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Rotational structure of weakly bound molecular ions
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Abstract. Relying on the quantization rule of Raab and Friedrich [Phys. Rev. A 80
(2009) 052705], we derive simple and accurate formulae for the number of rotational
states supported by a weakly bound vibrational level of a diatomic molecular ion.
We also provide analytic estimates of the rotational constants of any such levels up
to threshold for dissociation and obtain a criterion for determining whether a given
weakly bound vibrational level is rotationless. The results depend solely on the long-
range part of the molecular potential.
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1 Introduction

Molecular systems bound by a potential which varies asymptotically with the inverse
power of the distance, r, between their constituents

V(r) r→∞∼ −Cn

rn with n>2 (1)

are amenable to an accurate analytic semiclassical (WKB) treatment, as long as the sys-
tem’s states are sufficiently ensconced within the potential energy well. However, for
states near threshold for dissociation, the WKB approximation fails, as the system’s clas-
sical action, proportional to momentum, no longer exceeds Planck’s constant. And yet,
it is the near-threshold states that have come to the fore recently, through the work in
cold-atom physics where such states arise in photo- and magneto-association [1–3] or
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other types of “assisted” collisions of (ultra) cold atoms [4] or atomic ions [5–8]. There-
fore, a considerable effort has been expended at amending the WKB approximation to
also allow for tackling near-threshold states analytically. A leading approach is that of H.
Friedrich et al., who showed that, firstly, the bound-state eiegenenergies, Eb, can be ex-
pressed in terms of the quantization function, F(Eb) [9], which relates the state’s integral
quantum number v to the generally non-intergral quantum number, vth, of a state exactly
at threshold, via

F(Eb)=vth−v. (2)

Secondly, they were able to find an explicit analytic form of the quantization function
for attractive inverse-power potentials with n = 6 [10, 11], and, most recently, with n =
4 [12]. Note that the binding energy, Eb = D−Ev, with D the dissociation energy and Ev
the energy of the vibrational level v, is thus positive, Eb >0.

Figure 1: (Color online) A schematic illustrating the role of the centrifugal term in the effective potential,

Veff(r)=−C4
r4 + h̄2

2m
J(J+1)

r2 . The energy splittings have been exaggerated for clarity. Shown is the position of a

rotationless vibrational level, v(J =0) (dashed line), as well as the position of the same level when pushed up
by the centrifugal term to threshold, v(J= J∗)=vth(J=0) (full line, at threshold). When the rotational angular
momentum J exceeds the critical value J∗, the centrifugal term pushes the vibrational level above threshold,
v(J > J∗) (full line, above threshold), thus leading to dissociation.

In our previous work [13], we have shown that for each vibrational level, v, the rota-
tional angular momentum, J, can take a critical value, J∗, such that the vibrational level is
pushed up to threshold, thereby causing the level’s binding energy to vanish. Hence the
angular momentum J in excess of J∗, J> J∗, dissociates the molecule, cf. Figure 1. Further-
more, we have shown that the critical angular momentum is related to the quantization
function by

J∗= F(Eb)(n−2). (3)

The corollary of Eq. (3) is that the number of rotational states supported by a weakly
bound vibrational level of a dimer is given by the integer part of the critical angular
momentum, Jmax=Int[J∗]. By making use of the explicit form of the quantization function
of refs. [10,11] for n=6, we were able to evaluate J∗ and estimate the rotational constant
B for near-threshold states of 85Rb2.
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Here we take advantage of the recently derived explicit form of the quantization
function for the n=4 long-range potential and analyze the rotational structure of highly-
excited H+

2 and 133Cs+
2 molecular ions. The accuracy of the approach based on the quanti-

zation function is compared with that of an exact numerical solution of the corresponding
Schrödinger equation.

2 Rotational states of weakly bound molecular ions

The quantization function for the n=4 case takes the form

F(Eb)= Fth(κ)+Fip(κ)
[

Fcr(κ)+FWKB(κ)
]
, (4)

where the individual terms, herein introduced for convenience, comprise a near-threshold
dependence,

Fth(κ)=
2bκ−(pκ)2

2π [1+(G6κ)6+(G7κ)7]
, (5)

an “interpolation” term, which gives a smooth transition between low-κ and high-κ be-
havior,

Fip(κ)=
(G6κ)6+(G7κ)7

1+(G6κ)6+(G7κ)7 ; (6)

a term which corrects the reflection phase due to the potential of Eq. (1),

Fcr(κ)=−1
4
+

u1

2πκ1/2 +
u3

2πκ3/2 +
u5

2πκ5/2 +
u7

2πκ7/2 ; (7)

and a pure WKB contribution,

FWKB(κ)=
κ1/2

2
√

π

Γ( 3
4 )

Γ( 5
4 )

(8)

cf. Eq. (38) of ref. [12]. In Eqs. (4)–(8), the dimensionless wavenumber κ is defined by

κ≡ k
(

C42m
h̄2

) 1
2

= E
1
2
b C

1
2
4

2m
h̄2 (9)

with k =
√

2mEb/h̄ the wave vector and m the diatomic’s reduced mass. The parameters
b, p and u in Eq. (4) are listed in Table 1 (cf. Tables I, II of ref. [12]). Note that in order to
avoid confusion with the rotational constant (defined below), we changed the symbols
B6,7, used in ref. [12] for the adjustable-length parameters, to G6,7.

The quantization function (4) can be simplified by neglecting the Fth(κ) and Fcr(κ)
terms and setting Fip(κ) to ≈ 1, which results in the Leroy-Bernstein (LB) approxima-
tion [14]. Neglecting only the Fth(κ) and Fip(κ) terms yields the improved Leroy-Berstein
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Table 1: The un coefficients of Eq. (7). The coefficients of Eqs. (5) and (6) are: b≡1, p2≡ 2π
3 , G6 =1.622576

and G7 =1.338059.

n

1 3 5 7
5
√

π Γ( 1
4 )

48 Γ( 3
4 )

− 35
√

π Γ( 3
4 )

384 Γ( 1
4 )

475
√

π Γ( 5
4 )

3584 Γ(− 1
4 )

− 63305
√

π Γ( 7
4 )

221184 Γ(− 3
4 )

Table 2: Terms of the quantization function of Raab and Friedrich (RF), Eq. (4), inherent to the LB and the
iLB approximations. Also shown are the ranges of the reduced wavenumber κ wherein the approximations apply.
See text.

RF iLB LB

All terms
Fth =0

Fip =1

Fth =0

Fip =1

Fcr =0

All κ κ≈1 κÀ1

approximation (iLB), which corrects the WKB approximation for the outer reflection phase,
see refs. [10, 15]. The assumptions about the various terms of Eq. (4) inherent to the ap-
proximations are listed in Table 2.

Neglecting any coupling of the molecular rotation, we can estimate the rotational
constant, B, from the rotational energy, BJ∗(J∗+1), required to promote the vibrational
level bound by Eb to threshold

B=
Eb

J∗(J∗+1)
. (10)

The values of the rotational constant B obtained from Eq. (10) for 133Cs+
2 and H+

2 are
listed in Tables 3 and 4 together with the essentially exact values, Bexact. The latter were
calculated from

Bexact = 〈v| h̄2

2mr2 |v〉 (11)

with the vibrational wavefunctions obtained from a numerical solution of the Schrödinger
equation for the potentials of refs. [8] and [16].

The value of the binding energy Eb for which a vibrational state is unable to support
molecular rotation can be derived from Eq. (3) with J∗=1. Hence the criterion for a level
to be rotationless is

Eb <d4
h̄

m1/2 C1/4
4

. (12)
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Table 3: Critical angular momenta J∗ and rotational constants B obtained for the last three vibrational states
of the 133Cs+2 molecular ion in different approximations; Eb and B are given in 10−8 cm−1. See also Table 2
and text.

v Eb J∗ J∗exact J∗iLB J∗LB B Bexact BiLB BLB

371 5.7 0.63 0.63 0.63 1.01 5.53 4.02 5.51 2.81

370 499.4 2.63 2.63 2.63 3.08 52.4 35.5 52.4 39.7

369 3731.1 4.62 4.64 4.62 5.10 143.5 96.4 143.5 120.0

The parameter d4 has the same value for all potential wells with an 1/r4 tail, namely
d4 = 2.9105. Within the LB and iLB approximations, the coeeficients diLB

4 = 2.9096 and
dLB

4 =0.7386. These values come close to those given in Table III of ref. [13].

3 Results and discussion

3.1 133Cs+
2 molecular ion

As an example, we analyzed the rotational structure of the 133Cs+
2 ion, for which an ac-

curate potential energy curve was published recently [8]. Table 3 compares, for the last
three vibrational levels of 133Cs+

2 , the values of the critical rotational angular momentum
J∗ and rotational constant B, calculated from Eqs. (3) and (10), with exact results. The ta-
ble also lists the values obtained by the Leroy-Bernstein and improved LeRoy-Bernstein
approximations. One can see that for all the states considered, the predicted values of J∗
come close to the exact values, as do the values of J∗iLB. However, J∗LB, given by the purely
semiclassical LB theory, are quite off the exact values. One can also see from Table 3 that
the model’s estimate of the rotational constants B is within 25% of the exact value. In the
case of the LB approximation, the deviation of J∗LB from the exact value happens to be in
the direction such that it improves the agreement of the LB rotational constant with the
exact one; however, this improved agreement has to be regarded as serendipitous.

3.2 H+
2 molecular ion

We have also looked at the other end of the mass scale and tackled the rotational struc-
ture of the H+

2 ion. The exact values of J∗ and B were obtained by numerically solving
the the Schrödinger equation for the potential of ref. [16]. Table 4 compares the exact
critical angular momenta and rotational constants with those obtained from the models.
Although the potential well of the hydrogen molecular ion is rather shallow, the near-
threshold rotational structure is still governed by the long-range potential tail, as attested
by a reasonable agreement of both J∗ and B with the exact results. Since none of the last
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Table 4: Critical angular momenta J∗ and rotational constants B obtained for the three least-bound states of
the H+

2 molecular ion in different approximations; Eb and B are given in cm−1. See also Table 2 and text.

v Eb J∗ J∗exact J∗iLB J∗LB B Bexact BiLB BLB

19 0.707 1.27 1.33 1.27 1.70 0.24 0.15 0.24 0.15

18 23.411 3.60 3.70 3.60 4.07 1.41 0.92 1.41 1.14

17 153.67 6.03 6.56 6.03 6.51 3.62 2.10 3.62 3.14

vibrational states lies in a “pure near-threshold region,” the LB and iLB approximations
are not too far off either.

4 Conclusions

The advent of the physics of translationally cold atoms and molecules has secured a new
prominence for long range interactions [17]. The r−4 attraction features most notably
in the ion-induced dipole interaction between an ion and and an atom or molecule, as
well as in the Casimir-Polder potential of an atom interacting with a surface [18]. The
bound states near threshold are of particular interest. This is because such states are non-
classical, often spending most of their lifetime in the far-out, classically forbidden region
of the potential [4]. Also, molecular species, whether ionic or neutral, in such states can
be probed using nonresonant laser light, by “shaking” [19]. On the other hand, threshold
states determine low-energy scattering behavior, subject to studies in traps [5].

Within this context (and beyond), it is helpful to possess the means the assess the
rotational structure near threshold. Herein, we provide simple formulae that enable such
an assessment to be carried out. These formulae yield the critical value of the rotational
angular momentum needed for dissociation; the rotational constant; and a criterion for
determining whether a given vibrational state can support molecular rotation.
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