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Abstract. In this paper, we investigate the method of fundamental solutions (MFS)
for solving exterior Helmholtz problems with high wave-number in axisymmetric do-
mains. Since the coefficient matrix in the linear system resulting from the MFS approx-
imation has a block circulant structure, it can be solved by the matrix decomposition
algorithm and fast Fourier transform for the fast computation of large-scale problems
and meanwhile saving computer memory space. Several numerical examples are pro-
vided to demonstrate its applicability and efficacy in two and three dimensional do-
mains.
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1 Introduction

The method of fundamental solutions (MFS) [4, 11, 13, 14, 23], known for its simplicity
and accuracy, has been gaining in popularity in various areas of scientific computing.
Like the boundary element method (BEM) [3], it is applicable when the fundamental so-
lution of the governing equation is known in advance. Numerical solution of the MFS
is approximated by a linear combination of the fundamental solutions in terms of singu-
larities which are placed outside the domain of the problem under consideration. The
singularities of fundamental solutions can be either free or fixed which will result in, re-
spectively, a nonlinear least square problem or a linear system [11]. A review of some
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related work as well as varieties of applications and advantages over other methods can
be found in [12, 14, 16, 25, 27, 32].

It is known that the MFS is particularly efficient and accurate for solving exterior
Helmholtz problems since it is a truly boundary-type meshless method and the funda-
mental solution of the governing equations naturally satisfies the Sommerfeld radiation
condition [2,12,14]. On the other hand, it is also known that the coefficient matrix gener-
ated by the MFS is often dense and ill-conditioned [6,8,33]. Direct solver for such a matrix
requires O(N3) operations and O(N2) storages. As a result, the MFS is not feasible for
solving exterior Helmholtz problems with high wave-number since massive collocation
points are required. Furthermore, when the number of collocation points is large, the
coefficient matrix becomes extremely ill-conditioned [7, 26]. In the past, the domain de-
composition method (DDM), regularization techniques etc. [1,24,34] have been proposed
to alleviate the conditioning and storage problems associated with the MFS formulation.
In general, it is known that the structure of the coefficient matrix is closely related to the
distribution of collocation points. If the collocation points and the solution domain are
chosen in a particular fashion, the resulting matrix system has a certain structure. Re-
cently, efficient algorithms have been developed for solving axisymmetric homogeneous
differential equations in context of the MFS [10, 17–21, 28, 29, 31].

In this paper, our main goal is to develop an efficient numerical algorithm to solve
high wave-number exterior Helmholtz problems in axisymmetric domain which has not
been reported in literatures. The main problems rest on the high wave-number and Ne-
unamm boundary condition, for the fact that massive collocation points should be used
to high wave-number problems and Neumann boundary condition may result in some
structural damage to the coefficient matrix. By the radial properties of the fundamental
solution and radial symmetric of the solution domain, we show the circulant or block
circulant features of the coefficient matrices for problems under pure Dirichlet or Neu-
mann boundary condition. And we take advantage of the special features of the circulant
matrix [9] to accelerate the solution procedure. The key idea behind this algorithm is the
matrix decomposition algorithm which has been widely circulated in science and engi-
neering. For more details, we refer readers to the References [18–20]. Overall, the pro-
posed algorithm decomposes the give system of equations into a series of linear systems
of lower rank. Similar to the traditional matrix decomposition method, the proposed al-
gorithm makes extensive use of fast Fourier transform which results in additional saving
in the computational time and memory storage.

The rest of the paper is organized as follows. In Section 2, we give a general formu-
lation of the MFS to exterior Helmholtz problems. In Section 3, through the use of the
circulant matrix and fast Fourier transform, we describe how the matrix decomposition
method is being used for solving both two and three dimensional problems. The efficacy
of the proposed technique for solving Helmholtz problems with high wave-number is
demonstrated by several benchmark examples in Section 4. In Section 5, we conclude
with some discussion for the direction of future research.
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2 The method of fundamental solutions

Let Ω ⊂ Rd, d = 2,3, be a bounded domain. The region Ω+ represents the unbounded
domain exterior to Ω with a closed boundary Γ. In this paper we consider the following
exterior Helmholtz problem

∇2u(x)+k2u(x)=0, x∈Ω+, (2.1)

where ∇2 is the Laplacian, k the wave-number, with the Dirichlet or Neumann boundary
condition

u(x)= f (x) or
∂u(x)

∂n
= f (x), x∈Γ. (2.2)

In order to obtain a unique solution to (2.1)-(2.2), the solution u must satisfy the Som-
merfeld radiation condition at infinity [5, 35]

lim
r→∞

r
d−1

2

( ∂

∂r
−ik

)

u(r)=0, (2.3)

where d denotes the dimension of the exterior problem, and i=
√
−1.

In the MFS, the approximate solution of the given differential equation is expressed
as a linear combination of fundamental solution of the governing equation (2.1)

u(xi)=
N

∑
j=1

β ju
>

n (xi−yj), xi∈Γ∪Ω+, (2.4)

where {β j} is the unknown coefficients, N the number of source points yj, and u>

n is the
fundamental solution of Helmholtz operator given by















u>

n (xi−yj)=
i

4
H1

0(k‖xi−yj‖), xi,yj ∈R2,

u>

n (xi−yj)=
eik‖xi−yj‖

‖xi−yj‖
, xi,yj ∈R3,

(2.5)

where ‖·‖ denotes the Euclidean norm, H1
0 the Hankel function of the first kind of order

zero. To avoid the singularity in the MFS formulation, we place the source points {yj} on

the fictitious boundary Ω̄ located inside Ω. Collocating boundary condition (2.2) and the
Sommerfeld radiation condition (2.3) at all the collocation points, we have

N

∑
j=1

β ju
>

n (xi−yj)= f (xi), i=1,2,··· ,N, (2.6a)

or

N

∑
j=1

β j

∂u>

n (xi−yj)

∂n
= f (xi), i=1,2,··· ,N. (2.6b)
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It is noted that the fundamental solutions (2.5) naturally satisfies the Sommerfeld ra-
diation condition (2.3) at infinity. Finally, the resulting system of equations is obtained
by (2.6), from which we can obtain the unknown variables {β j}. If the solvability of
the matrix equation (2.6) is an issue, we can always use least square method to obtain
{β j}. Hence, the approximate solution of (2.1)-(2.2) can be obtained by (2.4) with known
coefficients {β j} at any points in the solution domain.

3 Circulant matrix and fast solution

In this paper, we consider special cases of the Helmholtz equation in the axisymmetric
domains. We will also prove that if the collocation points on the physical boundary and
source points on the fictitious boundary are chosen in a particular fashion, the resulting
system has a certain structure which can be exploited for the efficient solution of the given
system.

We first consider the two dimensional problem on the exterior of a circular disk with
radius r, a set of collocation points {xi}N

i=1 is chosen on boundary Γ by the following way

xi=
(

rcos(ψi),rsin(ψi)
)

,

where

ψi =
2(i−1)π

N
, i=1,2,··· ,N. (3.1)

Similarly, the singularities {yj}N
j=1 are chosen on the concentric circle inside Ω, as

follows

yi=
(

ry cos(ψi),ry sin(ψi)
)

,

where ry= sr and 0< s<1. From (2.6), we have the following matrix equation

Aβ= f , (3.2)

where

A=











u>

n (x1−y1) u>

n (x1−y2) ··· u>

n (x1−yN)
u>

n (x2−y1) u>

n (x2−y2) ··· u>

n (x2−yN)
...

...
. . .

...
u>

n (xN−y1) u>

n (xN−y2) ··· u>

n (xN−yN)











(3.3)

or

A=















∂u>

n (x1−y1)
∂n

∂u>

n (x1−y2)
∂n ··· ∂u>

n (x1−yN)
∂n

∂u>

n (x2−y1)
∂n

∂u>

n (x2−y2)
∂n ··· ∂u>

n (x2−yN)
∂n

...
...

. . .
...

∂u>

n (xN−y1)
∂n

∂u>

n (xN−y2)
∂n ··· ∂u>

n (xN−yN)
∂n















. (3.4)
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It is easy to prove that the matrix A in (3.3) is circulant, defined by

A= circ
(

u>

n (x1−y1),u
>

n (x1−y2),··· ,u>

n (x1−yN)
)

. (3.5)

By some basic algebraic operation, we have

∂u>

n (xi−yj)

∂n
=

∂u>

n (xi−yj)

∂r

(

1−scos(ψi−ψj)
)

. (3.6)

The matrix equation (3.4) is also circulant given by

A= circ
( ∂u>

n (x1−y1)

∂n
,
∂u>

n (x1−y2)

∂n
,··· , ∂u>

n (x1−yN)

∂n

)

. (3.7)

For three dimensional problems, we do have the matrix with circulant submatrix.
Taking the ellipsoid solution domain as an example, the collocation points xmi =

{xmi,ymi,zmi}M,N
m=1,i=1 on Γ are taken to be

xmi=
{

ra sin(ψm)cos(φi),rb sin(ψm)sin(φi),rc cos(ψm)
}

, (3.8)

where

ψm =
πm

M+1
, φi=

2π(i−1)

N
, m=1,2,··· ,M, i=1,2,··· ,N. (3.9)

Similarly, the singularities can be chosen as follows

ynj=
{

sra sin(ψn)cos(φj),srb sin(ψn)sin(φj),src cos(ψn)
}

, (3.10)

where 0< s<1. Then (2.6) yields the following matrix equation

Aβ= f , (3.11)

where the MN×MN matrix A has the structure

A=











A11 A12 ··· A1M

A21 A22 ··· A2M
...

...
. . .

...
AM1 AM2 ··· AMM











, (3.12)

in which

Akl =











u>

n (xk1−yl1) u>

n (xk1−yl2) ··· u>

n (xk1−ylN)
u>

n (xk2−yl1) u>

n (xk2−yl2) ··· u>

n (xk2−ylN)
...

...
. . .

...
u>

n (xkN−yl1) u>

n (xkN−yl2) ··· u>

n (xkN−ylN)











, (3.13)
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or

Akl =















∂u>

n (xk1−yl1)
∂n

∂u>

n (xk1−yl2)
∂n ··· ∂u>

n (xk1−ylN)
∂n

∂u>

n (xk2−yl1)
∂n

∂u>

n (xk2−yl2)
∂n ··· ∂u>

n (xk2−ylN)
∂n

...
...

. . .
...

∂u>

n (xkN−yl1)
∂n

∂u>

n (xkN−yl2)
∂n ··· ∂u>

n (xkN−ylN)
∂n















. (3.14)

It is clear that the submatrix Akl in (3.13) is circulant. We also note that (3.14) also has
circulant feature which can be proved as follows,

∂u>

n (xki−yl j)

∂n
=

∂u>

n (xki−yl j)

∂r

∂r

∂n
=

∂u>

n (xki−yl j)

∂r

∆xn1+∆yn2+∆zn3

r

=
∂u>

n (xki−yl j)

∂r

(

2−2scos(ψk)cos(ψl)−2ssin(ψk)sin(ψl)cos(φi−φj)
)

(Lr)
, (3.15)

where L is given by

L=

√

4sin2(ψk)

r2
a

+
4cos2(ψk)

r2
c

,

since ra = rb for ellipsoid domain. Here we have proved that matrices (3.3) and (3.12)
have the structure of circulant matrix which can be solved efficiently. Without loss of
generality, we consider the following N×N circulant matrix

C= circ(c1,c2,··· ,cN). (3.16)

It is known that the circulant matrix can be factored into the product of the the following
matrices [9]

C=U∗DU, (3.17)

where

U∗=
1

N1/2















1 1 1 ··· 1
1 w w2 ··· wN−1

1 w2 w4 ··· w2(N−1)

...
...

...
. . .

...

1 wN−1 w2(N−1) ··· w(N−1)(N−1)















, (3.18)

and

D=diag(d1,d2,··· ,dN), di =
N

∑
k=1

ckw(k−1)(i−1), (3.19)

with w= e2πi/N.

We denote ⊗ as the matrix tensor product. Note that [9]

(IM⊗U∗)(IM⊗U)= IMN. (3.20)
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From (3.11), multiplying both sides by the block diagonal matrix IM⊗U yields

(IM⊗U)A(IM⊗U∗)(IM⊗U)β=(IM⊗U) f . (3.21)

The above equation can be written as follows

Āβ̄= f̄ , (3.22)

where

Ā=(IM⊗U)A(IM⊗U∗)=











UA11U∗ UA12U∗ ··· UA1MU∗

UA21U∗ UA22U∗ ··· UA2MU∗
...

...
. . .

...
UAM1U∗ UAM2U∗ ··· UAMMU∗











=











D11 D12 ··· D1M

D21 D22 ··· D2M
...

...
. . .

...
DM1 DM2 ··· DMM











, (3.23a)

β̄=(IM⊗U)β, (3.23b)

and
f̄ =(IM⊗U) f . (3.24)

Note that each of the N×N block matrix Dkl in (3.23) is diagonal. In particular, if the
submatrix of A

Aij= circ(c1,c2,··· ,cN)=











c1 c2 ··· cN

cN c1 ··· cN−1
...

...
. . .

...
c2 c3 ··· c1











, (3.25)

then the corresponding submatirx Dij=diag(d1
ij ,d

2
ij,··· ,dN

ij ), where

dl
ij =

N

∑
k=1

ckw(k−1)(l−1), l=1,2,··· ,N. (3.26)

Since the matrix equation (3.11) has been decomposed into M2 blocks of the rank N
each of which is diagonal, the solution to (3.11) can be decomposed into N systems of
equations with rank M,

Elβl =( f̄l), l=1,2,··· ,N, (3.27)

where

(El)ij=dl
ij, i, j=1,2,··· ,M, l=1,2,··· ,N, (3.28a)

( f̄l)i =( f̄ )(i−1)N+l, i=1,2,··· ,M, l=1,2,··· ,N. (3.28b)

In conclusion, we have the following algorithm:
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Step 1 Compute f̄ =(IM⊗U) f ,

Step 2 Construct the diagonal matrix Dij in (3.23),

Step 3 Solve N linear system of equations of order M to obtain the β̄ in (3.23b),

Step 4 Recover the β from (3.23b).

It is noted that in Steps 1, 2 and 4, fast Fourier transform and inverse fast Fourier
transform can be used to save the memory space and speed up the computation while
the most expensive part of the algorithm is to solve N complex linear systems of order M
which can be done by Gaussian elimination at a cost of O(NM3).

4 Numerical results and discussions

To demonstrate the efficiency of the algorithm proposed in this paper, several numerical
examples are investigated. The L2 relative average error to be shown in this section is
defined as:

Error=

√

√

√

√

√

∑
Nt
j=1

(

u(xj,yj)−ũ(xj,yj)
)2

∑
Nt
j=1

(

u(xj,yj)
)2

,

where (xj,yj) denotes the j-th test point, Nt is the total number of randomly distributed
test points for both two and three dimensional problems, u and ũ are the exact and nu-
merical solution respectively.

It is noted that the computation were carried out on MATLAB2011b platform in OS
Windows 7 (64bit) with I3 3.30GHz CPU and 16GB memory. For all the examples in
this section, k denotes the wave-number, s the ratio between the fictitious boundary and
physical boundary, sr the radius of fictitious circular or spherical boundary, N the number
of collocation points. The number of source points is taken to be the same as the number
of collocation points. In this section, we choose Nt =100 for all the examples.

4.1 Two-dimensional cylinder radiation model under Neumann boundary
condition

In this example, we consider the radiation problem of an infinite circular cylinder with
Neumann boundary condition as shown in Fig. 1. The analytical solution u of the radia-
tion field is given by

u(r,θ)=− kaH
(1)
4 (kr)

kaH
(1)
3 (ka)−4H

(1)
4 (ka)

cos(4θ), (4.1)

where H
(1)
m is a Hankel function of the first kind of order m, and a is the radius of the

cylinder and the corresponding Neumann boundary condition is given by

∂u

∂n
= kcos(4θ). (4.2)
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Figure 1: The profile of the physical domain of an infinite cylinder.

In particular, we consider the cylinder with radius a= 100. In Fig. 2, we present the
L2 errors versus the radius of fictitious boundary in the case of wave-number k = 100
with different number of collocation points N = 100,1,000,10,000 and 20,000. From this
figure, we can see that when N is small, the radius of fictitious boundary is critical to the
accuracy of the MFS approximation. When N becomes larger, more accurate and stable
results can be achieved disregard to the radius of fictitious boundary sr. This indicates
that we can use more collocation points to alleviate the uncertainty of choosing the ficti-
tious boundary which is a difficult issue for the traditional MFS.

To show the efficiency of the MFS in the context of wave-number k, we display errors
versus N using sr= 80 as shown in Fig. 3. We observe that the MFS performs very well
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Figure 2: Errors versus of the radius of the fictitious boundary with different number of collocation points in
the case of k=100.
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Figure 3: Errors versus the number of collocation points with different wave-number k in the case of sr=80.
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Figure 4: The profile of numerical solution with k=300 and sr=80.

with the increasing number of collocation points. For larger wave-number k, we should
use more collocation points to obtain acceptable results. The profile of numerical solution
for wave-number k=300 is shown in Fig. 4.

To show the capability of the fast MFS algorithm for handling much large wave-
number k, we display the numerical errors versus N with wave-number k= 10,000 and
sr= 80 in Fig. 5. We observe that the MFS converges very well and numerical accuracy
reaches 10−10 for N ≥ 3×106. In Fig. 5, we note that the computational time increases
linearly proportional to N when N<8×107; i.e., O(N). Even for N=108, we can obtain
the numerical solution roughly in 100 seconds which is unthinkable in contrast to the
traditional approach of the MFS.

4.2 Three-dimensional ellipsoid radiation model under Dirichlet boundary
condition

In this case, we consider the scattering problems on an exterior ellipsoid domain

Ω+=
{

(x,y,z)|
( x

a

)2
+
(y

b

)2
+
(z

c

)2
≥1

}
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Figure 5: Errors (left) and CPU time (right) versus the number of collocation points with k=10,000 and sr=80.

0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

k=100, N=450

E
rr

or
s

0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

k=100, N=1250

0.2 0.4 0.6 0.8 1
10

−4

10
−2

10
0

10
2

k =100, N=2450

Ratio between sr and r:  s

E
rr

or
s

0.2 0.4 0.6 0.8 1
10

−15

10
−10

10
−5

10
0

10
5

k=100, N=500000

Ratio between sr and r: s

Figure 6: Results for varying parameter s and various collocation points N in the case of ellipsoid domain with
k=100.

with Dirichlet boundary condition

u(x,y,z)=
eikR0

R0
, (x,y,z)∈∂Ω+ , (4.3)

where R0=
√

x2+y2+z2. The analytical solution is given by

u(x,y,z)=
eikr

r
, (x,y,z)∈Ω+, (4.4)
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Figure 7: Errors versus of the number of collocation points with different wave-number k with s=0.3.
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Figure 8: CPU time versus the number of collocation points with k=600 and s=0.3.

where r =
√

x2+y2+z2. In this example, the parameters of the ellipsoid are chosen as
a=b=0.8, c=1.

In Fig. 6, we present the L2 errors versus the ratio between the fictitious boundary and
physical boundary with different number of collocation points N = 450,1,250,2,450 and
500,000. As before, the fictitious boundary is critical to the numerical accuracy. With more
collocation points, we can obtain more accurate results. The numerical results reveal that
for large N, errors becomes less dependent on sr which can be verified from the bottom
right figure in Fig. 6.

Convergent study is displayed in Fig. 7. From which we can observe that the MFS
approximation converges very well with respect to N. For high wave-number k, we need
much more collocation points to maintain the same accuracy just as mentioned in the
previous examples. Finally, we show the CPU time versus N in Fig. 8 with k= 600 and
s=0.3. Note that the CPU time increases superlinearly with respect to N; i.e., O(N1.33).
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4.3 Three-dimensional pulsating-sphere model under Neumann boundary
condition

Finally, we consider the acoustic radiation from a pulsating sphere as shown in Fig. 9.
This sphere is applied with uniform radial velocity v0. Therefore, the corresponding
analytical solution of the pulsating-sphere problem can be derived as follows [30]

u(r,θ1,θ2)=
a

r

( ikaz0

ika−1

)

v0eik(r−a), (4.5)

where a is the radius of the sphere and z0 = ρ0c0 is the characteristic impedance of the
medium in which ρ0 represents the density of the medium and c0 is the sound veloc-
ity. This example is often used as a benchmark problem to verify the algorithm. In this
example, we choose a=1.
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Figure 9: Sketch of the pulsating model with uniform radial velocity v0.

In Fig. 10, we display the errors of |u/(v0z0)| versus the fictitious boundary with
various number of collocation points. From the figure we come to the same conclusion as
in the previous two examples that the larger N will have positive impact on the location
of fictitious boundary. Convergent results are shown in Figs. 10 and 11. We observe that
the MFS converges very well along the increase of the number of collocation points. For
the high wave-number k, more collocation points should be used. Finally we show the
CPU time versus N for k =1,000 and sr = 0.3 in Fig. 12. We can obtain the numerical
solution in 120 seconds with N = 500,000. The CPU time increases superlinearly with
respect to N; i.e., O(N1.52).

5 Concluding remarks

In this paper, the MFS is used to solve high wave-number exterior Helmholtz problems in
the axisymmetric domain. Due to the symmetric property of the circulant matrix, a ma-
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Figure 10: Errors versus of the radius of the fictitious boundary with different number of collocation points in
the case of k=100 for example 3.
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Figure 11: Convergence study for different wave-number k with sr=0.3.

trix decomposition algorithm is implemented to accelerate the solution process. Three
numerical examples demonstrate the efficiency of MFS for solving large wave-number
Helmholtz problems. We observe that the CPU time increases linearly for two dimen-
sional problems and superlinearly for three dimensional problems. Hence, even with a
large number of collocation points being used, the computational time is still very reason-
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Figure 12: CPU time versus the number of collocation points with k=1,000 and sr=0.3.

able. One of the restrictions of our proposed approach is that the computational domain
has to be axisymmetric. For the irregular domain, a conformal mapping can be consid-
ered to transform the given domain to a circular domain [15]. This will be the subject of
our future investigation.
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