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Abstract. General formalism of special form of Hylleraas correlated wave functions

(SFHCWF) is demonstrated in this paper. The adequacy of the SFHCWF in the descrip-

tion as well as of the singlet than of the triplet excited states of two electron systems is also

presented in this work. Application of SFHCWF to the calculations of doubly excited nlnl ′
states (n=2–4) in the helium-like ions is done, using the screening constant by unit nu-

clear charge method in the framework of a variational procedure. Comparison with various

available theoretical and experimental literature values indicates a good agreement.
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1 Introduction

The most suitable approached method used for the treatment of the ground state of two

electron systems is the Ritz variational principal which has been first applied to the helium

atom by Kellner [1] and with even great success by Hylleraas [2]. Since the early experi-

ment of Madden and Codling [3] and others [4] and theoretical explanation of Cooper, Fano

and Prats [5], doubly-excited states (DES) of the helium-like ions have been the intention

of several studies. Besides, higher-energy Rydberg envelopes contain doubly-excited states

which are generally labelled in the usual spectroscopic notation (N l,nl′)2S+1 Lπ with n=N ,

N+1,··· [6]. In these notations, N and n denote respectively the principal quantum numbers

of the inner and the outer electron, l and l′ there respective orbital quantum numbers, S the

total spin, L the total angular momentum and π the parity of the system.
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Investigations of DES in two electron systems are of interest in spectroscopic diagnostic in

connexion with the understanding of collisional and radiational processes taking place in hot

astrophysical and laboratory plasmas [7]. For autoionizing states in the helium isoelectronic

series, many computational methods are employed. Among these methods are, the comput-

ing double sum method over the complete hydrogen spectrum [8], the complex-coordinate

rotation [9–12], the density functional theory [24], the Feshbach-projection method [14], the

screening constant by unit nuclear charge (SCUNC) method [15–17] (to name a few). Special

type of trial wave functions combining Hylleraas and incomplete hydrogenic wave functions

have also been used in the computations of energies for doubly excited states of two electron

systems [18–21]. But in these studies, the special form of Hylleraas correlated wave func-

tions (SFHCWF) used by Biaye and co-workers [18–21], has been constructed by an iterative

procedure.

In this paper, we present the general mathematical formalism that leads to the construc-

tion of such special wave functions. The adequacy of the SFHCWF in the description as well

as of the singlet than of the triplet excited states of two electron systems is also presented. Be-

sides, using the SCUNC- method, we apply SFHCWF in the calculations of 2s2p1Po, 3s3p1Po,

4s4p1Po, 3s3d1De, 4s4d1De, 4s4 f 1F o, 4p4d1F o, 4p4 f 1Ge and 4d4 f 1Ho DES in He-like ions

up to Z=10.

The advantages of the SCUNC method are connected with the possibilities to investigate

autoionizing states in two-electron systems using either a variational or a semi-empirical pro-

cedure. Comparison of the results obtained with various theoretical other results is made. Dis-

cussions between the two procedures (semi-empirical and variational) of the SCUNC method

are also made. In Section 2, we present the theoretical procedure adopted in this work. In

Section 3, we present and discuss the results obtained, compared to available theoretical and

experimental literature values.

2 SfHCWF for doubly excited states of two electron systems

For the ground state of two electron systems, the Hylleraas wave function is in the form

Φ jkm( ~r1, ~r2)=(r1+r2)
j(r1−r2)

k|~r1− ~r2|mexp−λ(r1+r2). (1)

In this expression, ~r1 and ~r2 denote the positions of the two electrons, r1 and r2 are used

respectively for |~r1| and |~r2|, j, k, m are Hylleraas parameters satisfying the double condition

( j, k, m≥ 0) and j+k+m≤ 3, λ represents a coefficient given by: λ= Z/αr0, where Z ,

α and r0 denote respectively the nuclear charge number, the variational parameter and the

Bohr’s radius. The set of the parameters ( j, k, m) define the basis states and then give their

dimension D. From the theoretical viewpoint, the Hylleraas variational method is based on

the Hylleraas and Undheim theorem [22] according to which, a good approximation of the

energy eigenvalue E(α) is obtained when the minima of the function (dE(α)/dα=0) converge

with increasing values of the dimension D of the basis states and when the function exhibit

a plateau. In the Hylleraas wave function, the angular part corresponding to the spherical
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harmonic Y (Θ,ϕ) is determined by the cosinus of the angle θ12 between the direction of the

vector positions ~r1 and ~r2 as shown in the following expression

|~r1− ~r2|=
Æ

r2
1+r2

2−2r1r2cosθ12.

On the other hand, in the Hylleraas variational method, the Hamiltonian operator relative to

the two electron systems is shared in three terms as follows

H=T+C+W .

In this above decomposition, T denotes the kinetic energy operator of the two electrons, C

is the Coulomb potential energy operator between the atomic nucleus and the two electrons

and W represents the Coulomb interaction energy operator between the two electrons. These

operators are given respectively by

T =− h̄2

2m
(∆1+∆2),

C=− Ze2

r1

− Ze2

r2

,

W =
e2

r12

=
e2

|~r1− ~r2|
.

In the framework of the Hylleraas method, the total ground state energy E is written as the

sum of the average values of these three terms

〈H〉=〈T 〉+〈C〉+〈W 〉.

For an operator A, the average value 〈A〉 in the non normalized ground state wave function

given by Eq. (1) is in the form

〈A〉= 〈Φ jkm|A|Φ j′k′m′〉
〈Φ jkm|Φ j′k′m′〉

=
〈Φ jkm|A|Φ j′k′m′〉

NJKM

,

where

NJKM =〈Φ jkm|Φ j′k′m′〉
denotes the matrix element of the normalisation constant. The parameters J , K , and M are

equal respectively to: J = j+ j′, K=k+k′, and M =m+m′. Using Eq. (1), we obtain

NJKM =

∫∫∫

d3r1d3r2(r1+r2)
J (r1−r2)

K |~r1− ~r2|M exp−2λ(r1+r2).

In term of the matrix elements, the total ground state energy E satisfies the following relation

ENJKM =T jkmj′k′m′+CJKM+WJKM .
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To facilitate the calculations of the above matrix elements, Hylleraas [2] used three dis-

tance coordinates defined as follows

v=(r1+r2), w=(r1−r2), u=cosθ12.

By use of these variables, the matrix elements NJKM , T jkmj′k′m′ , CJKM and WJKM are evaluated.
One finds respectively

NJKM =
2π2

M+2

�

1

(K+1)
− 1

(K+3)
− 1

(K+M+3)
+

1

(K+M+5)

�

(J+K+M+5)!

�

1

2λ

�J+K+M+6

,

WJKM =e2NJKM−1,

CJKM =−8π2Ze2

(M+2)

�

1

(K+1)
− 1

(K+M+3)

�

(J+K+M+4)!

�

1

2λ

�J+K+M+5

,

T jkmj′k′m′=
h̄2

2m

�

2

�

λ2NJKM−JλNJ−1,KM+ j j′NJ−2,KM+kk′NJ ,K−2,M+mm′NJ ,K ,M−2

�

+
1

2

�

−Mλ(CJKM−CJ ,K+2,M−2)+(mj′+m′ j)(CJ−1,KM−CJ−1,K+2,M−2)

+(mk′+m′k)(CJ+1,K ,M−2−CJ−1,KM)
�

�

.

These matrix elements with respect to the ground state of two electron systems are evaluated

using a computer program. This permits to obtain the total ground state energy

E=〈T 〉+〈C〉+〈W 〉.
The method has been applied successfully first by Hylleraas [2] in the ground state of the

helium isoelectronic series. After, Biaye et al. [18–21] have extended the method to the calcu-

lations of energies for doubly excited stated of the helium atom and its isoelectronic sequence.

But the wave functions combining Hylleraas and incomplete hydrogenic wave functions used

by these authors have just been constructed by an iterative procedure. The form of the wave

functions is considered as acceptable, if it permits to succeed at results in good agreement

with other available experimental and theoretical results. Obviously, such a procedure could

take a lot of time. To facilitate the construction of the special wave functions combining

Hylleraas and incomplete hydrogenic wave functions, it is necessary to develop the general

mathematical formalism that leads to the construction of such special wave functions. The

first part of the present work is in this direction.

2.1 Incomplete hydrogenic wave functions for (nl2) symmetric doubly excited

states of the helium-like ions

For doubly excited states of type (nl2), the correlated wave functions Ψ jkmnl( ~r1, ~r2) are con-

structed considering the product of incomplete radial hydrogenic wave functions Rnl(r1,r2)
by Hylleraas wave functions Φ jkmn( ~r1, ~r2)

Ψ jmknl( ~r1, ~r2)=Rnl(r1,r2)xΦ jkmn( ~r1, ~r2). (2)
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In this equation, Φ jkmn( ~r1, ~r2) is given by Eq. (1) where the λ parameter for excited states is

in the form λ=Z/αr0n, n denotes the principal quantum number.

As far as the radial hydrogenic wave functions are concerned, they are in the general well

knowing expression

Rnl(r)=

��

2Z

nr0

�3
(n−l−1)!

2n[(n+ l)!]3

�1/2

e
− Zr

nr0

�

2Z r

nr0

�l

L2l+1
n+l

�

2Z r

nr0

�

. (3)

In this formula, L2l+1
n+l

(r) are Laguerre associated polynomials linked to the Ln+l(r) − La-

guerre polynomials by the Rodrigue’s formula

Lk
n(r)=

dk

drk
Ln(r),

where

Ln(r)= er
dn

drn
(rne−r).

On the other hand, complete hydrogenic wave functions are in the shape

ψnl(r,θ ,ϕ,s)=Rnl (r)×Ylm(θ ,ϕ)×φ(s).

In this equation, Rnl(r) denotes the radial wave function given by Eq. (3), Ylm(θ ,ϕ) corre-

sponds to the angular part of the wave function (also called spherical harmonics) and φ(s)
designs the spin wave function. Ignoring both Ylm(θ ,ϕ) and φ(s), we obtained incomplete

hydrogenic waves functions

ψnl(r)=Rnl(r).

Then, for the correlated waves functions ψ
jkm

nl
(r1,r2) we do the product

ψ
jkm

nl
(r1,r2)=Rnl(r1,r2)×Φ jkm(r1,r2)×eλ(r1+r2). (4)

The multiplication by the factor (expλ(r1+r2)) in the second term of the right hand side of

Eq. (4) is justified by the fact that, each of the wave functions (Rnl(r1,r2)) and Φ jkm(r1,r2)
contains the exponential factor exp−λ(r1+r2). The main problem is to construct the incom-

plete hydrogenic wave functions ψnl(r1,r2)=Rnl(r1,r2). In this purpose, we determine some

radial hydrogenic wave functions in the particular cases of 1s, 2s, 2p, 3s and 3p states. By use
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of general Eq. (3), we get

For 1s state, R10(r)=2

�

Z

r0

�3/2

e
− Zr

r0 ,

For 2s state, R20(r)=
1p
2

�

Z

r0

�3/2�

1− Z r

2r0

�

e
− Zr

2r0 ,

For 2p state, R21(r)=
1

2
p

6

�

Z

r0

�5/2

re
− Zr

2r0 ,

For 3s state, R30(r)=
2

3
p

3

�

Z

r0

�3/2�

1− 2Z r

3r0

+
2Z2r2

27r2
0

�

e
− Zr

3r0 ,

For 3p state, R31(r)=
8

27
p

6

�

Z

r0

�3/2�
Z r

r0

− Z2r2

6r2
0

�

e
− Zr

3r0 .

Besides, let us introduce the effective charge number Z∗ defined by

Z∗=
Z

α
. (5)

where α is a variational parameter. Using Z∗, we construct non normalized incomplete radial

wave functions considering the preceding hydrogenic waves functions

For 1s state, R′10(r)= e
− Z∗ r

r0 , (6a)

For 2s state, R′20(r)=

�

1− Z∗r
2r0

�

e
− Z∗ r

2r0 , (6b)

For 2p state, R′21(r)= re
− Z∗ r

2r0 , (6c)

For 3s state, R′30(r)=

�

1− 2Z∗r
3r0

+
2Z∗ 2r2

27r2
0

�

e
− Z∗ r

3r0 , (6d)

For 3p state, R′31(r)=

�

Z∗r
r0

− Z∗ 2r2

6r2
0

�

e
− Z∗ r

3r0 . (6e)

On the other hand, the electron-electron correlation effects are taking into consideration by

the parameters j, k and m of Hylleraas. We consider then, the incomplete hydrogenic wave

functions given by Eq. (6) as wave functions of independent particles. Each electron is con-

sidered as interaction with the nucleus of effective charge Z∗. In this condition, if ψ( ~r1, ~r2) is

the wave function describing the global state of the two independent particles (1) and (2), in

the basis |~r1, ~r2〉, we get

ψ( ~r1, ~r2)=〈~r1, ~r2|ψ〉=〈~r1|ψ1〉〈~r2|ψ2〉=ψ1( ~r1)×ψ2( ~r2).
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Besides, for identical particles (electrons here) the wave function can be written in the form

ψ′( ~r1, ~r2)=ψ1( ~r1)×ψ2( ~r2)+ψ1( ~r2)×ψ2( ~r1).

This function is obtained by permuting the spatial coordinates r1 and r2 respectively of the

two particles (1) and (2). Using these preceding equations, we construct the radial wave

functions of the two electrons as follows

• For 1s state,

R10(r1,r2)=R′10(r1)×R′10(r2)= e
− Z∗

r0
(r1+r2).

• For 2p state,

R′20(r)= e
− Z∗

2r0
r− Z∗

2r0

re
− Z∗

2r0
r
=R′′20(r)+R′′′20(r).

with

R′′20(r)= e
− Z∗

2r0
r
, R′′′20(r)=−

Z∗

2r0

re
− Z∗

2r0
r
. (7)

Let us put

R20(r1,r2)=R′′20(r1)×R′′20(r2)+R′′′20(r1)×R′′′20(r2).

This, together with Eq. (7), gives

R20(r1,r2)= e
− Z∗

2r0
(r1+r2)+

�

Z∗

2r0

�2

r1r2exp
− Z∗

2r0
(r1+r2),

which leads to

R20(r1,r2)=

�

1+

�

Z∗

2r0

�2

r1r2

�

e
− Z∗

2r0
(r1+r2).

• For 2p state,

R21(r1,r2)=R′21(r1)×R′21(r2)= r1r2e
− Z∗

3r0
(r1+r2).

• For 3s state,

R′30(r)= e
− Z∗ r

3r0 − 2z∗r
3r0

e
− Z∗ r

3r0 +
2Z∗ 2r2

27r2
0

e
− Z∗ r

3r0 =R′′30(r)+R′′′30(r)+R′′′′30 (r).

with

R′′30(r)= e
− Z∗

3r0
r
, R′′′30(r)=−

2Z∗r
3r0

e
− Z∗

3r0
r
, R′′′′30 (r)=

2Z∗ 2r2

27r2
0

e
− Z∗

3r0 . (8)

Performing the following product

R30(r1,r2)=R′′30×R′′30(r2)+R′′′30(r1)×R′′′30(r2)+R′′′′30 (r1)×R′′′′30 (r2),
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we obtain using Eq. (8) that

R30(r1,r2)=

�

1+

�

2Z∗

3r0

�2

r1r2+

�

2Z∗ 2

27r2
0

�2

r2
1 r2

2

�

e
− Z∗ r

3r0
(r1+r2).

• For 3p state,

R′31(r)=
Z∗r
r0

e
− Z∗ r

3r0 − Z∗ 2r2

6r2
0

e
− z∗ r

3r0 =R′′31(r)+R′′′31(r). (9)

Let us put again

R31(r1,r2)=R′′31(r1)×R′′31(r2)+R′′′31(r1)×R′′′31(r2).

That means using Eq. (9)

R31(r1,r2)=

��

Z∗

r0

�2

r1r2+

�

Z∗ 2

6r2
0

�2

r2
1 r2

2

�

e
− Z∗(r1+r2)

3r0 .

Let us then summarize the equations to be used in the following study:

For 1s state, R10(r1,r2)= e
− Z∗

r0
(r1+r2), (10a)

For 2s state, R20(r1,r2)=

�

1+

�

Z∗

2r0

�2

r1r2

�

e
− Z∗

2r0
(r1+r2), (10b)

For 3s state, R30(r1,r2)=

�

1+

�

2Z∗

3r0

�2

r1r2+

�

2Z∗ 2

27r2
0

�2

r2
1 r2

2

�

e
− Z∗

3r0
(r1+r2), (10c)

For 2p state, R21(r1,r2)= r1r2e
− Z∗

3r0
(r1+r2), (10d)

For 3p state, R31(r1,r2)=

��

Z∗

r0

�2

r1r2+

�

Z∗ 2

6r2
0

�2

r2
1 r2

2

�

e
− Z∗ (r1+r2)

3r0 . (10e)

Let us then move on determining the general wave functions containing all the radial

incomplete hydrogenic functions given by Eq. (10). In this purpose, we appeal to the general

methodology of resolution of the Schrödinger’s equation applied to the hydrogen-like ions. For

the hydrogen-like ions, the Schrödinger’s stationary equation is written in the well knowing

form

Ĥψ=Eψ,

where

Ĥ=− h̄2

2m

�

∂ 2

∂ r2

+
2∂

r∂ r

�

− Ze2

r
+

l̂2

2mr2
, ψ=R(r)×Y (θ ,φ).

For the stationary states, the square of the l̂2 − orbital angular momentum is given by

l̂2Y (θ ,ϕ)= h̄2l(l+1)Y (θ ,ϕ).
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Using this result, the above Schrödinger’s equation becomes

∂ 2ψ

∂ r2
+

2

r

∂ψ

∂ r
+

�

q

r
−β2− l(l+1)

r2

�

ψ=0 (11)

with

q=
2mZe2

h̄2
, β=−2mE

h̄2
. (12)

Inserting ψ=R(r)×Y (θ ,ψ) into Eq. (11), we obtain the radial wave function equation

d2R

dr2
+

2

r

d r

dr
+

�

q

r
−β2− l(l+1)

r2

�

R=0. (13)

For the resolution of Eq. (13), the radial wave function R is generally written in the form [23]

R(r)=
u(r)

r
e−β r . (14)

Using this expression, Eq. (13) gives

d2u

dr2
+

2

r

du

dr
+

�

q

r
−β2− l(l+1)

r2

�

u=0. (15)

The solution of this differential equation is presented as follows

u(r)=
∞
∑

k=γ

akrk. (16)

By use of Eq. (16), Eq. (15) leads to the coefficients ak after identification

γ(γ+1)= l(l+1), for k=γ.
�

k(k+1)−l(l+1)
�

ak+1=(2βk−q)ak, for k 6=γ.

The first equation gives the solution γ=−l or γ=(l+1).
The result γ=−l is to be rejected as it leads to a wave function being infinite for r→0.

This disagrees with the limits fixed to any wave function ψ(r), solution of the Schrödinger’s

equation. In fact, ψ(r) and its first spatial derivates must be finished, uniforms and contin-

uous, even at the points of discontinuity of the potential function U(r). Subsequently, the

solution

γ=(l+1). (17)

is conserved.

Besides, for the convergence of the series given by Eq. (16), the second solution above

yields asymptotically (k→∞), to the following relation

ak+1

ak

=
2β

k+1
. (18)
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On the other hand, considering the expansion of the function e2β r , we obtain

e2β r =
∞
∑

k=0

1

k!
(2β r)k=1+2β r+···+(2β)krk

k!
+
(2β)k+1rk+1

(k+1)!
+···=

∞
∑

k=0

bkrk.

Imposing the asymptotic behaviour (k→∞) in this equation, the bk − coefficients satisfy

bk+1

bk

=
2β

(k+1)
. (19)

Comparing Eqs. (18) and (19), one can see that for k→∞, the function given by Eq. (16) has

the same behaviour than the exponential function e2β r . As a result, Eq. (16) is converging

and then must stop to the term of nth degree, namely

ak+1=0 for k=n.

Thus, according to Eq. (17): β=q/2n. That means

β=
Zme2

h̄2n
=

Z

nr0

, (20)

where r0=Zme2/ h̄2 denotes the Bohr’s radius.

Besides, by use of the solution given by Eq. (17) and the value k=n, Eq. (16) is written

in the form of a sum of finites terms, namely (k−l−1= v=0; kmax−l−1=n−l−1= v)

u(r)=
n
∑

k=l+1

akrk= f l+1
v=n−l−1
∑

v=0

av+l+1r v. (21)

Using this result, the radial wave function given by Eq. (14) takes the form

R(r)= r le−β r
v=n−l−1
∑

v=0

av+l+1r v. (22)

We deduce the expression of the incomplete hydrogenic wave function R(r1,r2) as follows

Rnl(r1,r2)= r l
1e−β

∗ r1

v=n−l−1
∑

v=0

av+l+1r v
1×r l

2e−β
∗ r2

v=n−l−1
∑

v=0

av+l+1r v
2 .

That means

Rnl(r1,r2)=(r1r2)
le−β

∗(r1+r2)
v=n−l−1
∑

v=0

av+l+1(r1r2)
v, (23)

where

β∗=
Z∗

nr0

=
Z

nαr0

. (24)
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In Eq. (23), the β∗-parameter is the equivalence of the λ-parameter as defined in the Hylleraas

wave function. The incomplete hydrogenic wave function is then in the form

Rnl(r1,r2)=(r1r2)
le
− Z∗

nr0
(r1+r2)

n−l−1
∑

v=0

av+l+1(r1r2)
v . (25)

Using this wave function, we determine the expressions of the radial hydrogenic wave func-

tions R10(r1,r2), R30(r1,r2), R21(r1,r2) and R31(r1,r2) in Eq. (10) in terms of the coefficient

av+l+1. We find respectively

For 1s state, R10(r1,r2)=a1e
− Z∗

r0
(r1+r2), (26a)

For 2s state, R20(r1,r2)=(a1+a2r1r2)e
− Z∗

2r0
(r1+r2), (26b)

For 3s state, R30(r1,r2)=
�

a1+a2r1r2+a3r2
1 r2

2

�

e
− Z∗

3r0
(r1+r2), (26c)

For 2p state, R21(r1,r2)=a2r1r2e
− Z∗

3r0
(r1+r2), (26d)

For 3p state, R31(r1,r2)=
�

a2r1r2+a3r2
1 r2

2

�

e
− Z∗

3r0
(r1+r2). (26e)

Comparing these expressions to those of Eq. (10), we obtain after identification






































a1=1

a1+a2=1+

�

Z∗

2r0

�2

a1+a2+a3=1+

�

2Z∗

3r0

�2

+

�

2Z∗ 2

27r2
0

�2

a2+a3=

�

Z∗

r0

�2

+

�

Z∗ 2

6r2
0

�2

⇒







































a1=1

a2=

�

Z∗

2r0

�2

a2=

�

2Z∗

3r0

�2

, a3=

�

2Z∗ 2

27r2
0

�2

a2=

�

Z∗

r0

�2

, a3=

�

Z∗ 2

6r2
0

�2

.

(27)

2.2 Special incomplete hydrogenic wave functions for (nl2) symmetric doubly

excited states of helium- like ions

Using the preceding results, one can see that the values of a2 and a3 disagree. In order to

resolve these contradictions, we introduce special incomplete hydrogenic wave functions as

follows:

For 1s state, R10(r1,r2)= e
− Z∗

r0
(r1+r2), (28a)

For 2s state, R20(r1,r2)=
�

1+(ρZ∗)2r1r2

�

e
− Z∗

2r0
(r1+r2), (28b)

For 3s state, R30(r1,r2)=
�

1+(ρZ∗)2r1r2+(ρZ∗)4r2
1 r2

2

�

e
− Z∗

3r0
(r1+r2), (28c)

For 3p state, R31(r1,r2)=
�

(ρZ∗)2r1r2+(ρZ∗)4r2
1 r2

2

�

e
− Z∗

3r0
(r1+r2). (28d)
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We obtain as previously







a1=1

a1+a2=1+(ρZ∗)2

a1+a2+a3=1+(ρZ∗)2+(ρZ∗)4

a2+a3=(ρZ∗)2+(ρZ∗)4

⇒















a1=1, n=1; l=0; v=0

a2=(ρZ∗)2, n=2; l=0; v=1

a3=(ρZ∗)4, n=3; l=0; v=2

a2=(ρZ∗)2, n=2; l=1; v=1

a3=(ρZ∗)4, n=2; l=1; v=1.

(29)

In Eq. (29), ρ is a parameter depending on the form of the specific constructed wave function.

The coefficients av+l+1 in these equations satisfy the general expression

av+l+1=
�

(ρZ∗)2
�v+l

. (30)

By use of this result, we obtain for the radial wave function given by Eq. (25)

Rnl(r1r2)=(r1r2)
le
− Z∗

nr0
(r1+r2)

n−l−1
∑

v=0

�

(̺Z∗)2
�(v+l)

(r1r2)
v.

This equation can be written in the form

Rnl(r1,r2)=(r1r2)
le
− Z∗

nr0
(r1+r2)

n−l−1
∑

v=0

(ρZ∗)2v×(ρZ∗)2l×(r1r2)
v,

which gives

Rnl(r1,r2)=(r1r2)
le
− Z∗

nr0
(r1+r2)

n−l−1
∑

v=0

�

(ρZ∗)2(r1r2)
�v

(ρZ∗)2l . (31)

On the other hand, according to Eqs. (5) and (20)

β∗=
Z∗

nr0

=
Z

nαr0

=λ.

Consequently, Z∗=nr0λ. Using these equalities, the special incomplete hydrogenic wave func-

tions given by Eq. (31) can be written in the form

Rnl(r1,r2)=(r1r2)
le−λ(r1+r2)

n−l−1
∑

v=0

�

(ρnr0λ)
2(r1r2)
�v

(ρnr0λ)
2l ,

which yields

Rnl(r1,r2)=(ρnr0λ)
2l(r1r2)

le−λ(r1+r2)
n−l−1
∑

v=0

(ρ2n2r2
0 r1r2)

v. (32)
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Using Eqs. (1), (4) and (32), general special form of Hylleraas correlated waves functions

given by Eq. (2) for the description of (nl2)-symmetric doubly excited state of the helium-like

ions are given by

ψ
jkm

nl
(r1,r2)=(ρnr0λ)

2l(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j(r1−r2)
k|~r1−~2|me−λ(r1+r2).

The construction of the special form of Hylleraas correlated waves functions adapted to the

correct description of (nl2) -doubly excited state of helium-like ions becomes very easy by

enlightening in the framework of an iterative procedure, the acceptable expression of the ρ-

parameter. On the other hand, as the factor (ρnr0λ)
2l will disappear in the calculation of the

matrix elements NJKM , T jkmj′k′m′, CJKM and WJKM , the above waves functions can be written

in the approached form

ψ
jkm

nl
(r1,r2)=(r1r2)

l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2). (33)

Let us put l = n−1. This involves n−l−1=0. We find then the special form of Hylleraas

correlated wave functions adapted to the correct description of 2p2, 3d2 and 4 f 2 symmetric

doubly excited state of helium-like ions as follows

ψ jkmn(r1,r2)=(r1r2)
n−1(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2).

These basis wave functions describe the same states than those used by Biaye and co-workers

[18]

ψ jkmn(r1,r2)=(2r12r2)
n−1(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2),

as the 4n−1-coefficient disappears in the calculation of the matrix elements NJKM , T jkmj′k′m′ ,

CJKM and WJKM .

In the same way, putting ρ=2 in Eq. (33), we get

Ψ jkmnl( ~r1, ~r2)=(r1r2)
l
n−l−1
∑

v=0

(n2r2
0λ

22r12r2)
v(r1+r2)

j(r1−r2)
k| ~r1− ~r2|me−λ(r1+r2).

Theses wave functions describe again the same states that those used by Biaye and co-workers

[19]

Ψ jkmnl( ~r1, ~r2)=(2r12r2)
l
n−l−1
∑

v=0

(n2r2
0λ

22r12r2)
v(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2),

where, the coefficient of proportionality is equal to 4l and will again disappear when calcu-

lating the matrix elements NJKM , T jkmj′k′m′, CJKM and WJKM .
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2.3 Adequacy of special incomplete hydrogenic wave functions for singlet and

triplet doubly excited states of the helium-like ions

Let us here take into account the symmetrization postulate for the correct description of the

states of identical particle systems. This will confirm the fact that, general wave functions

given by Eq. (33) are suitable as well as for singlet than for triplet excited states of the helium-

like ions. According to the symmetrization postulate [24], when a system of particles contains

several identical particles, only certain wave functions can describe the physical states of the

system. In relation to the nature of the identical particles, these wave functions are either

completely symmetric (for bosons particles) either completely antisymmetric (for fermions par-

ticles) with respect to the permutation of the coordinates of the particles. As electrons are

fermions, the symmetrization postulate involves that, only are realized the states describe by

symmetric Ψs(r1,r2) and antisymmetric Ψa(r1,r2) wave functions, namely

Ψs(r1,r2)=ψ
jkm

nl
(r1,r2)+ψ

jkm

nl
(r2,r1),

Ψa(r1,r2)=ψ
jkm

nl
(r1,r2)−ψ jkm

nl
(r2,r1).

In this expression, the wave functions are symmetric (antisymmetric) under the exchange of

the particles 1 and 2 when the plus (minus) sign is used. Considering Eq. (33), we obtain

Ψ jkmnl(r1,r2)=(r1r2)
l
n−l−1
∑

v=0

(̺2n2r2
0λ

2r1r2)
v(r1+2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2)

±(r2r1)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r2r1)
v(r2+r1)

j(r2−r1)
k|~r2− ~r1|me−λ(r2+r1)

As r1r2 = r2r1; (r1+r2)=(r2+r1) and (r12 = |~r1− ~r2|= r21= |~r2− ~r1|), the global correlated

wave function Ψ jkmnl(r1,r2) can be written as follows

Ψ jkmnl(r1,r2)=(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j |~r1− ~r2|m

×e−λ(r1+r2)
�

(r1−r2)
k±(r2−r1)

k
�

. (34)

From this expression, one can see that

• if k is even, the antisymmetric wave function is equal to zero and Eq. (34) gives

Ψ jkmnl(r1,r2)=2(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2);

• if k is odd, the symmetric wave function is equal to zero and Eq. (34) gives

Ψ jkmnl(r1,r2)=2(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2).
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In fact, if k is odd, we can put k=2q+1. So

(r2−r1)
k=(r2−r1)

2q+1=(r2−r1)
2q(r2−r1)=−(r1−r2)

2q(r1−r2)=−(r1−r2)
2q+1.

That means (r2−r1)
k =−(r1−r2)

k. Inserting this result into Eq. (34), we obtain the last

expression of Ψ jkmnl(r1,r2).

The preceding results indicate that, the global wave function Ψ jkmnl(r1,r2) can be written

in the following form

Ψ jkmnl(r1,r2)=(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v(r1+r2)

j(r1−r2)
k|~r1− ~r2|me−λ(r1+r2).

This special type of trial wave functions constructed by combining Hylleraas and incomplete

hydrogenic wave functions [exactly equals to Eq. (33)] is then adapted to the description of

both singlet and triplet symmetric doubly excited states of helium isoelectronic series:

• For 1 L singlet doubly excited states, the total spin S=0 and the spin wave function is

antisymmetric. Subsequently, the spatial wave function is symmetric and we take even

values of k -parameter (k=0,2,4,···);

• For 3 L triplet doubly excited states, the total spin S=1 and the spin wave function is

symmetric. Subsequently, the spatial wave function is antisymmetric and we take odd

values of k -parameter (k=1,3,5,···).

On the other hand, for (nlnl′)2S+1 L doubly excited states, the wave functions are constructed

as follows

Ψnlnl ′(r1,r2)=ψ
jkm

nl
(r1,r2)+ψ

jkm

nl ′ (r1,r2).

Using equation Eq. (33), we obtain

Ψ
jkm

nlnl ′(r1,r2)=

�

(r1r2)
l
n−l−1
∑

v=0

(ρ2n2r2
0λ

2r1r2)
v+(r1r2)

l ′
n−l−1
∑

v=0

(ρ2n′2r2
0λ

2r1r2)
v′
�

×(r1+r2)
j(r1−r2)

k|~r1− ~r2|me−λ(r1+r2). (35)

Eq. (35) contains the following wave functions used by Biaye and co-workers [20, 21, 31]

Ψ
jkm

nlnl ′(r1,r2)=

�

(2r12r2)
l
n−l−1
∑

v=0

(n2r2
0λ

22r12r2)
v+(r1r2)

l ′
n−l−1
∑

v=0

(n′2r2
0λ

22r12r2)
v′
�

×(r1+r2)
j(r1−r2)

k| ~r1− ~r2|me−λ(r1+r2).

These wave functions describe the same physical states than Eq. (35) if one takes ρ=2.
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3 Calculations of energy resonances for 1Po, 1De, 1F o, 1Ge and
1Ho doubly excited states of He-like ions below the n= 2∼ 4

hydrogenic thresholds

In this section, we apply the screening constant by unit nuclear charge formalism (SCUNC)

to calculate the energy resonances of the helium-isoelectronic sequence converging to the

n=2∼4 hydrogenic thresholds. In the framework of the SCUNC -method, total energy of

(N l,nl′)2S+1 Lπ excited states is expressed in the form (in Ryd) [16,17]

E(N lnl′,2S+1 Lπ)=−Z2

�

1

N2
+

1

n2

�

1−β(N lnl′,2S+1 Lπ,Z)
�2
�

. (36)

In this equation, the principal quantum numbers N and n, are respectively for the inner and

the outer electron of He-isoelectronic series, the β -parameters are screening constants by unit

nuclear charge expanded in inverse powers of Z and given by [16,17]

β(N lnl′,2S+1 Lπ,Z)=
q
∑

k=1

fk

�

1

Z

�k

, (37)

where fk= fk(N lnl′,2S+1 Lπ) are screening constants to be evaluated empirically or variation-

ally.
For nlnl′1 Lπ doubly excited states in two electron systems, the wave functions used in the

present calculations is the following using Eq. (35) with ρ=1

Ψ jkmnl l ′(ν ,w,u)=

�

(ν2−w2)l
n−l−1
∑

µ=0

�

n2λ2(ν2−w2)
�µ

+(ν2−w2)l ′
n−l ′−1
∑

µ′=0

�

n2λ2(ν2−w2)
�µ′
�

×ν jwk
�

(ν+w)2+(ν−w)2−u(ν2−w2)/2

�m/2

e−λν . (38)

In this correlated wave function, the λ-parameter is equal to λ= Z/nα and the changes

ν=(r1+r2); w=(r1−r2); u=cosθ12 are made. Then for the final wave functions, solution

of the Schrödinger’s equation, we get

Φn′ l ′(µ,w,u)=
∑

jkm

a jkmΨ jkmnl l ′,

where the coefficients a jkm are given by solving the following Schrödinger’s eigen equation

HΦnl l ′(µ,w,u)=EΦnl l ′(µ,w,u).

In this equation, we remain that the Hamiltonian operator is equal to

H=T+C+W ,
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with (in atomic units)

T =−1

2
(∆1+∆2), C=− Z

r1

− Z

r2

, W =
1

r12

=
1

|~r1− ~r2|
.

Besides, for the representation of the Schrödinger’s equation on the non-orthogonal basis, we

obtain denoting by q the Hylleraas parameters ( j,k,m)

∑

q′
(Hnlqq′−ENnlqq′)aq′=0.

In this equation, Hnlqq′ and Nnlqq′ denote respectively the normalization constant and the

matrix elements of the Hamiltonian operator given by

Hnlqq′=〈Ψnl l ′q|H|Ψnl l ′q′〉, Nnlqq′=〈Ψnl l ′q|Ψnl l ′q′〉.

Furthermore, in the framework of the screening constant by unit nuclear charge formalism,

the β -screening constant is expressed in terms of the variational λ-parameter as follows

β(nlnl′,1 Lπ,Z ,λ)=
λ

Z2

�

1+
l+ l′+1

n+ l+ l′

�

.

As λ=Z/nα, this equation becomes

β(nlnl′,1 Lπ,Z ,α)=
1

Znα

�

1+
l+ l′+1

n+ l+ l′

�

.

Using Eq. (36), total energy of nlnl′1 Lπ doubly excited states in the helium-like ions is then

expressed as follows

E(nlnl′,1 Lπ)=− Z2

n2

�

1+

�

1− λ
Z2

�

1+
l+ l′+1

n+ l+ l′

��2�

. (39)

In this equation, only the λ-parameter is unknown.

The λ-parameter in Eq. (39) is determined by increasing the value of the dimension D of

the basis functions until the minima of the functions (d〈H(λ)〉/dλ=0) converge by exhibiting

a plateau according to the Hylleraas and Undheim theorem [22]. The dimension D is given

by the ( j,k,m)-parameters with the condition ( j,k,m≥0) and j+k+m≤3. If λ0 denotes the

value of the λ-parameter corresponding to the minima of the function, a good approximation

of the energy positions of nlnl′1 Lπ doubly excited states in two electron systems is given by

E(nlnl′,1 Lπ,λ0)=−
Z2

n2

�

1+

�

1−λ0

Z2

�

1+
l+ l′+1

n+ l+ l′

��2�

. (40)
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4 Results and discussion

The present calculations are carried out in 3×3, 6×6, 10×10 and 13×13 basis corresponding

respectively to the dimension of the basis functions D = 3, 6, 10 and 13. The exhibition

of a plateau by the average value E(λ) = 〈H(λ)〉 of the Hamiltonian operator arise when

D≥10 and a stabilization is obtained for D=13. Then, for the dimension D=13 of the basis

functions, we compute the values of λ0 and deduce the E(nlnl′,1 Lπ,λ0) energy positions

using Eq. (40). The results obtained are listed in Table 1. In Tables 2-4, the comparison of

the present calculations up to Z =10 with various theoretical calculations and experiments is

made.Table 1: Results for λ0 and E(nlnl ′,1 Lπ,λ0) energy positions of the helium-like ions up to Z=10. All resultsare expressed in atomi
 units.
Z 2 3 4 5 6 7 8 9 10

2s2p1Po λ0 0.8324 1.5158 1.7579 2.2390 2.7125 3.1952 3.6517 4.1081 4.6091

−E 0.7133 1.70701 3.3346 5.3867 7.9407 10.9910 14.5508 18.6106 23.1533

3s3p1Po λ0 0.7199 1.1718 1.5088 1.9088 2.2906 2.7052 3.0916 3.5213 3.9125

−E 0.3406 0.8238 1.5441 2.4779 3.6364 5.0122 6.6145 8.4322 10.4782

4s4p1Po λ0 0.8590 1.2324 1.5748 1.9685 2.3622 2.6457 3.0236 3.4016 3.7795

−E 0.1861 0.4650 0.8717 1.3997 2.0528 2.8397 3.7442 4.7736 5.9280

3s3d1De λ0 0.7544 1.1453 1.5271 1.9562 2.3475 2.7732 3.1694 3.5656 4.0122

−E 0.3306 0.8171 1.5270 2.4518 3.6044 4.9737 6.5699 8.3884 10.4207

4s4d1De λ0 0.8590 1.2324 1.5748 1.9685 2.3622 2.6457 3.0236 3.4016 3.7795

−E 0.1824 0.4588 0.8633 1.3888 2.0394 2.8245 3.7266 4.7536 5.9057

4s4 f 1F o λ0 0.8999 1.3498 1.7180 2.1474 2.4649 2.8757 3.1496 3.5433 3.9370

−E 0.1772 0.4455 0.8455 1.3658 2.0209 2.7931 3.7026 4.7265 5.8753

3p3d1F o λ0 0.9332 1.3793 1.8127 2.2337 2.6804 3.1272 3.5739 4.0207 4.4675

−E 0.3052 0.7772 1.4738 2.3949 3.5344 4.8961 6.4801 8.2862 10.3146

4p4d1F o λ0 0.8590 1.2324 1.5748 1.9685 2.3622 2.6457 3.0236 3.4016 3.7795

−E 0.1799 0.4545 0.8573 1.3811 2.0299 2.8137 3.7141 4.7394 5.8898

4p4 f 1Ge λ0 0.8999 1.3498 1.7180 2.1474 2.4649 2.8757 3.1496 3.5433 3.9370

−E 0.1753 0.4421 0.8407 1.3596 2.0136 2.7844 3.6929 4.7154 5.8629

4d4 f 1Ho λ0 0.8999 1.3498 1.7180 2.1474 2.4649 2.8757 3.1496 3.5433 3.9370

−E 0.1738 0.4395 0.8370 1.3548 2.0079 2.7776 3.6854 4.7069 5.8533

Considering the results listed in Table 2 for 2s2p1Po, 3s3p1Po, 4s4p1Po and 3s3d1De

levels, the agreement between the present calculations and the double sums over the complete

hydrogen spectrum values of Ivanov and Safronova [8], the complex rotation results of Ho

[9, 10], the Feshbach projection results of Bachau et al. [14] and with our semi-empirical

results obtained previously [16,17] is seen to be good. One can also remark that, the present

variational results are close to that of the complex rotation calculations [9] for 2s2p1Po levels
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for Z=3∼9. For 3s3p1Po level, the agreement between the present calculations and the semi-

empirical results we obtain previously [16] is seen to be very good. Comparison between the

two procedures (variational and semi-empirical) of the SCUNC-method for the 2s2p1Po and

4s4p1Po levels shows an agreement that can be considered to be very satisfactory.Table 2: Comparison of E(nlnl ′1Lπ) energy positions of the helium-like ions up to Z=10 between thepresent 
al
ulations and various other results. All results are expressed in atomi
 units.
Z 2 3 4 5 6 7 8 9 10

2s2p1Po

−Ep 0.7133 1.7070 3.3346 5.3867 7.9407 10.9910 14.5508 18.6106 23.1533

−Ea 0.6944 1.7556 3.3179 5.3779 7.9414 11.0031 14.5649 18.6266 23.1884

−E b 0.6931 1.7576 3.3195 5.3802 7.9403 10.9999 14.5594 18.6187 23.1778

−Ec 0.7137 1.7723 3.3309 5.3895 7.9481 11.0067 14.5653 18.6239 23.1825

−Ed 0.7136 1.7747 3.3684 5.4276 7.9815 11.0960 14.6733 18.7326 23.2633

3s3p1Po

−Ep 0.3406 0.8238 1.5441 2.4779 3.6364 5.0122 6.6145 8.4322 10.4782

−Ee 0.3344 0.8257 1.5391 2.4747 3.6327 5.0126 6.6152 8.4398 10.4864

−E f 0.3356 0.8288 1.5438 2.4809 3.6402 5.0217 6.6255 8.4514 10.4995

−Ec 0.3044 0.7771 1.4719 2.3891 3.5284 4.8899 6.4737 8.2797 10.3079

−Ed 0.3313 0.8369 1.5771 2.5523 3.7630 5.2093 6.8913 8.8089 10.9625

4s4p1Po

−Ep 0.1861 0.4650 0.8717 1.3997 2.0528 2.8397 3.7442 4.7736 5.9280

−Ee 0.1966 1.4788 0.8856 1.4178 2.0749 2.8572 3.7642 4.7635 5.9534

−E b 0.1944 0.4759 0.8823 1.4134 2.0693 2.8503 3.7642 4.7873 5.9431

−Ed 0.1798 0.4497 0.8431 1.3607 2.0028 2.7697 3.6616 4.6786 5.8207

3s3d1De

−Ep 0.3306 0.8171 1.5270 2.4518 3.6044 4.9737 6.5699 8.3884 10.4207

−E g 0.3149 0.7957 1.4980 2.4230 3.5700 4.9380 6.5300 8.3430 10.3800

−Ec 0.3184 0.7962 1.4963 2.4186 3.5632 4.9299 6.5189 8.3301 10.3635

−Ed 0.3232 0.8149 1.5347 2.4834 3.6612 5.0683 6.7049 8.5343 10.5932
p present work, variational calculations.
a Sakho et al. [17], semi-empirical calculations.
b Ho [8], complex rotation method.
c Ivanov and Safronova [8], double sum method over the complete hydrogen spectrum.
d Biaye et al. [20], variational calculations.
e Sakho et al. [16], semi-empirical calculations.
f Ho [10], complex rotation method.
g Bachau et al. [14], Feshbach projection method.

In Table 3, the results obtained for 4s4d1De, 4s4 f 1F o, 3p3pd1F o, 4p4d1F o, 4p4 f 1Ge and

4d4 f 1Ho resonances in the helium-like ions up to Z =10 are displayed and compared with

the double sums over the complete hydrogen spectrum results of Ivanov and Safronova [8],

the complex rotation values of Ho and Bhatia [11] and of Bhatia and Ho [12], the density

functional theory of Roy et al. [13] and with the Feshbach-projection results of Bachau et

al. [14]. It can be seen that, the present calculations agree well with those of the cited

authors. It appears that the results obtain for 3p3d1F o and 4p4d1F o levels match well with

the complex rotation results of Ho and Bhatia [11] and with that of Bhatia and Ho [12]
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ulations and various other results. All results are expressed in atomi
 units.
Z 2 3 4 5 6 7 8 9 10

4s4d1De

−Ep 0.1824 0.4588 0.8633 1.388 2.0394 2.8245 3.7266 4.7536 5.9057

−Ea 0.4639 0.8652 1.3913 2.0425 2.8186 3.7204 4.7463 5.8972

−E b 0.1798 0.4497 0.8431 1.3606 2.0027 2.7697 3.6615 4.6785 5.8206

3p3d1F o

−Ep 0.3052 0.7772 1.4738 2.3949 3.5344 4.8961 6.4801 8.2862 10.3146

−Ec 0.3041 0.7710 1.4580 2.3660 0.4960 4.8480 6.4220 8.2190 10.2400

−Ed 0.3044 0.7671 1.4519 2.3589 3.4882 4.8396 6.4133 8.2093 10.2774

−E b 0.3168 0.7960 1.4969 2.4205 3.5674 4.9377 6.5317 8.3433 10.3907

−Ee 0.2782 0.7445 1.4328 2.3433

4s4 f 1F o

−Ep 0.1772 0.4455 0.8455 1.3658 2.0209 2.7931 3.7026 4.7265 5.8753

−E f 0.4508 0.8470 1.3678 2.0135 2.7842 3.6798 4.7004 5.8460

−E b 0.1797 0.4493 0.8422 1.3591 2.0003 2.7661 3.6567 4.6721 5.8124

4p4d1F o

−Ep 0.1799 0.4545 0.8573 1.3811 2.0299 2.8137 3.7141 4.7394 5.8898

−E f 0.4641 0.8650 1.3910 2.0421 2.8182 3.7194 4.7455 5.8967

−E b 0.1798 0.4497 0.8431 1.3606 2.0027 2.7697 3.6615 4.6785 5.8206

−Ee 0.1593 0.4233 0.8123 1.3262

4p4 f 1Ge −Ep 0.1753 0.4421 0.8407 1.3596 2.0136 2.7844 3.6919 4.7154 5.8629

−E b 0.1797 0.4493 0.8422 1.3591 2.0003 2.7661 3.6567 4.6721 5.8124

4d4 f 1Ho −Ep 0.1738 0.4395 0.8370 1.3548 2.0079 2.777 3.6854 4.7069 5.8533
p present work.
a Ho and Bhatia [11], complex rotation method.
b Biaye et al. [20], variational calculations.
c Bachau et al. [14], Feshbach projection method.
d Ivanov and Safronova [8], double sum method over the complete hydrogen spectrum.
e Roy et al. [13], density functional theory.
f Bhatia and Ho [12], complex rotation method.

for Z = 3∼ 10. As far as comparison with the variational calculations of Biaye et al. [20]

is concerned, the agreement is seen to be satisfactory. Let us underline that, the results

of Biaye et al. [20] have been obtained using Eq. (35) where ρ= 2 and by applying the

Hylleraas and Undheim theorem [30]. The eigenvalues are obtained when the minima of the

functions converge with increasing the values of the dimension D of the states. It is seen that,

discrepancies appear when the charge number Z increases. Biaye et al. [19,20] explain these

slight disagreement for higher Z by the choice of the angular part of the wave functions which

describe better the atomic system with low-Z than with high-Z and by the fact that they have

also omitted the Feshbach shifts in their calculations. But, it should be mentioned that, when

we combine the Hylleraas variational principal to the SCUND method, the results obtained by

using the wave functions given Eq. (35) with ρ=1, are more accurate. This is demonstrated
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by comparing the results quoted as well as in Table 2 for 2s2p1Po, 3s3p1Po and 4s4p1Po levels

than in Table 3 for 4s4p1De, 4s4 f 1F o, 3p3d1F o, 4p4d1Ge and 4d4 f 1Ho resonances.Table 4: Comparison of the present E(nlnl ′1Lπ) energy positions of the helium-like ions up to Z=10 withexperiments and other 
al
ulations. The ex
itation energies are 
al
ulated with respe
t to the groundstate of the 
orresponding systems and the in�nite rydbergs (13.605698 eV) is used for energy 
onversion.All results are expressed in eV: 1 a.u = 2 Ryd. The a

urate ground state energies of Frankowsky andPekeris [30℄ are used in the present 
al
ulations respe
tively (in atomi
 units): 2.90372 (He) 7.27991 (Li+);13.65556 (Be2+) and 22.03097 (B3+).
Z 2 3 4 5

2s2p1Po

−Ep 59.60 151.65 280.85 452.91

−Ea 60.13 150.34 281.35 456.15

−E b,c 60.13b 150.31c

3s3p1Po

−Ep 69.75 175.68 329.57 532.07

−Ea 69.91 175.63 330.54 532.15

−E b 69.91

4s4p1Po

−Ep 73.95 185.44 347.87 561.41

−Ea 73.66 185.07 347.49 560.91

−Ed 73.66

3p3d1F o

−Ep 70.71 176.95 331.48 534.32

−Ee 71.44 177.84 332.59 535.73

−E g 70.52 176.90 331.98 535.05

4p4d1F o

−Ep 74.12 185.73 348.26 561.91

−Ee 74.68 186.58 349.48 563.40

−E f 73.95 185.89 348.72 562.55
p present work, variational calculations.
a Sakho et al. [16], semi-empirical calculations.
b Experiment, Kossman et al. [26]
c Experiment, Diehl et al. [27].
d Experiment, Woodruff and Samson [28].
e Roy et al. [13].
f Ray el al. [25].

In Table 4, the comparison of excitation energy of 2s2p1Po, 3s3p1Po, 4s4p1Po, 3s3d1De

and 4p4d1F o levels for Z=2∼5 is made with available experimental and theoretical literature

values. For 2s2p1Po, 3s3p1Po and s4p1Po levels, comparison indicates that both variational

and semi-empirical procedures of the SCUNC-method give results matching very well. As far

as 3s3d1De and 4p4d1F o levels are concerned, it appears that our results agree as well as with

that of Roy et al. [13] than with that of Ray el al. [25]. As regard comparison with experi-

ments, the agreements between the results obtained in the present work and the experimental

data of Kossman et al. [26], Diehl et al. [27] and of Woodruff and Samson [28] for 2s2p1Po,

3s3p1Po and 4s4p1Po levels of He and Li+ are seen to be very satisfactory.
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On the other hand, it is interesting to mention that the semi-empirical procedure of the

SCUNC-method is most soft that the variational procedure. In addition, the most important

point to underline is that, in the framework of the semi-empirical procedure of the SCUNC-

method, it is not necessary to invoke calculations requiring a fair amount of mathematical

complexity nor a computer program to succeed in obtaining accurate results in the treatment

of the properties of the helium isoelectronic sequence. This is not the case of the variational

procedure for the main following reasons. First, one may construct the adequate expression

of the correlated wave function to be used in the calculations. Such a task is not easy and

it can take many months (that is not the case of the semi-empirical procedure where the

establishment of the energy expressions takes less than one week when experimental data

are available). Secondly, an adequate computer program (Fortran in the present calculations)

is to be concocted for computations and, generally, such program is very fastidious (for the

semi-empirical procedure, energies are directly calculated).

In summary, it has been demonstrated in the present work the possibilities to use the

screening constant by unit nuclear charge method in the study of nlnl′ doubly excited states

in the helium-like ions in the framework of a variational procedure. Correlated wave func-

tions combining Hylleraas to incomplete hydrogenic wave functions are used in the present

computations and accurate results are obtained as shown by the comparison with various

available theoretical and experimental literature values. One can notice that, the merit of the

screening constant by unit nuclear charge method is to give the possibilities to calculate accu-

rate energies for doubly excited states in two electron systems using a variational procedure

or a semi-empirical one.
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