣

∣

∣

/NX. (2.15)

We examine the accuracy of each method by calculating error (2.15) changing the number
of grid NX, in other words, changing the grid size ∆x = Xmax/NX.

Fig. 2 shows the propagation of electric field solved by the CIP-MOC and the FDTD
method with NX = 400. We can hardly see the differences between the CIP-MOC and
the FDTD because the initial profile is very smooth. This means that when we deal with
smooth profile, in other words, if we use sufficiently fine mesh, both the CIP-MOC and
the FDTD can reproduce the correct result. Needless to say, the same can be said of the
other schemes, QUL1,2 and CUL.

In view of Fig. 3, however, the error analysis of the result at t = 0.4 shows that the
CIP and the CUL are the third-order while FDTD and QUL1,2 are the second-order in
time and space. What is interesting in Fig. 3 is that the accuracy of the QUL is lower
than the FDTD, while both schemes are second-order accurate in time and space.

Although both the CIP and the CUL are the third-order schemes in time and space,
the error of the CIP is almost one-order of magnitude better than of the CUL. This result
agrees with our previous paper that deals with the shallow water equations [7]. This
suggests that the discussion on the accuracy should be made in terms of absolute value of
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Figure 2: The propagation of Ey. Top: CIP, Bottom: FDTD. The number of mesh is NX = 400.

errors as well as the dependency on the grid size. Suppose the error of 10−4 for example,
the CIP is capable of simulating with almost one-order of magnitude coarser mesh size
than the QUL. This difference is significant because it becomes three-orders of magnitude
in three dimensions. Thus we expect significant reduction of grid numbers compared with
the QUL and the FDTD.
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Figure 3: The error analysis. The error is defined by Eq. (2.15).

2.2.2 Phase error

When we consider a smooth profile, the CIP-MOC method is proven to have the smallest
error. In order to show the further superiority of the CIP-MOC method to the other
schemes in views of phase error, the advection of a rectangular wave is examined.

The phase error of MOC on the basis of Lagrange interpolation was discussed in
previous papers [6, 13], and it can be readily predicted that the CIP is better than the
CUL and the QUL1,2. In this section, we add the comparison with the FDTD method.

The initial electric field is a rectangular wave, and the magnetic field is zero:

Ey (x, t = 0) =
{ 1.0 0.4 < x < 0.6

0.0 otherwise
, Hz (x, t = 0) = 0.0 (2.16)

The number of meshes is NX = 200, and CFL(= c∆t/∆x) is fixed to 0.2. Fig. 4 shows
the results of the CIP and the FDTD at t = 0.25. While the FDTD has a large numerical
oscillation around discontinuities, the CIP is able to completely maintain the rectangular
shape. This comes from phase error of the FDTD, in other words, the phase speed of
FDTD has a sensitive dependence on the wavelength. It can be seen in Fig.5 that depicts
the phase error of the CIP and the FDTD. The phase speed of the FDTD is not zero even
for k∆x = π (cutoff frequency), but it is about 40% smaller than the exact phase speed
for k∆x = π. On the other hand, the CIP can solve such rectangular wave as well as
smooth profile since the phase error of the CIP is very small for all wavenumbers.

Although this test may not make sense because wave profiles are in general smooth ,
it is worth while considering this example carefully. The rectangular wave includes all the
wavelength, which can be easily understood by the Fourier transform. Therefor the above
example proves that the CIP-MOC is able to treat all the wavelength components with
small number of meshes. Such advantage of the CIP should become more important in
multi-dimensions because the domain scale is usually much larger than the wavelength and
we need to make the grid size for one wave length as large as possible. Generally speaking,
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Figure 4: Propagation of rectangular wave Ey at t = 0.25. Top: CIP, Bottom: FDTD.

Figure 5: Phase error of the CIP and the FDTD.
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electromagnetic waves consist of all kinds of frequency. If we try to reduce the number of
grid in the FDTD, such dispersion will cause the different wave speed depending on the
wavelength. Therefore, the CIP-MOC has a large potentiality for all kinds of practical
applications.

3 Maxwell equations in multi-dimensions

3.1 Introduction

In Section 2, the fundamental concept of CIP-MOC for the Maxwell equations in one-
dimensional case was outlined. Next issue is to extend the CIP-MOC to the multi-
dimensional scheme.

The Maxwell equations in three dimensions can be similarly written in a vector-martix
form

∂W

∂t
+ A(W)

∂W

∂x
+ B(W)

∂W

∂y
+ C(W)

∂W

∂z
+ F = 0, (3.1)

where W = (Ex, Ey, Ez, Hx, Hy, Hz) is the electromagnetic field vector components. F

includes other effects like electrical resistance, current source J, and so on. If the current
follows Ohm’s law, we can set J = σE where σ is the electrical conductivity.

If the Maxwell equations(3.1) can be represented by the combinations of three-dimensional
advection equations, in other words, some characteristics like

∑

l

αl D
lf l

Dt
= A,

Dlf l

Dt
≡ ∂

∂t
+ ul ∂

∂x
+ vl ∂

∂y
+ wl ∂

∂z
(3.2)

the multi-dimensional CIP can be applied to the left hand side, where f l is each component
of electromagnetic field. Unfortunately, however, we are not able to find an expression
with A = 0 in multi-dimensional Maxwell equations but only get the form with A 6= 0,
which means a non-advection term is unavoidable on the right hand side. This is called
the bi-characteristics method, which has been usually used for hydrodynamics in two
dimensions. When we extend the bi-characteristics method to three dimensions for the
Maxwell equations, however, the equations for variables should be very complicated and
the equations for the spatial gradients used for the CIP must be much more complicated
than for the variables. In addition, the accuracy or the symmetry would be severely
deteriorated unless the right hand side A 6= 0 could be accurately estimated . Therefore,
the bi-characteristics method does not seem to be practical. In order to resolve such
difficulty, the CIP-MOC is applied to Eq. (3.1) with directional splitting . Since we have
already established the CIP-MOC with directional splitting for the shallow water equations
in two dimensions [7] and the Maxwell equations (3.1) have the same form as the shallow
water equations, we will be able to establish the Maxwell solver by a similar procedure.



321 Ogata, Yabe and Odagaki / Commun. Comput. Phys., 1 (2006), pp. 311-335

3.2 Method of characteristics with directional splitting

We can establish the general multi-dimensional CIP-MOC in heterogeneous dielectrics
and conductors for the Maxwell equations, that is, F 6= 0 in heterogeneous media in
Eq. (3.1). In order to use the directional splitting method, Eq. (3.1) is split into a pair of
one-dimensional operators:

∂W

∂t
+ A(W)

∂W

∂x
=

1

3
F Wn → W∗ : Lx (3.3)

∂W

∂t
+ B(W)

∂W

∂y
=

1

3
F W∗ → W∗∗ : Ly (3.4)

∂W

∂t
+ C(W)

∂W

∂z
=

1

3
F W∗∗ → Wn+1 : Lz (3.5)

Hereafter, the operators of each direction is represented by Lx, Ly and Lz, respectively. It
should be noted that the factor 1/3 is required in the calculation of F on the right hand
side because the effect of F is distributed to each-direction equally in three dimensions.

Each direction can be solved by the same procedure as one dimension. For example,
Eq. (3.3) in the x-direction has six equations like

∂Ey

∂t
+

1

ε

∂Hz

∂x
= −1

3

σ

ε
Ey,

∂Hz

∂t
+

1

µ

∂Ey

∂x
= 0, (3.6)

∂Ez

∂t
− 1

ε

∂Hy

∂x
= −1

3

σ

ε
Ez,

∂Hy

∂t
− 1

µ

∂Ez

∂x
= 0, (3.7)

∂Ex

∂t
= −1

3

σ

ε
Ex,

∂Hx

∂t
= 0. (3.8)

The pairs (Ey, Hz) in Eq. (3.6) and (Ez, Hy) in Eq. (3.7) are combined to make the two
one-dimensional characteristics as in Eq. (2.3), then Eqs. (3.6) and (3.7) is reduced to

D±Ey

Dt
±

√

µ

ε

D±Hz

Dt
= −1

3

σ

ε
Ey, (3.9)

D±Ez

Dt
∓

√

µ

ε

D±Hy

Dt
= −1

3

σ

ε
Ez, (3.10)

where C±
x : D±/Dt = ∂/∂t + c±∂/∂x. These equations (3.9) and (3.10) are almost the

same as Eq. (2.3) except for the factor 1/3. Therefore, (Ey, Hz)
∗ and (Ez, Hy)

∗ can be
obtained by Eqs. (2.8), (2.9) and Eqs. (2.10),(2.11), respectively in the x-direction, where
* means the temporal values. As for (Ex, Hx)∗ in Eq. (3.8), Hx is constant and Ex can be
updated by the implicit scheme for the operator Lx

E∗

x =
En

x

1 +
∆t

3

σi,j,k

εi,j,k

, H∗

x = Hn
x (3.11)
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where σi,j,k and εi,j,k are the conductivity and permittivity at the grid (i, j, k). Eq. (3.11)
is also able to treat PEC approximation (Ex → 0 as σi,j,k → ∞).

Although the derivative ∂xf is solved by the CIP in the x-direction, the time evolution
of transverse derivatives ∂yf and ∂zf cannot be obtained from one-dimensional CIP. Aoki
proposed to use ∂x∂y(,z)f so that the CIP can also be applied to ∂y(,z)f , which is called
Type-C scheme [12]. However, we shall adopt linear interpolation instead of the CIP for
only the translation of transverse derivatives ∂yf and ∂zf in the x-direction:

f∗

y(,z)i,j =

{

∂y(,z)fi,j −
∂y(,z)fi,j − ∂y(,z)fi−1,j

∆x
λx∆t, λx > 0

∂y(,z)fi,j +
∂y(,z)fi,j − ∂y(,z)fi+1,j

∆x
λx∆t, λx < 0.

(3.12)

where λx is the characteristic speed (equal to the speed of light = ±c in the Maxwell
equations). This scheme is called Type-M scheme [11]. It was proved in Ref. [8] that the
accuracy of Type-M is slightly lower than the Type-C that has the third-order accuracy.
Since Type-M does not have to use additional variables like ∂yzf, ∂xyzf , it will help us re-
ducing memories and calculation times, especially it is very effective for three-dimensional
large-scale calculations. In addition, Type-M was also shown to give adequate results in
the shallow water equations in our previous paper. Therefore we shall use Type-M scheme
in this paper.

As for the next step towards the y and z-direction, the same procedure as the x-
direction is applied. For example, (Ez, Hx)∗∗, (Ex, Hz)

∗∗ and their spatial derivatives
are obtained by the CIP-MOC (∂yf is solved by CIP and ∂(x,z)f are by Eq. (3.12)) and
(Ey, Hy)

∗∗ is obtained in a form similar to Eq. (3.11) in the y-direction. The extension to
three dimensions is straightforward.

Shang proposed an implicit and explicit fractional-step methods for solving 3D, timede-
pendent Maxwell equations [14]. The coefficient matrices A, B and C in Eq. (3.1) have
the eigenvalues, and they may be independently diagonalized by a straightforward ma-
trix multiplication. The present scheme might be recognized to be some extension of
some concepts of both Shang and Beggs schemes to general Maxwell solver with the CIP
method.

Important difference of the CIP-MOC is that the formulas for directional operators
Eqs. (3.3) to (3.5) can be explicitly determined by using only some combinations of one-
dimensional formula like Eq. (2.3), and it is very easy for the CIP-MOC to be extended
to arbitrary grid system like the Soroban grid because the CIP is a compact scheme.

4 Plane-wave scattering by a perfectly conducting circular

cylinder

As the multi-dimensional example, plane-wave scattering by a perfectly-conducting circu-
lar cylinder in an isotropic and homogeneous medium is examined. This is a classical prob-
lem and its solution can be found in several books of fundamental electromagnetism [15,16].
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Figure 6: Geometry of the problem and notation. a is the cylinder radius and ρ ≡
p

x2 + y2, ϕ = arctan (y/x).

When a plane wave is incident on a perfectly-conducting circular cylinder, the scattered
wave is generated, then the total field can be expressed as the sum of two waves. The
latter can be expanded in terms of cylindrical functions, which are defined as the product

of a Hankel function of the second kind of integer order H
(2)
n times a sinusoidal angular

factor exp (jnθ), where j ≡
√
−1 and θ is the angle of wave vector. The time dependency

is assumed to be exp (jωt), where ω is the angular frequency.
In the following sections, we compare the CIP-MOC and the FDTD method for a plane

wave (TM mode or TE mode) coming from the left direction with angle θ = 0, and the
perfectly conducting circular cylinder (gray circle) shown in Fig. 6 is placed at the center.

4.1 TM mode

The initial TM plane wave having the components Ey and Hz is set for CIP-MOC and
FDTD simulations as

Einc
z (x, y, t = 0) = cos

(

2πx
λ

)

, H inc
y (x, y, t = 0) = −

√

ε0
µ0

Einc
z , if 0 ≤ x ≤ 2λ;

Einc
z (x, y, t = 0) = H inc

y (x, y, t = 0) = 0, otherwise (4.1)

where both ε0 and µ0 are normalized to 1.0 in free space. Two kinds of the number of grid
are employed, (NX, NY ) = (100, 60) as coarse grid and (NX, NY ) = (200, 120) as fine
grid for comparison. The grid spacing is ∆x = ∆y = 1.0/NX. The time step ∆t = 0.1∆x
corresponds to CFL=0.1. The radius of the PEC cylinder a is 0.1 and the wavelength λ
is equal to the cylinder diameter (= 2a = 0.2), which corresponds to ka = π .

Fig. 7 shows the comparison of Ez contours among (a) the exact solution, (b) CIP
and (c) FDTD at t = 1.0. The grid is uniform in both schemes and the number of grid is
(NX, NY ) = (100, 60). Both CIP-MOC and FDTD agree well with the exact solution on
the whole. However, the diffracted wave in x > 0.5 and reflected wave x < 0.5 of CIP seem
closer to the exact solution than of FDTD but both results seem to be partly different
from the exact solution.

In order to improve these results, the Soroban grid is used for the CIP-MOC. The
Soroban grid consists of planes, lines and grid points. The grid points are constrained to
move along the lines and lines are constrained to move on the planes [8]. The number of
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Figure 7: The comparison of Ez at t = 1.0. (a): Exact solution, (b): CIP, (c): FDTD in uniform mesh. -1.7
to 1.7, 25 split, 0.25 thick.
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Figure 8: The Soroban grid around the cylinder. The number of lines is 100 and 60 points are on each line.

lines is 100 and 60 points are placed on each line. Therefore, the number of grid is also
6000 that is the same as uniform mesh in Fig.7 (Hereafter, NX means the number of lines
and NY means the number of grid points on each line in the Soroban grid for the sake of
convenience). The Soroban grid used in the CIP-MOC is displayed in Fig. 8.

The lines and grid points on the lines are concentrated around the cylinder surface in
the Soroban grid. The grid spacing of the Soroban grid in the region far from the cylinder
is coarser than uniform mesh because lines are concentrated at the cylinder surface, while
the number of grid is the same as coarse uniform grid. In the calculation, the ratio of
the maximum to minimum grid spacings was five. It must be very hard to calculate
complex surface boundary with the Cartesian grid like that used in the FDTD, even if
sub-grid method or sub-cell method could be used. For comparison, the fine uniform mesh
(NX, NY ) = (200, 120) is employed for the FDTD.

Fig. 9 shows the Ez contours of the CIP-MOC with the Soroban grid, the FDTD with
fine grid and the exact solution. The results of the CIP-Soroban and the FDTD become
better than Fig. 7 and they are almost identical to the exact solution. Especially, the
Soroban grid makes the scattered wave near the cylinder shaper than uniform mesh even
though the number of grid points is the same as Fig. 7. In the contours, it might be very
hard to recognize the difference of these schemes.

Fig. 10 shows the cross section of reflected wave (0.05 ≤ x ≤ 0.45), diffracted wave
(0.55 ≤ x ≤ 1.0) in the x-direction, and the y-direction (0 ≤ y ≤ 0.3) because the result
is symmetrical at y = 0.3.

The results of the CIP-MOC and the FDTD are almost identical to the exact solution
except for Fig. 10(a) because the profile is relatively smooth on the right side of the
cylinder (x > 0.6) and hence the FDTD is also able to solve the diffracted wave. The
CIP with uniform mesh (NX, NY ) = (100, 60) is almost the same as the FDTD with
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Figure 9: The comparison of Ez at t = 1.0. (a): Exact solution, (b): CIP-Soroban, (c): FDTD-fine.
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Figure 10: The cross section of Ez in the x-direction at y = 0.3. (a): (0 ≤ x ≤ 0.45), (b): (0.55 ≤ x ≤ 1.0)
and (c): in the y-direction (0 ≤ y ≤ 0.3).
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(NX, NY ) = (200, 120). As shown in Fig. 10(a), however, the reflected wave of FDTD
with (NX, NY ) = (100, 60) is two times larger than the others, and the reflected wave is
a little bit out of phase .

There may be two reasons for such results. First one is due to the treatment of
boundary condition at the cylinder in the FDTD and it implies that the simple Yee scheme
is inadequate for the PEC if the grid resolution is not sufficient. Secondly, spatial derivative
of Ey at the cylinder surface is not continuous while the value is continuous. Since this
discontinuity can cause the phase error of the FDTD at the surface, the amplitude of
reflected wave becomes larger. This result means that if the resolution around the cylinder
(or the arbitrary body) is not enough, reflected wave can be incorrect that should affect the
whole distribution. It should be noticed that the FDTD gives two times larger reflection
wave even for the case in which one wavelength is described by 15-20 grid points. The
CIP-MOC with the Soroban grid is able to give the result better than the FDTD with
fine grid and completely identical to the exact solution even though the number of grid is
the same as uniform mesh (NX, NY ) = (100, 60).

4.2 TE mode

The second case is the TE mode. The initial TE plane wave having the components Ey

and Hz is set as

Einc
y (x, y, t = 0) = cos

(

2πx
λ

)

, H inc
z (x, y, t = 0) = −

√

ε0
µ0

Einc
y if 0 ≤ x ≤ 2λ;

Einc
y (x, y, t = 0) = H inc

z (x, y, t = 0) = 0 otherwise (4.2)

The number of grid is the same as the TM mode, that is, the CIP-MOC with uniform
grid and Soroban grid is (NX, NY ) = (100, 60), and the FDTD employs two sets of grid
points (NX, NY ) = (100, 60) and (NX, NY ) = (200, 120).

Fig. 11 shows the cross section of Hz profile. As in the TM mode, the CIP is closer
to the exact solution for coarse mesh and becomes much closer when the Soroban grid is
used.

It is shown in the previous section that both the CIP-MOC and the FDTD are able
to obtain relatively accurate result for electric field on the whole in the TM mode. This
is because the electric field is always zero and continuous in terms of values on the PEC
boundary. However, since large discontinuous of the magnetic field can be generated on
the PEC boundary, it becomes more difficult to deal with the magnetic field than the
electric field.

It is very important to treat the vicinity of material surface with high resolution because
the coarse mesh will generate incorrect scattered waves and the whole solution will be
affected. Since the whole solution can be described by the sum of incident wave and
scattered wave , the Soroban grid that can concentrate the grid points near the surface is
very useful for the Maxwell equations.

The magnetic field of the CIP-MOC exists inside the PEC cylinder over a few meshes
while there is no wave in the FDTD method. This is not because of the CIP but because
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Figure 11: The cross section of Hz in the x-direction at y = 0.3. (a): (0 ≤ x ≤ 0.45), (b): (0.55 ≤ x ≤ 1.0)
and (c): in the y-direction (0 ≤ y ≤ 0.3).
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of employing the MOC. Suppose the grid of PEC boundary is i in Fig. 1, as mentioned in
Eqs. (2.6) and (2.7), Hz(i) on the surface is not zero. Therefore, when Hz(i+1) is calculated,
it becomes non-zero since H+

z is obtained by an interpolation like the CIP, CUL and so on
between (i, i + 1) . Even though this effect will be rapidly reduced, the profile of magnetic
field decays inside a PEC over a few meshes. On the contrary, the FDTD is based on the
staggered mesh and hence Hz(i+1/2) can always be zero, if the PEC boundary grid i is
placed at the location of the electric field but not of the magnetic field.

Beggs suggested the PEC boundary condition for MOC, however, it should be noted
that what we are really interested in is the solution outside of the PEC and the solution
inside the PEC does not affect the outer solution. Such a behavior is observed only for
the PEC but the calculation inside the cylinder becomes correct when the conductivity
becomes smaller and the decay distance or skin depth in the conductor becomes the order
of the grid size. Therefore, we can use Eqs. (2.9) for any conductivity but the special PEC
boudary treatment is not necessary.

5 Application of Soroban grid to Vlasov equation

The Vlasov equation is used to describe the kinetic motion of charged particles in collision-
less plasmas coupled with the Maxwell equation. The velocity distribution f(x,u, t) is
described by

∂f

∂t
+ u

∂f

∂x
+

F

m

∂f

∂u
= 0. (5.1)

where F is the force and m the mass. In three dimensions, this is the huge system and the
distribution is described in six dimensional space. Since the CIP can describe the advection
process accurately even with coarse grid, it enables us to directly solve six-dimensional
phase space in Eulerian grid system. Actually, the Landau damping has been accurately
calculated even with 10 grids in whole velocity space [18]. Furthermore, the exact particle
conservation is guaranteed.

In most of the plasma simulations, the particle code is still the major group. This is
because the particle velocities changed largely during the interaction with electromagnetic
waves and thus the fixed Cartesian coordinate can not trace the dynamical acceleration.
Since the accelerated velocities are different from space to space, we need a special mesh
system in which velocity mesh varies in space. For that purpose, the Soroban grid is the
most promising one.

In the following example, the lines are placed perpendicularly to the x-axis and the
grid points move in the direction of velocity space. For testing the Soroban grid, we here
used the free-streaming test in which F = 0. The initial condition is

f(x, v, 0) = fo(v)(1 + Acoskx), f0(v) =
1√
2π

e−v2/2, (5.2)

where we set k = 0.5, A = 0.1 and the system size in the x-direction is L = 4π and the
velocity space is from v = −5 to v = 5. The number of lines in the x-direction is 100 and
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Figure 12: Time evolution of density. The solid line shows the fixed uniform grid and the circles for the Soroban
grid.

the 64 grid points move along each line. The time step is fixed to 0.002.

It is well known that the recurrence phenomena occur when the finite difference method
is used in the velocity space. Suppose the velocity space is uniformly divided. If the
particle (=grid) with the lowest velocity reaches the periodic boundary L = 4π, the the
particle with the second lowest velocity which is twice the lowest one traverses the system
twice and also reaches the boundary. Thus all the particles reach sumultaneously at the
boudary. This time is called recurrence time and all the phenomena should come back to
the initial value.

Fig. 12 show the result of fixed uniform grid and the recurrence occurs at t = 77.9 as
expected from the theory. Such recurrence is the key issues in employing the grid-based
Vlasov solver. By using the Soroban grid shown in Fig. 13, the velocity grid is no more
regular and we observed the dissapperance of the recurrence as shown in Fig. 12.

6 Conclusion

The new scheme for the Maxwell equations using the CIP-MOC in combination with
Soroban grid is established in this paper. Since the CIP is less diffusive and has smaller
phase error for advection equation, MOC is suitable for the CIP method. The CIP-MOC
can be straightforwardly extended to multi-dimensional heterogeneous medias that include
dielectrics and conductors by directional splitting.

In addition to the accuracy and low phase error mentioned in this paper, the CIP-MOC
has some additional advantages compared to the finite difference schemes like the FDTD.
In an open space, the incident wave or reflected waves by some objects should go though
the free boundary. Since the CIP-MOC uses the characteristics, such a free boundary is
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Figure 13: Soroban grid in phase space.
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easily treated while some special treatments are required for the FDTD.
In the application of the Soroban grid, the key issue is how effectively locate the

Soroban grid. Recently, Takizawa [17] has proposed an interesting ideas on how to make
adequate Soroban grid near the surface of the body. The application of such idear will be
published in future.

Appendix I : Principle of the CIP method

Let us review the numerical technique of the CIP method briefly. The one-dimensional
form of the advection equation is given by

∂f

∂t
+ u

∂f

∂x
= 0. (A.1)

When u is constant, if the initial condition of f(x, t = 0) = F (x), the analytical solution
of f can be easily described as f (x, t) = F (x − ut), which means a simple translational
motion of a wave. Even if u depends on x and t, this solution is approximately correct in
a very short time ∆t, that is, f (x, t + ∆t) ≈ f (x − u∆t, t).

All kinds of semi-Lagrangian methods such as linear, quadratic Lagrange(QUL), cubic
Lagrange(CUL), and so on employ a Lagrangian invariant solution. Therefore, the CIP
method can be also called semi-Lagrangian scheme.

However, unlike conventional semi-Lagrangian schemes, the CIP method uses the spa-
tial derivative of f as well, that is, Hermite spline interpolation. Let us differentiate
Eq.(A.1) with spatial variable x, then we get

∂g

∂t
+ u

∂g

∂x
= −∂u

∂x
g, (A.2)

where g stands for the spatial derivative of f (= ∂f/∂x). In the simplest case that the
velocity u is constant, Eq.(A.2) coincides with Eq.(A.1) and represents the propagation of
spatial derivative with a velocity u. By this equation, we can trace the time evolution of
f and g on the basis of Eqs.(A.1) and (A.2).

If two values of f and g are given at two grid points, the profile between these points
can be interpolated by cubic polynomial FCIP (x) = aix

3+bix
2+gix+fi. Thus, the profile

at n + 1 step can be obtained shifting the profile by u∆t like fn+1 = F (x − u∆t), gn+1 =
dF (x − u∆t)/dx. Suppose the case that the velocity u is negative, the coefficients (ai, bi)
can be described as

ai =
gi + gi+1

∆x2
+

2(fi − fi+1)

∆x3
, bi =

3(fi+1 − fi)

∆x2
− 2gi + gi+1

∆x
, (A.3)

and (fi, gi)
n+1 in the CIP can be obtained as

fn+1
i = aiX

3 + biX
2 + gn

i X + fn
i , (A.4)

gn+1
i = 3aiX

2 + 2biX + gn
i , (A.5)
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where we define X = −u∆t. On the other hand, fn+1 obtained by QUL1 and 2 is

fn+1
i(QUL) = ai(QUL1,2)X

2 + bi(QUL1,2)X + fn
i , (A.6)

where the coefficients
(

ai(QUL1,2), bi(QUL1,2)

)

are

ai(QUL1) = −(fi+1 − fi−1) ν

2
, bi(QUL1) =

(fi+1 − 2fi + fi−1) ν2

2
(A.7)

ai(QUL2) = −(3fi − 4fi+1 + fi+2) ν

2
, bi(QUL2) =

(fi − 2fi+1 + fi+2) ν2

2
(A.8)

with ν the CFL number (≡ u∆t/∆x). We can see that both QUL1 and QUL2 are the
second-order schemes in time and space. The problem of the QUL2 is that it adds one
downwind point, which provides a lagging phase error. This is in contrast to the upwind
interpolation scheme in the CIP and the QUL1.

The CUL uses four values of grid points to make the cubic-polynomial as the CIP. Some
fundamental comparisons between the CIP and CUL have already been performed in views
of accuracy, phase error and so on, and some superiorities of the CIP were discussed in [7].
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