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Abstract. In this paper, the non-Markovian transfer tensor method (TTM) suggested
by Cao’s group was utilized in a real chemical reaction in liquids from a classical
point of view. From the results of this numerical simulation, dramatic enhancement
in speed of calculations and decrease in computational cost are shown by applying
TTM method. It is wise to be used in complex systems with lots of degrees, such as
the process of protein folding or in treating propagations with mountains of data. For
some specific quantities we are interested in, how to find a map from complex systems
to simple ones and from huge freedoms to a few ones, such as just to one freedom in
this paper, it remains something for us to do in the future.
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1 Introduction

The non-Markovian transfer tensor method (TTM) was initially proposed by Cao’s group
[1], and its basic idea relays on the thoughts that the initial stages of the evolution of one
system encode the complete information of its underlying dynamical correlations. So
one can extract these information from a short-time dynamics and compress it into non-
Markovinan transfer tensors, which can be used to predict the long-time dynamics at
later stages. A two-level open quantum system was studied in this method by Cao et al. in
this paper, and it also shows that the relevant dynamical operators of the system such as
the Hamiltonian and memory kernel could be reconstructed by using the transfer tensor
method. Later, Mehraeen et al. [2] extended this method to a classical frame in studying of
the barrier crossing kinetics with a double-well model. Dramatic enhancement in speed
of calculations and decrease in computational cost are shown using TTM comparison
with other methods [1, 2].

∗Corresponding author. Email address: h.yang@sdu.edu.cn (H. Yang)

http://www.global-sci.org/jams 155 c©2016 Global-Science Press



156 H. Yang / J. At. Mol. Sci. 7 (2016) 155-162

In probability theory and statistics, a Markov process is a stochastic process that the
future state can be predicted solely based on its present state and it has nothing to do with
its past states. In other words, Markov process can be thought of as memoryless. While
in true life, most of the systems have to interact with environment, and as the fluctuation
of the environment, it is hard to describe the evolutions of these system with this simple
Markov model, thus the memory effect has to be taken into account. For example, early in
1973, Baus used a microscopic theory of the linearized plasma hydrodynamical equation
to reveal the important non-Markovian effects on the plasma transport coefficients [3];
Recently, using non-equilibrium Green’s function approach, Ribeiro and Vieira studied
the non-markovian effects in electronic and spin transport [4]; Berrada examined the
non-Markovian effect on the dynamics of the quantum Fisher information for a qubit
system [5], etc..

Here, we continue to utilize the non-Markovian TTM to study a real reaction system
in liquids, that is the two iodines recombine in liquid CCl4. The recombination process
has been studied for several decades since 1970s from both experimental and theoretical
sides. The development of picosecond spectroscopy allowed the monitoring of the early
dynamics of the recombination process and its dependence on a variety of solvents [6–
9]. Langevin dynamics [10–12], generalized Langevin dynamics [13, 14] and molecular
dynamics [15,16] were all used to describe solvent influence on chemical reactions at that
time.

The paper is organized as follows: in Section 2, basic theory about TTM and details
about its application in a classical frame are presented. Some information such as models
and parameters used in the calculation about this recombination reaction will also be
given in this section. Results and Discussions follow in Section 3. Finally, a brief summary
of the present work is given in Section 4.

2 Theory

The realization of non-Markovian TTM can be simplified by assuming time-translational
invariance and finite time correlation in the transfer tensors. Under certain assumptions,
such as a time-independent Hamiltonian and finite time span of correlations in realistic
systems, the transfer tensor is a function of time difference only and a limited number
of transfer tensors is necessary [1]. The standard procedure of TTM is as a three-steps
scheme:

1. Extract the dynamical maps {εk} for a serial of short-time trajectories numerically
or experimentally at the discretized times tk = k∆t, where ∆t is the time step of the
simulation or the time resolution of the experiment,

ρ(tk)= εkρ(0), (1)

ρ(0) and ρ(tk) are density matrices of the system for t= 0 and t= tk , respectively.
Note that each dynamical map in a non-Markovian process needs to be generated
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independently, as the non-Markovianity violates the semigroup property, i.e., εk 6=
εk

1, it contains correlations at the present time with all the previous time steps.

2. Derive the non-Markovian transfer tensors from these dynamical maps at each dis-
cretized time tk according the following transformation

Tk = εk−
k−1

∑
n=1

Tkεn, (2)

and we define T1 ≡ ε1. Indeed Tk represents the time correlation between any pair
of time steps with an interval of tk under the assumption of time-translational in-
variance and it includes all correlations for time intervals t≤ tk.

3. Evovle the density matrix to arbitrarily long time for times tm > tK in a tensor mul-
tiplication fashion,

ρ(tm)=
K

∑
n=1

Tnρ(tm−n), (3)

where K is a cutoff such that Tm →0, for m>K.

Now, it comes to the question how to define the structure of the density matrix ρ(t).
In the frame of classical mechanics, we discretize the phase space into several fine grids
first. Taking a one-dimension problem for an example, assuming the grids are as follows,
in the direction of position from x1 to xn, while in the direction of momentum from p1

to pm. There are m×n phase points {xj pk} in the total space interested, then the density
matrix used here is a matrix with dimension (m×n)2, as shown in Table 1. Each column
of the density matrix ρ(t) represents the densities of all phase points for a certain initial
condition (xj pk) at time t. Hence, the density matrix for t=0 is an identity matrix and it
is straightforward to get the dynamical map at each time discretization, εk =ρ(tk). After
the extraction of necessary transfer tensors, long time propagations could be issued visa
a tensor multiplication method. This method can readily be applied to the process of
protein folding, charge transport and chemical dynamics.

Table 1: Structure of density matrix for the initial stage, where O and I are zero and unit matrices.

ρ(0) x1p1 ··· x1 pm ··· xn p1 ··· xn pm

x1 p1 1 O 0 O 0 O 0
... O I O O O O O

x1 pm 0 O 1 O 0 O 0
... O O O I O O O

xn p1 0 O 0 O 1 O 0
... O O O O O I O

xn pm 0 O 0 O 0 O 1
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Here we generalize the TTM in a real chemical reaction in liquids, that is I + I recom-
bination in liquid CCl4. Following the suggestion of Adelman et al. [17], the equations of
motions for the two iodines deviating from their original positions could be describe by
two generalized langevian equations (GLEs),

ẍ0(t)=−
1

m

∂W(R)

∂x0
−ω2

e0x0(t)+ω4
c1

∫ t

0
θ1(t−τ)x0(τ)dτ+ω2

c1Fx(t), (4)

ÿ0(t)=−
1

m

∂W(R)

∂y0
−ω2

e0y0(t)+ω4
c1

∫ t

0
θ1(t−τ)y0(τ)dτ+ω2

c1Fy(t), (5)

where W(R) is the effective potential energy between the two atoms including the effects
of liquids around them and R is their separation at time t. Fx and Fy are two independent
random forces, which could be represents as two standard normal distributions with
zero mean value and one variance value. Definitions of other parameters can be found
in Ref. [17] and references in it. For this kind of problem, it involves two atoms with
freedom of six. Here we only want to generalize the TTM, one restriction is added on the
two atoms so that they can only move along the line between themselves, which reduces
the degree of this problem to two. If only the relative motion between them is interested
in, such as the process of recombination or dissociation, the problem could be further
simplified as,

r̈0(t)=−
2

m

∂W(R)

∂r0
−ω2

e0r0(t)+ω4
c1

∫ t

0
θ1(t−τ)r0(τ)dτ+ω2

c1F(t), (6)

by subtracting Eq. (4) from Eq. (5). Note that the subtraction of two standard normal
distribution is still a standard normal distribution, which is denoted by F(t) here. And
the relationship between R and r0 satisfies R= r0+r, where r is the separation at initial
time. As the form of solvent response function θ(t) is not determined, two atomic version
of the harmonic chains heatbath model [17] is used in the numerical simulation,

r̈0(t)=−
2

m

∂W(R)

∂r0
−ω2

e0(R)r0(t)+ω2
c1(R)r1(t), (7)

r̈1(t)=−Ω2
1r1(t)+ω2

c1(R)r0(t)+β2
2(R)ṙ1(t)+ f2(R,t), (8)

where the frictional and random forces are connected by the fluctuation-dissipation the-
orem:

〈 f2(R,t)· f2(R,0)〉=
2kBT

m
β2(R)δ(t). (9)

Parameters used in Eq. (7), Eq. (8) and Eq. (9) are from literature [10, 13] for solvent

number density being 6.303×10−3/Å
3

and the average temperature T= 305±4K, how-
ever only components parallel to the molecular axis and their diagonal elements are used
here.
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Figure 1: Plot of potential energy in eV vs R in Å. The Morse interaction potential is compared with the

effective potential for I2 in CCl4. The insert shows part of enlarged details.

At the last part of this section, the potential energy curve used to describe iodines
recombination in CCl4 has to be mentioned. The effective potential energy W(R) has
two additive contributions: gas phase Morse diatomic potential [10] and cavity potential
[18,19] which accounts for the influence of the solvent structure in the neighborhood of I
atom. The effective potential W(R) is displayed in Fig. 1. The most obvious influence of
solvent structure is the barrier and well combinations introduced at the base of the Morse
curve, which would effect the dynamical processes dramatically. Finally, the total phase
space is coarse grained based on the feature of the potential energy curve into five states
as in Fig. 2. They are state 1 for R< 5Å, state 2 for R between 5 Å and 6 Å, state 3 for
6Å<R<9Å, state 4 for R between 9 Å and 12 Å and state 5 for R>12Å, respectively. And
two absorption conditions are set at R=3.5Å and R=12Å, which means recombinations
occur for R<3.5Å and dissociations occur for R>12Å. In this way, only a serial of 5-by-5
matrices are used to derived these transfer tensors according to the iterative relation in
Eq. (1) and Eq. (2), and only trajectories initially from 3 states need to be sampled, it
would save lots of computational memory space. However more attention needs to be
paid on appropriately sampling momenta over the entire phase space.

3 Results

The initial conditions for numerically solving Eq. (7) and (8) are as follows: for each
coarse grained state, r0 = 0,r1 = 0 and ṙ1 = 0, while r and ṙ0 are uniformly distributed.
Remind you that r represents the distance between the two iodines at initial stage and ṙ0 is
their relative velocity at t=0. For each state, 105 trajectories are launched and a time step
of 0.1 femtosecond is used for all internuclear distances. For those trajectories initially
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Figure 2: Five coarse grained states used in the simulation. They are divided by relative separation of the two

iodines, state 1 for R<5Å, state 2 for 5Å<R<6Å, state 3 for 6Å<R<9Å, state 4 for 9Å<R<12Å and state

5 for R>12Å.

starting from state 3, about 106 time steps are needed to get converged results, while
for others 5×105 time steps are enough. The recombination (dissociation) probabilities
for trajectories initially starting from state 2 and state 3 are showed in Fig. 3. τ could
be thought as the longest correlation time and τ = tK =K∆t, K is the cutoff for transfer
tensors. So the correlations for time span with past stages beyond τ are neglected and
accordingly we could find the correlation time, that is 3 picoseconds for state 2 and 10
picoseconds for state 3. It is also found that as long as the correlation time is determined,
the time step ∆t used to generate transfer tensors is not that important. A time step of
∆t=0.02 picosecond for both sates is used in the calculation.

First of all, the accuracy of TTM can easily be seen from the comparisons with results
of numerically solving GLE. Both results fit very well along the entire time scale provid-
ing sufficient correlation time. Note that we don’t intend to study the properties of this
reaction system at present, only the utilization of TTM in a real reaction system is inves-
tigated. Also because of the simplification of this model, we do not expect a good fit with
the experimental or theoretical results, which will not be shown here.

The efficiency of TTM depends on the number of states discretized and the longest
simulation time used in one state. It is also found that if only specified initial conditions
are interested in, i.e., the two iodines are separated between 6 Å and 9 Å initially (state 3),
how to coarse grained other states do not effect final results much. From Fig. 2, it can be
seen that there is a relatively deeper well in state 3, so longer simulation time is needed.
According to the records, the wall-clock time used to finish numerically solving GLE is
listed in Table. 2. As this model is relative simple, for large and complex systems, the
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Table 2: Time used in numerically solving GLE for different initial states.

initial states total wall-clock time used ratio of time used for TTM

state 2 0 h 18 m 0.15

state 3 10 h 4 m 0.10

state 4 1 h 35 m 0.12

Figure 3: Dissociation probabilities for trajectories initially launching from different states. The top panel is

for those from state 2, while the bottom panel is for those from state 3. The results from numerically solving

GLE are plotted in black dashed line and the results from TTM are in red solid line. τ could be thought as

correlation time.

cost would be dramatically increased. But the enhancement in speed of simulations can
still be noticed. In TTM only one tenth of the simulation time is needed for trajectories
initially projecting from state 3, considering that extra trajectories need to be launched
from state 2 and state 4, the total time is less than one fifth. In other words, in this model
it reduces at least four fifths simulation time using TTM instead of numerically solving
GLE.

4 Conclusion

In this study, a non-Markovian transfer tensor method was used to simulate the process
of recombination and dissociation for iodines in liquids. Comparing with the numerical
evolution of pure generalized Langevin dynamics, using of the TTM can save compu-
tational resource and speed up the calculation several times by smart choosing the the
physical quantities to be studied. It is wise to generalize this method to complex systems
and to those with time consuming propagations, which are hard to do a complete time
evolution at present.
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