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Abstract. A theoretical analysis is presented for the nonadiabatic photodissociation
process of hydrogen fluoride and its deuterated species. Four electronic states X1Σ+,
a3Π, A1Π, and 3Σ+ are involved in the studies. Based on the accurate ab inito calcula-
tions of the potential energy curves, transition dipole moment and spin-orbit couplings
among the accessible states, the time dependent quantum wave packet approach with
the split-operator scheme is employed to investigate the dissociative dynamics. The
dissociative process is analyzed via the evolution of the wave packets. The total cross
sections, partial cross sections and branching fractions for both HF and DF initially
excited from the vibrational levels v=0−3 of the ground state are evaluated. The cal-
culations are compared with the previous investigations and the present prediction for
a broad range of the incident photon energies.
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1 Introduction

Photodissociation involving multiple dissociative pathways via the nonadiabatic inter-
actions is one of the most interesting phenomena in the interactions between photons
and molecules (or radicals) [1–8] The closed-shell hydrogen halide (HX, X=F, Cl, Br, I)
and its deuterated counterpart, provides the typical and simple model to investigate the
dynamics of nonadiabatic dissociation
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Figure 1: Diabatic potential energy curves for the X1Σ+, a3Π, A1Π, and 3Σ+ states as a function of the
internuclear separation obtained from the ab initio calculation. The lower panel displays in more detail the long
range feature of the curves.

HX hν−→H(2S)+X(3P3/2)
hν−→H(2S)+X(3P1/2).

Four electronic states (X1Σ+, a3Π, A1Π, and 3Σ+) are involved in the hydrogen halide
photodissociation process (see, Fig. 1 for HF case), where ground state X1Σ+ is the only
bound one and the repulsive states a3Π, A1Π, and 3Σ+ induce the fragmentation. Ne-
glecting the spin-orbit coupling, all of the four states correlate with the lowest energy
asymptote H(2S)+X(2P). However, considering the nonadiabatic couplings among the
dissociative channels either of the spin-orbit states, X(2P3/2) and X(2P1/2), can be yielded,
where X(2P3/2) and X(2P1/2) are ground and excited atomic spin-orbit states of the halo-
gen fragment, respectively. Two sub-processes are included in the photodissociation pro-
cess [9]: (i) initial excitation from the particular vibrational level of the ground electronic
state to one (or more) of the repulsive states, and (ii) redistribution of the photodisso-
ciation flux via the nonadiabatic transitions between the accessible states. Most ground
state of the closed-shell molecules are described by Ω′=0 (Ω, the projection of the elec-
tronic angular momentum along the molecular axis, can be used to classify the electronic
states of diatomic molecules.); single-photon excitation can promote the molecule to ex-
cited states with Ω=0 and Ω=1 through parallel (∆Ω=0) and perpendicular (∆Ω=±1)
excitations, respectively [10]. For the lighter halogen atom, i.e., F or Cl, the spin-orbit
constant is small, the single electronic surface, i.e., A1Π, is often reached through the ini-
tial excitation [9, 11–15]. However, for the other heavier halogen atoms, Br, and I, since
the spin-orbit constant is large, the excitation process is more complicated, where the
spin-forbidden excitation can occur [9, 11]. The redistribution of dissociation flux among
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the accessible states is the dynamic process where the nonadiabatic interactions play an
important role. The relative yields of the spin-orbit states can provide the information
about the initial excitation and the nonadiabatic transition of the flux. In this work rela-
tive yields is formulated by the branching fraction of the excited atomic fragment X∗,

Γ=
σ(X∗)

σ(X∗)+σ(X)
, (1)

where σ(X) and σ(X*) are the partial cross-sections for ground and excited states of the
halogen atoms, respectively.

Extensive investigations have been performed theoretically and experimentally for
HCl [10, 16–27], HBr [23, 28–39], and HI [35, 40–50], including the studies where the
reagents are created from the excited vibrational levels [16,18,21,32,41]. Especially, since
HF and its deuterated counterpart have simpler configuration, different theoretical ap-
proaches have been employed to study their electronic structure and photodissociation
dynamics [9,12–15,51–55]. Brown et al. [9] reported the first investigation of the spin-orbit
branching fraction and total cross-section of HF and DF as the function of incident pho-
ton wavelength, where the molecular systems are initially excited from the vibrational
level v =0 of the ground electronic state and the time-dependent quantum wave packet
treatment with the Chebychev propagation is employed. They also studied the vibra-
tionally mediated photofragmentation with v = 1,2 and 3 in their series paper [51], as
well as the vector correlations and alignment parameters [52]. On the other hand, due to
the experimental difficulties: HF is highly corrosive and its absorption lies in the vacuum
ultraviolet (VUV) band starting at about 150 nm and peaking near 120 nm [56,57], which
corresponds to the A1Π←X1Σ+ excitation as mentioned above, only a few experimental
measurements were reported [11, 15, 56–59] , where Zhang et al. [11] investigated the HF
molecule initially excited to a single rotational level in the v=0 and 3 vibrational state
via IR (infrared) + VUV photolysis scheme and high-n Rydberg time-of-flight (HRTOf)
technique.

The goal of this work is to theoretically examine how the dissociative flux redistribute
dynamically among the accessible electronic states and how the nonadiabatic interactions
influence the fine structure of the fragments via the time dependent quantum approach
with the spit-operator scheme. The branching fractions are expected to be evaluated,
compared with the experimental data and predicted for a broad range the incident pho-
ton energies. Section 2 presents the theory of the time-dependent wave packet treatment,
with the Extended Split-Operator Scheme. The algorithm of the total and partial cross-
sections is also given in this section. Section 3 indicates the ab inito calculations of poten-
tial energy curves (PECs), transition dipole moment and spin-orbit couplings. The results
and analysis are reported in Section 4. The branching fractions and partial cross-section
as the function of the photolysis wavelength and initial vibrational levels are exhibited
in this section. The dynamic processes during the dissociation are also shown via the
propagation of the wave packets. In the final section a brief conclusions is presented.
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2 Theoretical method

2.1 Hamiltonian and Schrödinger equation

The time-dependent wave packet method is based on the solution of the time-dependent
Schrödinger equation (Atomic units are used throughout the whole paper unless stated
otherwise):

i
∂

∂t
Φ(R,t)= H(R)Φ(R,t), (2)

where H(R) is the time-independent Hamiltonian of the molecular system, which is the
sum of the nuclear kinetic energy operator TN , electronic potential energy V(R) and the
spin-orbit Hamiltonian HSO(R)

H(R)= TN(R)+V(R)+HSO(R), (3)

where V(R) is the eigenvalue of the nonrelativistic electronic Born-Oppenheimer Hamil-
tonian, i.e., the potential in the diabatic representation, HSO(R) is the spin-orbit operator
in the Breit-Pauli approximation [60, 61], and TN is the nuclear kinetic energy operator.
For diatomic molecule TN is given by

TN(R)=− 1
2µR

∂2

∂R2 R+
I2

2µR2 , (4)

where µ is the reduced mass and I, the relative orbital angular momentum of the nuclei,
is given by

I= J−L−S,

with J, L and S standing for the total, total electronic orbital, and total electron spin, an-
gular momentum operators, respectively [61,62]. The effect of rotation on the photodisso-
ciation dynamics was negligible in previous theoretical studies for for HCl [16, 17, 20, 21]
and HBr [28]. Consequently the I2 term is neglected in the present work.

2.2 Initial wave packet

Based on the time-dependent framework, the initial wave packet is prepared to satisfy
the initial condition [63–68]

Φ(R,t=0)=µ(R)Ψ(R), (5)

i.e., the initial wave packet is the product of the transition dipole moment µ(R) and the
nuclear wave function Ψ(R) of the ground state. Here µ(R) is a single component of a
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spherical vector. For an n-state system, Eq. (5) is expressed in the matrix form by



Φ1(R,t=0)
Φ2(R,t=0)

...
Φn(R,t=0)


=




µ1(R)Ψ(R)
µ2(R)Ψ(R)

...
µn(R)Ψ(R)


. (6)

As commented above, photodissociation of HF can be treated as a three-state prob-
lem involving a3Π, A1Π, and 3Σ+ states, where the states are labeled in Hund’s case (a)
approximation and the Ω = 1 component out of the three components (Ω=0, 1 and 2) is
considered in this calculation. Hence the initial column wave packet for HF is given in
the diabatic representation by




Φ1(R,t=0)
Φ2(R,t=0)
Φ3(R,t=0)


=




0
µ(R)Ψ(R)

0


, (7)

where µ(R) is the transition dipole moment for the A1Π ← X1Σ+ transition which is
the only initial excitation occurring in the diabatic representation, and Ψ(R) is the wave
function of particular vibrational level on the ground electronic state.

2.3 Propagation of the wave packet

The formal solution to Eq. (2) is

Φ(R,t)=exp(−iHt)Φ(R,t=0), (8)

where exp(−iHt) is the time-evolution operator, which is used in the time-dependent
method to propagate the wave packets in a series of short time steps. To obtain the
numerical solution of Eq. (8), the split-operator scheme [69, 70] has been modified and
then extended for treating the propagation involving multiple electronic states [71–84].
For each time step ∆, the wave packet propagation for the three-state problem can be
described in the matrix form as




Φ1(R,t+∆)
Φ2(R,t+∆)
Φ3(R,t+∆)


=exp

(
−iT

∆
2

)
exp


−i




U11(R) U12(R) U13(R)
U21(R) U22(R) U23(R)
U31(R) U32(R) U33(R)


∆




×exp
(
−iT

∆
2

)


Φ1(R,t)
Φ2(R,t)
Φ3(R,t)


, (9)

where U(R) is the effective potential energy matrix defined as

U(R)=V(R)+HSO(R).
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The effective matrix can be diagonalized as



U11(R) U12(R) U13(R)
U21(R) U22(R) U23(R)
U31(R) U32(R) U33(R)


=MT(R)




U1(R) 0 0
0 U2(R) 0
0 0 U3(R)


M(R), (10)

where M(R) is the unitary matrix determined via diagonalizing the potential matrix, and
MT(R) is the transpose matrix of M(R). Hence, Eq. (9) can be reformed as




Φ1(R,t+∆)
Φ2(R,t+∆)
Φ3(R,t+∆)




=exp
(
−iT

∆
2

)
×MT(R){D}M(R)exp

(
−iT

∆
2

)


Φ1(R,t)
Φ2(R,t)
Φ3(R,t)


, (11)

where {D} is a diagonal matrix of the form

{D}=diag
(

exp[−iU1(R)∆],exp[−iU2(R)∆],exp[−iU3(R)∆]
)

.

It should be noted that two representation are employed in the investigation of nonadi-
abatic process [1, 9, 21, 61, 71]: (i) the diabatic representation, corresponding the diabatic
electronic basis, in which S2, Λ, and Σ, are good quantum numbers and the effective
potential matrix U(R) has off-diagonal elements, which causing the transitions between
the considered states, and (ii) the adiabatic representation, corresponding to the adiabatic
electronic basis, in which Ω is the only good quantum number, the effective potential ma-
trix is diagonal, and the interactions between adiabatic states result from the off-diagonal
terms in the kinetic operator TN . Based on the relationship between the diabatic and
adiabatic representation, the matrix M(R) in Eq. (10) is the diabatic-to-adiabatic trans-
formation matrix [1]. Consequently, the wave packet on the jth adiabatic state can be
expressed as a superposition over the ones on the diabatic states

Φad
j (R)=∑

j
mji(R)Φdiab

i (R), (12)

where mji (R) is the element of the transformation matrix M(R). Nevertheless, it should
be noted that the labels of the states in the adiabatic representation have no physical
significance, because the fully adiabatic states are the superposition of the diabatic states,




Uad
1 (R) 0 0

0 Uad
2 (R) 0

0 0 Uad
3 (R)


=M(R)




U11(R) U12(R) U13(R)
U21(R) U22(R) U23(R)
U31(R) U32(R) U33(R)


MT(R). (13)
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The wave packet and potential curve associated with the adiabatic state in the following
parts of this paper will be designated by the good quantum number Ω and the label
of the diabatic state which makes the majority contribution to the adiabatic one in the
Franck-Condon region, i.e., has the largest coefficient mji(R) [9].

As a practical calculation, the propagation of wave packets is performed in the dia-
batic representation. The sine-basis DVR is employed to treat the coordinate R as applied
in other scattering/half-scattering problems [85–87]. The complex absorbing potential is
added at the edge of grid to avoid the boundary reflection of the wave packets [88–90].

2.4 Final states analysis

Both diabatic and adiabatic models are useful when discussing dissociative dynamics.
But the physically meaningful results are obtained in the adiabatic representation. To cal-
culate the branching fraction, and subsequently compare it with the experimental data,
the adiabatic wave packet on each dissociative channel is necessary. Since the propaga-
tion presented in Section 2.3 is performed in diabatic representation, the wave packets
must be transformed into the adiabatic representation before the final-state analysis. The
matrix form of Eq. (12) is taken to obtain the adiabatic wave packets.

The algorithm of partial cross-section has been established to investigate photodisso-
ciation [5, 66, 91]. By detecting the wave packet on the adiabatic state at R= R∞, locating
in the asymptotic region where no further couplings exist among the involved states, the
partial cross-section for the jth product channel are formulated in SI unit as,

σj(ν)=

(
4π3νk j

3cε0µ

)
|Aj(R∞,E)|2, (14)

where
Aj(R∞,E)=

1
2π

∫ ∞

0
Φj(R∞,t)exp[i(Eini+hν)t/h̄]dt, (15)

v is the incident photon frequency, µ is reduced mass of the fragments, c is the velocity
of light in vacuum, ε0 is the permittivity in free space, Eini is initial state energy, and k j is
the wave vector for the jth channel and can be expressed as [44, 91]

k j =
[

2µ

h̄2 (Eini+hν−ε j)
] 1

2

=
[

2µ

h̄2 (Eini+hν−Uj(R∞))
] 1

2

, (16)

with Uj(R∞) standing for the value of the adiabatic potential at R = R∞. The calculated
partial cross-sections are subsequently used to attain the branching fractions from Eq. (1).

The approach for the total cross-section has also been developed and applied for the
final-state analysis [63–68]. The total cross-section at the particular incident radiation is
given by the time-energy Fourier transform of the autocorrelation function in the SI unit,

σtot(ν)=
2πν

3cε0

∫ ∞

0
exp[i(Eini+hν)t/h̄]A(t)dt, (17)
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where the total autocorrelation function A(t) is accumulated with respect to the wave
packets over the grids and summed including all the considered states at each time step,

A(t)=
n

∑
j=1

∫ Rmax

Rmin

Φ∗
j (R,t=0)Φj(R,t)dR. (18)

3 Ab inito calculation

Four electronic states, X1Σ+, a3Π, A1Π, and 3Σ+, are involved in the photodissociation
study of HF and DF, where X1Σ+ is the only bond state and a3Π, A1Π, and 3Σ+ are the

Figure 2: The transition dipole moment for the excitation A1Π←X1Σ+ as a functions of internuclear distance
obtained from the ab initio calculation.

Figure 3: Dependence on the internuclear distance of the spin-orbit couplings matrix elements from the ab initio
calculation
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Figure 4: Fully adiabatic potential energy curves as function of internuclear distance obtained via Eq. (13).
Note that only the Ω = 1 manifold is considered in the present calculation, and the states are labeled by the
quantum number Ω and the diabatic state with the largest contribution in the Franck-Condon region.

repulsive states involved in the dissociation. The diabatic potential energies of HF for all
the data points of internuclear separation are calculated using multi-reference configura-
tion interaction (MRCI) scheme with augmented correlation-consistent polarized valence
6-zeta (aug-cc-pv6z) basis set and the symmetry of C2v. The MRCI calculations are based
on state-averaged complete active space self-consistent field (SA-CASSCF) calculation,
where the states, 1Σ+, 3Σ+, 1Πx, 1Πy, 3Πx and 3Πy, correlating with the lowest energy
asymptote, H(2S)+F(2P), are included. The active space was chosen to consist of eight
electrons in five orbitals (3a1, 1b1, 1b2). The diabatic PECs are presented in Fig.1.

Since the A1Π←X1Σ+ is the only allowed transition in the initial excitation, the transi-
tion dipole moment connecting these two states is computed and illustrated as a function
of internuclear distance in Fig. 2.

Fig. 3 depicts the dependence of R of the spin-orbit coupling matrix elements among
the considered states. a common set of the orbitals and wave functions are firstly cal-
culated via SA-CASSCF approach, then are used to obtain the HSO matrix elements via
the spin-orbit operator in the Breit-Pauli approximation [60]. The evaluated spin-orbit
splitting between the fluorine asymptotes is equal to 398.0 cm−1, which is in good accord
with the experimental data 404.1 cm−1 [92].

The fully adiabatic potentials can be obtained from Eq. (13). The adiabatic states are
labeled by the good quantum number Ω and the diabatic states which make the largest
contributions to the adiabatic ones in Franck-Condon region. The Ω = 1 component are
shown in Fig. 4. It is clear that the 3Πad

1 and 1Πad
a states correlate adiabatically with the

asymptote of the ground fluorine atom F(2P3/2), while the 3Σad
1 leads to the production of

the excited fluorine atom F(2P1/2).

All the electronic structure calculations are performed using the MOLPRO suite of
quantum chemistry program [93].
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4 Results and discussion

As commented in Section I two processes are involved in present calculation: initial ex-
citation and flux redistribution. In this work the initial excitation only occurs between
X1Σ+ and A1Π diabatic states. As presented in Fig. 4 the fully adiabatic state 1Πad

1 cor-
relates with the ground fluorine atomic state F(2P3/2). Therefore, if no flux transition
occurs during the dissociation, the excited state branching fraction of the excited fluorine
spin-orbit fine-structure would be zero. Former theoretical [9, 51] and experimental [11]
treatments have reported the non-zero spin-orbit branching fraction of the excited fluo-
rine spin-orbit state F(2P1/2), which imply that the flux substantially redistributes during
the dissociative process. The goal of this work is to examine theoretically how the disso-
ciative flux redistributes among the considered states via nonadiabatic interactions and
how the branching fractions of the fragment reflect the contributions from the accessible
states.

4.1 Nonadiabatic transitions during propagation

The diabatic-to-adiabatic transformation matrix M(R) from Eq. (10) is a signature of
the nonadiabatic interactions which control the mixture of the flux among the different
dissociative channels. It exhibits the contributions of the diabatic states to the adiabatic
ones. The elements of the matrix, i.e., the coefficients of the contribution are displayed as

Figure 5: The contribution |mji(R)|2 of the diabatic states 3Π (dot-dash line), 1Π (dashed line), and 3Σ (dot

line) to the fully adiabatic states, (a) 3Πad
1 , (b) 1Πad

1 , and (c) 3Σad
1 , as a function of internuclear distance.

The states are labeled by the quantum number Ω and the diabatic state with the largest contribution in the
Franck-Condon region.
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Figure 6: The snapshots of the propagating adiabatic wave packets for HF (v=1) at various time steps from t
= 0 a.u. to 900 a.u. The wave packets are labeled by the diabatic component making the largest contribution
to the adiabat: 1Πad

1 (dashed line); 1Πad
1 (solid line); 3Σad

1 (dotted line). The amplitudes of the wave packet
are scaled on the arbitrary unit. The vertical axes of the plots at t ≤ 200 should be referred to the one at t
= 0, the ones at t = 300-500 to t = 300, and the ones at t ≥ 600 to t = 600. The insets show the small
separation behavior in more detail.

the function of bond separation in Fig. 5. In the Franck-Condon region there are almost
no changes of the coefficients, which means no obvious mixing between triplet states
and the initial created singlet state and also verifies the assumption that initial excitation
occurs only between X1Σ+ and A1Π states. The sharp variation indicating the dramatic
mixture of the flux starts at about R = 3 bohr. The coefficients vary substantially over a
broad range (R∼ 3-10 bohr), where the nonadiabatic interactions substantially influence
the flux distribution of the dissociative channels. In the asymptotic region the coefficients
still have the nonzero magnitudes, which implies that the established flux is still being
redistributed by the asymptotic couplings, although the mixing is not as significant as in
the previous area.

One of the advantages of time dependent wave packet approach is that the distri-
bution of the dissociative flux for each channel can be directly elucidated though the
motion of the corresponding wave packet. For example, the snapshots of the adiabatic
wave packets for HF and DF in v = 1 cases are delineated in Figs. 6 and 7, respectively.
The time unit is a.u., the squared amplitudes |Φ|2 are plotted as arbitrary unit, and the
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Figure 7: The analogous plot to Fig. 6 for DF (v = 1). The vertical axes of the plots at t ≤ 200 should be
referred to the one at t = 0, the ones at t = 300-600 to t = 300, and the ones at t ≥ 700 to t = 700.

vertical axes are expanded at some steps. For comparison the time dependent norm
|< Φj(R,t)|Φj(R,t) > |2 of the wave packet on jth adiabatic state are evaluated in the
same cases and plotted in Fig. 8. At the beginning of the time step the wave packet lies
predominately on the adiabatic 1Πad

1 state. In the earlier stage (about 100 a.u. for HF in
Fig. 6 and 200 a.u. for DF in Fig. 7) the wave packets still stay in the Franck-Condon area,
and there is no obvious population on the adiabatic triplet states. This is consistent with
behavior of the time dependent probabilities at the short time realm of Fig. 8. At that
time the dissociation does not start, and there is no significant transfer of the flux from
the initially populated 1Π states to the triplet states. It is also verified by the feature of
the contribution coefficients mji (R) in Franck-Condon region in Fig. 5. At the sequent
time steps the dramatic changes appear during the propagation (see, around 200 a.u. for
HF in Fig. 6 and 300 a.u. for DF in Fig. 7). This is also proved by the behavior of the
probabilities at the corresponding time in Fig. 8. The populations on the triplet states are
fast established, while the wave packet on the 1Πad

1 state drops sharply, which, however,
is still the major component. It implies that the flux is substantially redistributed among
the adiabatic channels. Especially, the probability on the 3Σad

1 state, which adiabatically
correlating with excited fluorine atom product, exhibits a sharp rise in Fig.8. Meanwhile,
the expansion of the molecular separation is obvious, and the wave packets arrival at the
internuclear separation between 3 bohr and 5 bohr. Comparing with the variation of the
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Figure 8: Time dependent norm as a function of time for HF (upper panel) and DF (lower panel) with initial
excitation from v=1. The probability is scaled on arbitrary unit.

contribution coefficients in Fig. 5, which present the sharp variation in the same area,
the redistribution of the flux seems reasonable and can be interpreted to arise from the
spin-orbit couplings in diabatic representation or the off-diagonal elements of the kinetic
operator in adiabatic representation. As continue evolving with time, the wave packet
on 1Πad

1 state keeps decreasing while the populations on the adiabatic triplet states keep
rising. It should be noted from Fig. 8 that the probability on 3Σad

1 state has reach its stable
value at about 500 a.u. for HF and 600 a.u. for DF, respectively. It can also be verified
via Fig. 5 (c) where the contribution from the diabatic states to the 3Σad

1 state has already
reach their asymptotic values even at the small internuclear distance (R ∼ 7 bohr). At
about 600 a.u. for HF and 800 a.u. for DF in Fig. 8, the amplitudes of the three states have
comparable weight and the wave packets is roughly passing the internuclear separation
of 9-10 bohr as shown in Figs. 6 and 7. After that the population on 1Πad

1 state keeps
decreasing and the triplet states become the larger component. In Fig. 8 the probability
on 3Σad

1 retains its asymptotic value, while the variations are still shown on 3Πad
1 and the

1Πad
1 states. Since both 3Πad

1 and the 1Πad
1 states correlate with the ground fluorine prod-

uct, switching of the flux between the two states will not influence the branching fraction
of the fragments but only affect the partial cross sections.

Moreover, contrasting the behavior of the wave packets and the variation of probabil-
ities for HF and DF in Figs. 6-8, it seems that the overall velocity of the wave packets for
HF is larger than its deuterated counterpart, i.e., the one with the lighter mass has larger
dissociative rate. It can also be understood as the influence of the kinetic energy operator
TN [21, 44] . The kinetic energy operator take the derivative form regarding the internu-
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clear coordinate and describe the motion of the wave packets from the Franck-Condon
region to the asymptotic area, i.e., it drives the wave packets moving along the adiabatic
potentials. On the other hand, transitions between the adiabatic states arise from the off-
diagonal terms of the kinetic energy operator and the redistribution of the dissociative
flux is substantially affected by these terms in the adiabatic representation.

The evolution process of the wave packets gives a clear physical picture of the flux
redistribution as the break-up of the molecule. Combining with the feature of the contri-
bution coefficients of diabatic states to adiabatic states in Fig. 5 and the wave packet prop-
agation in Figs. 6 and 7, it can be concluded that the nonadiabatic interactions in three
distinct regions influence the dissociative process as demonstrated in other molecules
[9,94–97] . The molecule is initially excited in the Franck-Condon region, where the sepa-
rations between the potentials are large and there are no significant interactions between
the states. The dissociative flux is established on 1Π state, which dominates over the total
flux. At larger internuclear distance (recoupling zone, about 3-10 bohr), where the inter-
state separations are comparable to the spin-orbit couplings, the nonadiabatic transitions
substantially influence the behavior of the wave packets and redistribute the flux estab-
lished in the Franck-Condon region. At the largest distance (asymptotic region), where
the potential energies almost reach their asymptotic magnitudes, the nonadiabatic cou-
plings (asymptotic spin-orbit coupling) still exists and lift the degeneracy of the atomic
multiplet and affect the product spin-orbit branching fraction [9, 94].

4.2 Cross sections and branching fractions

The total cross sections are evaluated via Eq. (17) over a large incident photon energy
region. Included in Fig. 9 are the total cross sections for HF and DF with v=0−3. These
absorption spectra are broad and featureless, indicating a prompt dissociation. For both

Figure 9: Total cross section as function of incident photon energy for HF (solid line) and DF (dashed line)
with v=0−3. Also shown is the experimental value (squares) for HF (v=0) from Nee et al. [57].
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Table 1: Maxima and minima in branching fractions and minima in partial cross-sections for HF initially excited
from v =0−3. Energies of incident photon are given in cm−1. Γ is the branching fraction for excited fluorine
atomic product. σ is the partial cross-section for each adiabatic state.

Vibrational level Minima High-energy maxima Low-energy maximaa

0 Γ 54539 (0.444)

1 Γ 76182 76483 50180 (0.432)

σ(3Πad
1 ) 76182

σ(1Πad
1 ) 76633

σ(1Σad
1 ) 76182

2 Γ 67314 77986 67615 78287 46122 (0.421)

σ(3Πad
1 ) 67465 78136

σ(1Πad
1 ) 67615 78437

σ(1Σad
1 ) 67314 77986

3 Γ 59800 68968 78888 60100 69118 79339 42064 (0.410)

σ(3Πad
1 ) 59950 69118 79038

σ(1Πad
1 ) 60100 69269 79339

σ(1Σad
1 ) 59800 68968 79038

aThe magnitudes of the low-energy maxima is given in parenthesis.

Table 2: Maxima and minima in branching fractions and minima in partial cross-sections for DF initially excited
from v =0−3. Energies of incident photon are given in cm−1. Γ is the branching fraction for excited fluorine
atomic product. σ is the partial cross-section for each adiabatic state.

Vibrational level Minima High-energy maxima Low-energy maximaa

0 Γ 53937 (0.537)

1 Γ 77685 77986 50631 (0.530)

σ(3Πad
1 ) 77836

σ(1Πad
1 ) 77985

σ(1Σad
1 ) 77685

2 Γ 70621 79639 70922 79940 47475 (0.521)

σ(3Πad
1 ) 70771 79790

σ(1Πad
1 ) 70922 79940

σ(1Σad
1 ) 70772 79639

3 Γ 64760 72425 80691 65060 72725 80992 44319 (0.511)

σ(3Πad
1 ) 64910 72425 80842

σ(1Πad
1 ) 65060 72725 81142

σ(1Σad
1 ) 64910 72425 80691

aThe magnitudes of the low-energy maxima is given in parenthesis.

HF and DF the highest peaks shift to the large energies with increasing the vibrational
levels. Comparing the plots of the HF and DF cases, the total cross sections of DF present
the narrower envelop and the larger peak magnitude which also locate at the higher
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Figure 10: Branching fractions (solid line) and partial cross-sections on adiabatic state 3Πad
1 (dot-dash line),

1Πad
1 (dashed line) and 3Πad

1 (dotted line) as a function of incident photon energies with initial excitation from
ν = 0 vibrational level for (a) HF and (b) DF. Also shown is the experimental value (circle) of the branching
fraction for HF at 121.6 nm (82237 cm−1) from Zhang et al. [11].

energies. The calculated total cross sections for HF (v = 0) case at 121.6 nm and 145 nm
are 3.15×10−18 cm2 and 1.65×10−19 cm2, respectively, which are in excellent agreement
with the experimental measurement 3.3×10−18 cm2(121.6 nm) and 1.7×10−19 cm2 (145
nm) from Nee et al. [57].

The branching fractions for HF and DF from Eq. (1) in the adiabatic representation
with initial excitation from vibrational levels v = 0−3 are displayed as the function of
incident photon energies in Figs. 10-13, respectively, as well as the partial cross-section
from Eq. (14) for each adiabat. The experimental branching fractions, 0.41±0.08 for HF
(v = 0) at 121.6 nm and 0.42±0.03 for HF (v = 3) at 193.3 nm, are reported by Zhang et
al. [11]. Present calculated values at these two cases are 0.368 and 0.367, respectively,
which reveal the good accord with the experimental data.

There are several common features for HF and DF in these plots. The branching frac-
tion shows a maximum at the lower excitation frequencies in each case (also see Tables 1
and 2). The magnitude of the maximum for DF is always larger than HF regarding the
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Figure 11: An analogous plot to Fig. 10 with excitation of v=1 vibrational level.

same initial vibrational level. With the vibrational level changing from v =0 to 3 the po-
sition of this maximum shifts to the lower energy and the decreasing of its magnitude is
also revealed. This shifting feature of the branching fraction was interpreted by Brown et
al. from two aspects [51]: the molecule need less excitation energy to be promoted to the
repulsive states, and the ground state vibrational wave function with larger vibrational
quantum number has substantial amplitude at larger internuclear separations where the
energy separation between the ground and excited states is smaller. The height of the
low-energy maximum decreases with increasing the vibraional levels, which is presented
in Tables 1 and 2.

The oscillatory behavior appears in both the partial cross-sections and branching frac-
tions of the v=1−3 cases, where the number of the minima is equal to the nodal number
of the vibrational wave function of the ground electronic states, i.e., one for v=1, two for
v =2, and three for v =3. In the v =0 case there is no minimum value/oscillation of the
partial cross-section and branching fraction, but it can still be generalized into the nodal
pattern. That is, the number of the minima is zero, which corresponds to zero node of the
v =0 level of the ground electronic state. It implies that the nodal pattern can be under-
stood as the transfer of the nodal feature of the ground states vibrational wave function
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Figure 12: An analogous plot to Fig. 10 with excitation of v=2 vibrational level.

as it is initially excited into the repulsive state and then carried into other states via the
nanadiabatic interaction [21]. Tables 1 and 2 also presents the frequencies where the min-
ima of partial cross-sections and branching fractions of HF and DF reach the minima
and maxima, respectively. The appearance of the minima of partial cross-sections can
be interpreted by the reflection principle [1, 51, 98], while the occurring position of the
minima and the concomitant maxima (which are referred to the higher-energy maxima
in Tables 1 and 2 and following part of this paper to distinguish with the lower-energy
maxima discussed above). of the branching fractions, even the energy ordering of them,
is still in argument for hydrogen halides and their deuterated species [16,17,21,51]. From
the fully adiabatic potentials depicted in Fig. 4, it is clear that the excited fluorine F∗
atom product arises from the adiabatic channel 3Σ+

1 , while 3Π1 and 1Π1 states lead to the
ground fluorine channel. However, with a close inspection in Tables 1 and 2, the partial
cross-sections 3Π1 and 1Π1 states do not reach their minima at the same frequency. The
interplay between these two cross-sections results in the fact that the branching fraction
of ground F atom channel drop to its minimum at the different frequency. Furthermore,
it is also attributed to the inconsistency of the position of the branching fraction and the
partial cross-section correlating with the excited F∗ atomic channel. The magnitudes of
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Figure 13: An analogous plot to Fig. 10 with excitation of v=3 vibrational level. Also shown is the experimental
value (circle) of the branching fraction for HF at 193.3 nm (51733 cm−1) from Zhang et al. [11].

the minima and maxima of the branching fractions are also influenced by the divergence
of the partial cross-sections.

5 Summary and conclusions

Photodissociation of hydrogen fluoride and its deuterated species includes initially cre-
ation from the particular vibrational level of the ground electronic state X1Σ+ and sub-
sequent fragmentation induced by the repulsive states 3Π, 1Π, and 3Σ+. The photodis-
sociation process is treated as the three-state problem and investigated using the time-
dependent quantum wave packet approach with the split-operator propagation scheme.
The dynamic process is studied based on the accurate ab inito calculation of the PECs,
transition dipole moment and the spin-orbit couplings among the accessible states. The
evolution of the wave packet and dissociative flux is presented. Taking the advantage
of the wave packet approach, a clear physical picture is exhibited for the dissociative
process. Nonadiabatic interactions, especially the spin-orbit couplings, play an impor-
tant role in determining the flux distribution, which can be reflected by the branching
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fraction of fine-structure of the fluorine fragment. The total cross-sections, partials cross-
sections and branching fractions as a function of incident photon energies for both HF
and DF initially excited from the vibrational levels v=0−3 are evaluated and compared
with the available experimental data. The oscillatory behavior is revealed in both of the
partials cross-sections and the branching fractions. The divergence of the frequencies
where the partials cross-sections and the branching fractions reach their minima, as well
as the magnitudes of the minima and maxima of branching factions, can be interpreted
by the interplays among the positions of the minima of partial cross-sections. The agree-
ment of the present work with the previous experimental and theoretical results indicates
the reliability of the ab inito calculation and dynamic approaches in this work. The cal-
culated total cross sections for HF (v = 0) case at 121.6 nm and 145 nm are 3.15×10−18

cm2 and 1.65×10−19 cm2, respectively, which are in excellent agreement with the mea-
surement 3.3×10−18 cm2 (121.6 nm) and 1.7×10−19 cm2 (145 nm) by Nee et al. [57]. The
calculated branching fractions of HF, which are equal to 0.368 at 121.6 nm for v = 0 case
and 0.367 at 193.3 nm for v = 3 case, accord well with the experimental data 0.41±0.08
and 0.42±0.03 from Zhang et al., respectively [11]. The prediction of the branching frac-
tions covering a broad range of the frequencies for both HF and DF is also illustrated in
this paper. It is hoped that these results will be beneficial to resolve the discrepancies be-
tween the experimental and comprotational results, especially at the wave lengths where
the experimental measurement has not been available.
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