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Abstract. We review the methods to preserve the initial state populations in a fast
harmonic trap expansion. The design of the time dependence of the frequency using
inverse techniques presents advantages over the slow adiabatic approach, band-bang
methods, or the non-local “transitionless tracking” algorithm. Many operations with
cold atoms make use of adiabatic expansions and may benefit from such a shortcut to
adiabaticity.
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1 Introduction

A standard operation to probe, control, or prepare a quantum system, in particular in the
realm of atomic and molecular science, consists in changing the external parameters of
the Hamiltonian. In many cases the ideal transformations from an initial to a final pa-
rameter configuration are the ones that do not induce any transitions [1,2]. The standard
solution to this requirement is to perform the changes “adiabatically”. Most experiments
with cold atoms are based on a cooling stage and then an adiabatic drive of the system
to some desired final trap or regime [3]. The adiabatic step may have different objectives,
such as the reduction of velocity dispersion and collisional shifts for spectroscopy and
atomic clocks [4], reaching extremely low temperatures unaccessible by standard cooling
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techniques [5], or, in experiments with optical lattices, broadening the state before turning
on the lattice [6]. There is recently a surge of interest in adiabatic theory and applications
for fundamental reasons [1,3], and also in connection with quantum information [7,8]. In
adiabatic processes the system follows slowly at all times the instantaneous eigenvalues
and eigenstates of the time-dependent Hamiltonian. The main problem is that the long
times needed can make them useless or impractical [3], or quite simply a faster process is
preferred, e.g., to increase the repetition rate of a cycle.

A highly desirable goal is to achieve the same final state as the slow adiabatic pro-
cesses, possibly up to phase factors, but in a much shorter time, in other words, to find a
shortcut to adiabaticity. Moreover the procedure should work for arbitrary initial states,
and be realizable in practice. This goal is also relevant to optimize the passage between
two thermal states of a system [9–12], a long standing question in the fields of optimal
control theory and finite time thermodynamics. For time-dependent harmonic oscilla-
tors, minimal times have been established using “bang-bang” real-frequency processes
believed up to now to be optimal [11], in which the frequencies are changed suddenly at
certain instants but kept constant otherwise.

In this paper, we shall review different shortcuts to adiabaticity that have been pro-
posed recently to change a harmonic Hamiltonian frequency in a finite time t f . One ap-
proach is to design appropriate “parameter trajectories” of the frequency from the initial
to the final values using bang-bang techniques [11]. Another method is to design appro-
priate “parameter trajectories” of the frequency based on Lewis-Riesenfeld invariants of
motion [15] supplemented by simple “inverse-problem” techniques [16]. We shall call
this approach “inverse-invariant” method, or II for short [13, 14]. A third approach for
getting shortcuts to adiabaticity is to apply a new interaction that modifies the Hamilto-
nian beyond a simple parameter evolution of the original harmonic form. This option,
termed “transitionless-tracking” approach, or TT for short, relies on a general framework
set by Kato in a proof of the adiabatic theorem [17], and has been formulated recently by
Berry [1].

We shall review first the “inverse-invariant” method in Section 2, comparing it with
adiabatic and bang-bang techniques. This method will be applied to Bose-Einstein con-
densates governed by the Gross-Pitaevskii (GP) equation in Section 3. The TT method is
reviewed in Section 4.

2 Fast optimal frictionless atom cooling in harmonic traps

2.1 “Inverse-Invariant” method

For simplicity, we shall firstly describe our method for states representing single atoms
of mass m. Consider an effectively one-dimensional time-dependent harmonic oscillator,

H =
1

2m
p̂2+

1
2

mω2(t)q̂2, (1)
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with an initial angular frequency ω(0)>0 at time t=0 and final frequency ω f =ω(t f )<
ω(0) at time t f . When the Hamiltonian is constant we are used to think of temperature
changes and “cooling” in terms of population changes. Note however that when the
Hamiltonian changes with time the temperature may change even if the populations stay
constant. For a population preserving process involving canonical states

e−H/(kT)/tr
[
e−H/(kT)

]
,

the decrease in frequency may be considered as a “cooling” process since the initial and
final partition functions are the same, thus

En(0)
kT(0)

=
En(t f )
kT(t f )

, (2)

which implies a temperature reduction T(t f )= T(0)ω f /ω(0). This process though, does
not involve a phase-space compression. (A process in which, in addition to a temperature
decrease there is phase-space compression is sometimes called “brightening” or “true
cooling” [18].)

The challenge is to find a trajectory ω(t) between these two values so that the popu-
lations of the oscillator levels n=0,1,2... at t f are equal to the ones at t=0. Our tool to en-
gineer ω(t) and the state dynamics will be the solution of the corresponding Schrödinger
equation based on the invariants of motion [15, 19–21] of the following form

I(t)=
1
2

[
(1/b2)q̂2mω2

0 +
1
m

π̂2
]

, (3)

where π̂ = bp̂−mḃq̂ plays the role of a momentum conjugate to q̂/b, the dots are deriva-
tives with respect to time, and ω0 is in principle an arbitrary constant. The invariance
condition reads

dI
dt
≡ ∂I

∂t
+

1
ih̄

[I,H]=0, (4)

and implies for the scaling, dimensionless function b=b(t) the subsidiary condition

b̈+ω2(t)b=
ω2

0
b3 , (5)

which is an Ermakov equation where real solutions must be chosen to make I Hermitian
[22]. The form of the invariant (3) and the subsidiary condition (5) follow by inserting an
ansatz quadratic in p̂ and q̂ into (4).

Whereas ω0 is frequently rescaled to unity by a scale transformation of b [15], other
convenient choice is ω0 = ω(0) as we shall see below. I(t) has the structure of a har-
monic oscillator Hamiltonian as well (as long as ω2

0 > 0), with time-dependent eigen-
vectors |n(t)〉 and time-independent eigenvalues (n+1/2)h̄ω0. They are useful because
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the general solution of the Schrödinger equation can be written as a superposition of
orthonormal “expanding modes”

ψ(t,x)=∑
n

cneiαn(t)〈x|n(t)〉, (6)

where

αn(t)=−(n+
1
2
)ω0

∫ t

0

dt′

b(t′)2 ,

and the cn are time independent amplitudes that may be computed at t =0. For a single
mode and ω2

0 >0,

Ψn(t,x)=
(mω0

πh̄

)1/4 exp(αn(t))√
(2nn!b(t))

exp
[

im
2h̄

(
ḃ

b(t)
+

iω0

b(t)2

)
x2

]
H̃n

[√(mω0

h̄

) x
b(t)

]
, (7)

where H̃n are the Hermite polynomials. The corresponding time-dependent average en-
ergy is given by

〈H(t)〉n =
(2n+1)h̄

4ω0

(
ḃ2+ω2(t)b2+

ω2
0

b2

)
. (8)

The average position of an expanding mode is zero and the standard deviation σ =
(
∫

dxx2|Ψn|2)1/2 is proportional to b, σ = b(n+1/2)1/2/(mω0/h̄)1/2, so that the scaling
factor provides a measure of the state width along its evolution.

The case in which the frequency is scaled as

ω(t)=ω(0)/b2, (9)

with b =(At2+2Bt+C)1/2 has been much studied [19, 20, 23]. Substituting this into Eq.
(5) gives ω2

0 =ω(0)2+AC−B2. For a hard wall trap, the square-root-in-time scaling factor
b, corresponding to A = 0, has been shown to provide fast and efficient cooling [24, 25].
However, for harmonic traps, much more commonly realized in ultracold experiments,
such time dependence leads to negative values of ω2

0 even for modest cooling objectives.
Note that, using (9) at t=0 and t f with A=0, it follows that

C=1 and B=
ω(0)−ω f

2t f ω f
.

Thus ω2
0 becomes negative easily by decreasing t f . This is cumbersome because the ref-

erence or auxiliary system provided by the invariant is not a harmonic oscillator with
discretized levels but a harmonic repeller, so Eq. (7) becomes invalid. Moreover, instead
of (6), linear combinations of a continuum of non-square-integrable expanding modes
would be needed to describe the evolution of any single eigenstate of the initial trap.
This is of course only a drawback to calculate the dynamics using the invariant, not to
realize the expansion in the laboratory. In fact for a negative ω2

0 it is more convenient to
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use the adiabatic basis [26]. The numerical results show that, even though the square-
root-in-time scaling is singularly efficient for adiabatic following, as discussed below, the
cooling performance fails for very short expansion times t f .

An alternative, successful strategy is to set ω0 = ω(0) (this will be the case from
now on) and apply inverse scattering techniques for complex potential optimization
[16, 27, 28], leaving ω(t) undetermined at first and imposing boundary conditions (BC)
on b and its derivatives at t =0 and t f , to assure: (a) that any eigenstate of H(0) evolves
as a single expanding mode and that (b) this expanding mode becomes, up to a position-
independent phase factor, equal to the corresponding eigenstate of the Hamiltonian H(t f )
of the final trap. In this way the populations in the instantaneous basis will be equal at
initial and final times. b(t) may be chosen as a real function satisfying the BC, for ex-
ample a polynomial or some other convenient functional form with enough free param-
eters. After b(t) has been engineered, the physical frequency ω(t) is given by Eq. (5).
The resulting Hamiltonian in (1) will be called HI I if we need to distinguish it from other
options.

BC at t = 0: We choose b(0) = 1, ḃ(0) = 0 so that H(0) and I(0) commute and have
common eigenfunctions. Since ω0 = ω(0), b̈(0) = 0 must hold as well. These BC imply
that any initial eigenstate of H(0), un(0), will evolve according to the expanding mode
(7) for all later times. In general H(t) and I(t) do not commute for t > 0, so that the
expanding mode Ψn(t) may have more than one component in the “adiabatic basis” of
instantaneous eigenstates of H(t), {un(t)}, n=0,1,2..., where

un(t,x)=
(

mω(t)
πh̄

)1/4 1√
2nn!

exp
(
− m

2h̄
ω(t)x2

)
H̃n

(√
mω(t)

h̄
x

)
. (10)

BC at t = t f : We want Ψn(t f ) to be proportional, up to the global phase factor eiαn(t f ), to
the eigenstate of the final trap un(t f ). Thus we impose

b(t f )=γ=(ω0/ω f )1/2, ḃ(t f )=0, b̈(t f )=0.

We may see as well that these boundary conditions minimize the average energy. From
Eq. (8), one finds 〈H(t f )〉n in terms of b f =b(t f ) and ḃ f =db(t)/dt|t=t f ,

〈H(t f )〉n =
(2n+1)h̄

4ω0

(
ḃ2

f +ω2
f b2

f +
ω2

0

b2
f

)
. (11)

Since b f and ḃ f can be set independently we can minimize the terms depending on them
separately,

∂〈H(t f )〉n

∂ḃ f
=

(2n+1)h̄
2ω0

ḃ f =0, (12)

∂〈H(t f )〉n

∂b f
=

(2n+1)h̄
4ω0

(
2ω2

f b f−2
ω2

0

b3
f

)
=0. (13)
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To satisfy these equations, we have

ḃ f =0, (14)

ω2
f =ω2

0/b4
f . (15)

Comparing (15) with the Ermakov equation at t f , it follows that b̈ f =0. In other words, the
boundary conditions that we have imposed above correspond to the minimal possible
average energy, which, using b̈ f = 0, (15) and (14) in (11) turns out to be the adiabatic
energy,

〈H(t f )〉n(minimal)=(n+1/2) h̄ω2
f . (16)

Since this is true for all n this means that we cannot design any trajectory to achieve an
average energy below the one provided by an adiabatic process. Any other choice of
boundary conditions for b would necessarily produce excitations.

It is interesting to compute the average energy as well for a density operator $ which
is stationary in the initial trap. This means that it is diagonal in the basis of the invariant,

〈H〉= tr[$(t)H(t)]= tr[∑
n

pn|Ψn〉〈Ψn|H(t)]=∑
n

pn〈Ψn|H(t)|Ψn〉

=∑
n

pn
(2n+1)h̄

4ω0

(
ḃ+ω2b2+

ω2
0

b2

)

= p0E0(t)+〈n〉0
h̄

2ω0

(
ḃ+ω2b2+

ω2
0

b2

)

=[2〈n〉inv+1]E0(t), (17)

where 〈n〉inv is the average vibrational quantum number in the invariant basis. This
does not change with time so it coincides with the initial average. Comparing this to the
corresponding calculation in the adiabatic basis,

〈H〉=∑
n

pad
n 〈H〉ad

n =∑
n

pad
n h̄(n+1/2)ω(t)(〈n〉ad+1/2)h̄ω(t)

=(2〈n〉ad+1)Ead
0 (t), (18)

we may calculate the average excitation number in the adiabatic basis as a function of
time,

2〈n〉ad+1=
〈H〉

Ead
0 (t)

=
2〈H〉
h̄ω(t)

=
2[2〈n〉inv+1]E0(t)

h̄ω(t)
. (19)

Substituting the simple polynomial ansatz b(t)=∑5
j=0 ajtj into the six BC set above gives

six equations that can be solved to provide the coefficients,

b(t)=6(γ−1)s5−15(γ−1)s4+10(γ−1)s3+1, (20)

where s = t/t f . The universality of the solution indicates that there is no fundamental
limitation on t f as long as the potential is really quadratic. At initial and final times 0 and
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t f , ω(t) = ω0/b2(t), but, unlike the treatment with square-root-in-time expansions, this
relation does not hold in general for an arbitrary intermediate time.

The six conditions mentioned above leave time-dependent phases eiαn(t) but they are
irrelevant regarding the population of the nth level. In particular density operators which
are stationary with respect to H(0) (e.g. a pure state |un(0)〉〈un(0)| or a canonical state)
are mapped onto the corresponding stationary states of H(t f ) with the phases canceled.
In other cases the phases remain but the populations are preserved. Note that eiαn(t), see
Eq. (7), is the phase factor that the initial state un(0) would get in a virtual adiabatic
process with adiabatic (instantaneous) energy (n+1/2)h̄ω0/b2. The trajectories may be
designed to control the phase by adding integral conditions, such as

τ(t f )=
∫ t f

0

dt
b2(t)

=
ω f

ω0
t′, (21)

where t′ is some desired time. This would require a more complicated ansatz for b, such
as a polynomial of higher degree.

The shortcut to adiabaticity using invariants applies to arbitrary initial states, super-
positions or mixed. This also means that fast frictionless cooling is directly applicable to
N-body non-interacting fermions or to a Tonks-Girardeau gas [29, 30].

An important feature of ω2(t) is that it may be negative during some time interval
in which the potential becomes an expulsive parabola [31]. In general the (imaginary)
frequency of the repulsive region increases for shorter cooling times. For the regular
Ermakov equation (5), a simple estimate for the polynomial ansatz b(t), and ω0Àω f , is
that the imaginary frequencies occur if t f <1/(3ω f ). (For a given s= t/t f , a zero of ω2(t)
is found when t f = u(s)/ω f , where u(s) may be computed numerically. Its maximum
value, ∼1/3, occurs near s =0.43.) Notice that this is different from the negativity of ω2

0
commented above. Now ω2

0 remains positive by construction.

2.2 Comparisons with adiabatic and Bang-Bang trajectories

Whereas in principle the II method is not intrinsically limited and allows for an arbitrar-
ily small t f (in the purely harmonic potential, for limitations due to anharmonicity see
below) we shall discuss here the limitations of adiabatic or bang-bang methods.

To maintain adiabaticity during the expansion, the system should satisfy [25]
∣∣∣∣
〈k(t)|∂tn(t)〉

[Ek(t)−En(t)]/h̄

∣∣∣∣¿1, (22)

where

〈k(t)|∂tn(t)〉=




ω̇
4ω

√
n(n−1) (k=n−2),

− ω̇
4ω

√
(n+1)(n+2) (k=n+2),

0 (otherwise).
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For a linear ramp,
ω(t)→ω0+(ω f−ω0)t/t f ,

the adiabaticity condition (22) for the harmonic oscillator becomes

|
√

2ω̇/(8ω2)|¿1. (23)

This implies a very long time, t(ad)
f À 1.1 s for an initial frequency ω0 = 250×2πHz, and

final one ω f = 2.5×2πHz. In practice 6 s are necessary to achieve a 1% relative error in
the final energy of the ground state with the linear ramp.

A much more efficient (still adiabatic) strategy is to distribute ω̇/ω2 uniformly along
the trajectory, i.e., ω̇/ω2 = c, c being constant. By solving this differential equation and
imposing ω f =ω(t f ) we get

ω(t)=
ω0

1−(ω f−ω0)t/(t f ω f )
.

This corresponds to the case A=0, 2B=−(ω f−ω0)/(t f ω f ), C =1 (i.e., a square-root-in-

time scaling factor), and implies t(ad)
f À 11ms for the given initial and final frequencies.

With this optimized adiabatic trajectory a 1% error level for the ground state energy is
achieved after 45ms.

Bang-bang trajectories with real frequencies also suffer from fundamental limitations.
For the three-jump trajectory [11]

ω(t)=





ω0 (t=0),
ω1 (0< t<τ1),
ω2 (τ1 < t<τ1+τ2),
ω f (t= t f =τ1+τ2),

(24)

the cooling is faster for smaller values of ω1 and larger values of ω2. In principle the
fastest process to reach the target state corresponds to ω1→0 and ω2→∞ [11] with

tmin
f =

√
1−ω f

ω0
×(ω f ω0)−

1
2 , (25)

e.g., tmin
f ≈6.3 ms for an initial frequency ω0 =250×2πHz and final one ω f =2.5×2πHz.

These are results based on optimal control theory, initial and final thermal states, and
the constraint ω1,2 > 0. If the positivity condition for the intermediate frequencies is re-
laxed, faster processes involving finite frequencies and t f <tmin

f are possible, although the
discontinuous jumps in this type of trajectory call into question its realizability. In any
case times smaller than tmin

f are possible so we should revise a finite time version of the

third principle (if ω f →0, tmin
f →∞ as ω−1/2

f ) and maximal cooling rates based on tmin
f .
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2.3 Experimental realization

Purely optical traps are manipulated in time for the adiabatic cooling of single neutral
atoms [32]. We propose an experimental realization based on a time-dependent far-off
resonance optical dipole trap (red detuned) and an antitrap (blue detuned), which are
not sensitive to the detailed internal states and in particular to Zeeman sublevels, if suf-
ficiently detuned from the atomic line resonance. This effective interaction can be made
time dependent by varying the laser intensity, the frequency, or both [4], since the optical
frequencies are many orders of magnitude larger than Rabi frequencies or detunings, and
the changes will be slowly varying in the scale of optical periods. The intensity of a dipole
trap can be changed by three or four orders of magnitude in 100 ns using acousto-optics
or electro-optics modulators.

We have so far considered one dimension (1D). Formally the three coordinates in an
ideal harmonic trap are uncoupled so the expansion processes can be treated indepen-
dently, but, in practice changing the intensity of a laser beam affects simultaneously the
longitudinal and transversal frequencies. To avoid this problem, the degrees of freedom
available, laser intensities and waists [33], may be used to satisfy the desired frequency
trajectory in one coordinate, say longitudinal, while keeping the other frequency con-
stant. It is also possible to leave the waists constant and add more lasers to compensate
for the transversal frequency change. In the above optical implementation of the poten-
tial we also have to take into account the anharmonicity and finite depth as they limit
the possible excitation of the (initial and final) states. In Fig. 1, an example for a fast
optimal frictionless atom cooling is shown. Fig. 1(a) displays b(t) and the resulting ω2(t)
leading to an optimal cooling in exact harmonic traps and Fig. 1(b) presents snapshots
of the corresponding time evolution of the wave function (dotted lines). In addition,
the time evolution is presented if the harmonic potential is approximated by a Gaussian
(solid lines). The final wave functions are nearly indistinguishable in the two cases. The
fidelity, i.e., the overlap between the final state using an exact harmonic potential and
using a Gaussian, is F=0.91 in this case.

One may study as well magnetic implementations. In magnetic traps, the frequency
has been modulated harmonically to look for collective excitation modes of a condensate
[34], and ramped down adiabatically to change its conditions (critical temperature, par-
ticle number, spatial extension) [34, 35]. Some experiments involve both time-dependent
magnetic and optical traps or antitraps [36].

3 Application to Bose-Einstein condensates

In this section, we adapt the former results to Bose-Einstein condensates governed by the
Gross-Pitaevskii equation in different dimensions using self-similarity [37].

As we shall see, the applicability of the method will depend critically on the effective
dimension of the trap. By 1D traps we mean here quasi-1D cigar-shaped traps with tight
(fixed) transversal confinement where the axial frequency is varied in time; 2D traps are
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Figure 1: Example of fast optimal frictionless atom cooling: ω0 = 250×2πHz, ω f = 2.5×2πHz, mass of

Rb-87, and t f = 2ms. (a) b(t) (dotted line, left axis) and ω2(t) (solid line, right axis). (b) Time evolution

of |Ψ0(t,x)|2 with a harmonic potential V(t,x) = mω2(t)x2/2 (dotted line) and with a Gaussian potential
V(t,x)= mw2ω2(t)

(
1−exp

(−(2x2/w2)
)/

4 of width w =50µm (solid line, indistinguishable from the dotted

line); in both cases: the function ω2(t) shown in (a) is used, the initial state at t=0 is the ground state of the
harmonic potential.

quasi-2D disk-shaped traps with tight, fixed, axial confinement in which the transversal
frequency is varied; and the 3D traps refer to harmonic traps with spherical symmetry.
We assume in all cases that a GP equation can be derived corresponding to each dimen-
sionality, and use g generically for the coupling parameter of the non-linear term even
though it is different for the three cases [38]. We shall discuss 1D traps first for simplicity,
and then 2D and 3D traps.

3.1 One dimensional traps

The effective 1D Gross-Pitaevski equation for the longitudinal (x) direction in an elon-
gated cigar trap is

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∂2

∂x2 +
1
2

mω(t)2x2+g|ψ|2
]

ψ, (26)



X. Chen, A. Ruschhaupt, S. Schmidt, et al. / J. At. Mol. Sci. 1 (2010) 1-17 11

g being the coupling parameter. The application of the invariant concept here is not as
simple as for the Schrödinger equation [39]. Instead, we shall use an approach which
leads in that case to the same results. The basic idea is to assume for the ansatz [40]

ψ(x,t)= e−β(t)e−α(t)x2
φ(x,t). (27)

Substituting this into Eq. (26), and using the scaling ρ=x/b and redefined wavefunction
Φ(ρ,t)=φ(x,t), we get

ih̄
∂Φ
∂t

=− h̄2

2m
1
b2

∂2Φ
∂ρ2 +

[
1
2

mω(t)2+ih̄α̇− 2h̄2

m
α2

]
b2ρ2Φ

+
[

ge−(α+α∗)x2
e−(β+β∗)|Φ|2

]
Φ+

[
ih̄β̇+

h̄2α

m

]
Φ+

[
2

h̄α

m
+i

ḃ
b

]
h̄ρ

∂Φ
∂ρ

, (28)

where the dot means as before derivative with respect to time. If we impose that the
coefficients in square brackets [...] of the last two terms vanish (we assume b real),

β=
1
2

lnb, α=− im
2h̄

ḃ
b

, (29)

and
e−(α+α∗)x2

e−(β+β∗) =b−1.

Suppose now that the coefficient of b2ρ2Φ in (28) is made constant, equal to mω2
0/(2b4)

(for an alternative see the final discussion). As in the previous section ω0 = ω(0). Using
(29) this is equivalent to imposing for b and ω(t) the same Ermakov equation as Eq. (5),
b̈+ω(t)2b=ω2

0/b3. We may express the resulting wave equation in terms of a new scaled
time,

τ(t)=
∫ t

0

dt′

b(t′)2 , (30)

and wavefunction Ψ(ρ,τ)=φ(ρ,t),

ih̄
∂Ψ
∂τ

=− h̄2

2m
∂2Ψ
∂ρ2 +

mω2
0

2
ρ2Ψ+gb|Ψ|2Ψ. (31)

This is the Schrödinger equation of a time-independent harmonic oscillator if g = 0 and
corresponds to the case discussed in the previous section, which may be handled with
the boundary conditions

b(0)=1, ḃ(0)=0, (32)
b(t f )=(ω0/ω f )1/2, ḃ(t f )=0, (33)

for the scaling factor.
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If g 6= 0 the coefficient of the non-linear term in the auxiliary equation is generally
time dependent. The consequence is that imposing ḃ(t f )=0 eliminates the phase-factor
e−α(t f )x2

but nothing guarantees that Ψ(τ(t f )) is proportional to the instantaneous eigen-
state of the GP equation at t f . One could in principle make the coupling coefficient time-
dependent with the aid of a Feshbach resonance as g(t)= g0/b(t), with g0 constant. The
auxiliary equation has then time-independent coefficients,

ih̄
∂Ψ
∂τ

=− h̄2

2m
∂2Ψ
∂ρ2 +

mω2
0

2
ρ2Ψ+g0|Ψ|2Ψ. (34)

It can be solved as e−iµτ(t)/h̄Ψ(x/b,0), µ being the chemical potential for the initial trap,
so that

ψ(x,t)=b−1/2e
im
2h̄

ḃ
b x2

e−iµτ(t)/h̄Ψ(x/b,0), (35)

and the inverse method described for the Schrödinger equation can now be applied to
design a fast process for the ground state condensate. Keeping b(t) = b f constant for
t> t f , which results in

ω(t)=ω f and g= g0(ω f /ω0)1/2 for t> t f ,

the solution ψ(x,t) of (26) given by (35) becomes stationary, and the new scaled chemical
potential is µ/b(t f )2.

Other special case is a “Thomas Fermi” (TF) limit, keeping g constant. Using a modi-
fied Ermakov equation and a different time scaling

b̈+ω(t)2b=
ω2

0
b2 , τ(t)=

∫ t

0

dt′

b(t′)
, (36)

render an auxiliary equation with time-independent coefficients for the non-linear and
harmonic potential terms. If g|Ψ|2/(h̄ω0)À1, the kinetic term may be neglected,

ih̄
∂Ψ
∂τ

=
mω2

0
2

ρ2Ψ+g|Ψ|2Ψ. (37)

This equation can be solved by separation of variables, Ψ(x/b,τ)= e−iµτ/h̄Ψ(x/b,0), and
ψ(x,t) takes again the form of Eq. (35), with different values for µ, τ, b, and the initial
wavefunction. This TF approximation is carried out in the auxiliary equation, and not
at the level of the original GP equation, since that would imply a frozen density [37,
40]. Applying the modified Ermakov equation in (36), the inversion method to find ω(t)
requires in this 1D-TF scenario to change the boundary condition at t f in (33) to b(t f )=
(ω0/ω f )2/3, with b̈(0)= b̈(t f )=0 as before.
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3.2 Two and three dimensional traps

A wavefunction ansatz [37] that guarantees an auxiliary equation without first spatial
derivatives is

ψ(r,t)=b−d/2exp(
imr2

2h̄
ḃ
b
)φ(r,t), (38)

where d is the dimension, r=(x2+y2)1/2 in 2D or r=(x2+y2+z2)1/2 in 3D.
Substituting (38) into the 2D or 3D GP equations, with ρ= r/b and a notation for the

wavefunctions parallel to the 1D case there results

ih̄
∂Ψ
∂τ

(
dτ

dt
b2

)
=− h̄2

2m
∆ρΨ+

m
2

[
ω2(t)+

b̈
b

]
ρ2b4Ψ+

g
bd−2 |Ψ|2Ψ, (39)

where Ψ = Ψ(ρ,τ), τ has not been specified yet and the Laplacian should be adapted to
the dimension. This equation includes the case d = 1 by substituting the Laplacian by a
second derivative and r→ x.

In 2D, the ordinary Ermakov equation (5) and the τ in Eq. (30) are the optimal choice
because all coefficients in the auxiliary equation (assuming a constant g) become time
independent. This is so even outside the Thomas-Fermi regime,

ih̄
∂Ψ
∂τ

=− h̄2

2m
∆ρΨ+

mω2
0

2
ρ2Ψ+g|Ψ|2Ψ. (40)

Now a frictionless process can be designed by shaping b and ω exactly as in the 1D
Schrödinger equation, i.e., using (32) and (33).

The case d = 3 is similar to 1D since the generic case leads to time-dependent co-
efficients in the auxiliary equation. As in the 1D case, by using Eqs. (5) and (30) the
time-independence of the coefficients in the auxiliary equation would require now a time
dependent coupling g(t) = g0b(t); in the Thomas-Fermi regime and with g constant, all
coefficients become time independent with

b̈+ω(t)2b=
ω2

0
b4 , τ(t)=

∫ t

0

dt′

b(t′)3 . (41)

In this case the boundary condition for b(t f ) in (33) is modified to b(t f ) = (ω0/ω f )2/5,
assuming again b̈(0)= b̈(t f )=0.

3.3 Remarks

Note that for a fixed g (for 2D, or the TF regimes in 1D and 3D), the non-linearity does
not play any role in the design of optimal (frictionless) frequency trajectories since they
only depend on the initial and final frequencies, the available time t f and the functional
form chosen for b(t).
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An important remark on the TF approximation used for 1D and 3D geometries is
that the non-linear coupling cannot be arbitrarily strong. The condition g|Ψ|2/(h̄ω0)À1
should be compatible with the derivation of the 1D GP equation [38] in a weak interaction
limit, i.e., as|ψ|2¿1, as being the s-wave scattering length.

As an alternative to the steps given after Eq. (29), we may impose that the coefficient
multiplying ρ2b4Ψ must vanish instead of becoming a non-zero constant [41–43]. This
amounts to imposing b̈+ω(t)2b = 0 instead of the Ermakov equation (5). Proceeding as
in Sec. 3.1 with τ given by Eq. (30), the resulting auxiliary equation becomes

ih̄
∂Ψ
∂τ

=− h̄2

2m
∂2Ψ
∂ρ2 +gb|Ψ|2Ψ. (42)

This is not an equation for the harmonic oscillator but for a condensate without confin-
ing external fields and with a, generically, time dependent non-linear coupling factor. If
g(t)= g0/b(t) this method provides, from known analytical solutions of Eq. (42) with a
constant factor g(t)b(t)= g0, explicit solutions that have been used in the field of soliton
dynamics [41–43]. The solutions ψ(x,t) for the same ω(t) and initial conditions should of
course be equivalent to the ones obtained with the ordinary Ermakov equation, but the
later is better suited for the application of our inverse technique.

4 Comparison with the “transitionless tracking” (TT) algorithm

A different shortcut to adiabaticity is provided by the transitionless-tracking method [19].
Assume a time-dependent Hamiltonian H0(t) with initial and final values, instantaneous
eigenvectors |n(t)〉 and eigenvalues En(t),

H0(t)|n(t)〉= En(t)|n(t)〉. (43)

A slow change would preserve the eigenvalue and eigenvector along the dynamical evo-
lution times a phase factor,

|ψn(t)〉=exp
{
− i

h̄

∫ t

0
dt′En(t′)−

∫ t

0
dt′〈n(t′)|∂t′n(t′)〉

}
|n(t)〉. (44)

The populations are also preserved in a finite time by means of the following Hamil-
tonian H(t) (which is denoted as HTT if distinction with the other method is needed)

H(t)=∑
n
|n〉En〈n|+ih̄∑

n

(
|∂tn〉〈n|−〈n|∂tn〉|n〉〈n|

)
≡H0+H1. (45)

The adiabatic approximation [|ψn(t)〉 for H0(t) represents the exact dynamics with H(t),

ih̄∂t|ψn(t)〉= H(t)|ψn(t)〉
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with the simplified notation, |n〉= |n(t)〉. It is also possible to choose other phases in
(44) [1]. The simplest case is U(t)=∑|n(t)〉〈n(0)|, without phase factors, corresponding
to H(t)= ih̄∑|∂tn〉〈n|. With this choice H0(t) has been formally suppressed in H(t) but
still plays a role through its eigenfunctions |n(t)〉.

For the harmonic oscillator

H0(t)=
1

2m
p̂2+

1
2m

ω(t)2 x̂2 = h̄ω(t)
(

â†
t ât+

1
2

)
, (46)

where ât and â+
t are the Schrödinger-picture annihilation and creation operators at time

t and are y the following form

x̂=

√
h̄

2mω(t)
(a†

t +at), (47)

p̂= i

√
h̄mω(t)

2
(a†

t −at), (48)

ât =

√
mω(t)

2h̄

(
x̂+

i
mω(t)

p̂
)

, (49)

â†
t =

√
mω(t)

2h̄

(
x̂− i

mω(t)
p̂
)

. (50)

Notice that the “instantaneous” ladder operators ât, â†
t create or annihilate different “in-

stantaneous” states, adapted to the corresponding frequency. Ladder operators with dif-
ferent time labels do not commute in general, although some combinations, e.g., those
equivalent to powers of x̂ and/or p̂, do commute, see below.

We find, using the recursion relation of Hermite polynomials and their orthogonality,

H1(t)= ih̄
ω̇

ω(t) ∑
n

[(
1
4
−mω(t)

2h̄
x̂2

)
|n〉〈n|+

√
mω(t)

2h̄
x̂
√

n|n−1〉〈n|
]

. (51)

Using at=∑n
√

n|n−1(t)〉〈n(t)|, [x̂, p̂]=ih̄,and the relations between x̂, p̂, ât and â†
t written

above, we may finally write the Hamiltonian H1(t) in the following forms

H1(t)=− ω̇

4ω
(x̂ p̂+ p̂x̂)= ih̄

ω̇

4ω

(
â2−(â†)2

)
. (52)

The subscript t in â and â† has been dropped because the squeezing combination â2−(â†)2

is independent of time, so it may be evaluated at any convenient time, e.g. at t =0. The
connection with squeezing operators is worked out in the appendix of Ref. [44].

The final Hamiltonian H=H0+H1 is still quadratic in x̂ and p̂, so it may be considered
a generalized harmonic oscillator [45], but the potential is a non-local operator. This is
the main drawback for its physical implementation and its physical realizability remains
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an open question. The II method is thus clearly distinct from from TT and implements
a different Hamiltonian. Note also, by comparison of the coefficients, that the invariant
operator I corresponding to HI I is different from HTT, although they are both generalized
harmonic oscillators.

5 Conclusions

In summary, the ”inverse-invariant” method is able to cool down atoms in a harmonic
trap without phase-space compression as in a perfectly slow adiabatic expansion but in a
much shorter time by a special design of the time dependence of the frequency. For very
short total expansion times this may require that the harmonic trap becomes transitorily
an expulsive parabolic potential. It is also possible to take a Bose-Einstein condensate in
a very short time from an initial harmonic trap to a final one without excitations, by the
same technique. We have discussed advantages with respect to other methods: adiabatic
processes, bang-bang techniques, and “transitionless-tracking” methods. As an outlook,
similar techniques may inspire a way out to carry out adiabatic computation in a finite
time [7,8], may be applied to the control of soliton dynamics of Bose-Einstein condensates
[31, 46], pulsed beams [47], or in combination with transport of ultracold atoms or ions
[48]. Fast driven expansions may also offer an enlarged and faithful copy of the initial
system that can be imaged on much shorter times than with the standard time-of-flight
technique based on free expansions.
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