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Abstract. The appropriate metric of quantum speed limit for the triatomic molecules
is discussed using a generalized geometric approach. The researches show the quan-
tum Fisher information metric is tighter than the Wigner-Yanase information metric in
realistic molecular dynamical evolution. The quantum speed limit metric is related to
the initial evolution state of molecules.
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1 Introduction

The quantum speed limit originates from the time-energy uncertainty relation which is
the nature of the quantum mechanics. It represents the maximal evolution speed of a
quantum system. With the development of quantum information science and laser tech-
nology, dynamical evolutions of quantum system become exceedingly short-timed evo-
lutions, which bring along a practical applicability for the quantum speed limit and the
problem has become the focus topic in the current frontier field. The bound of the quan-
tum speed limit time for unitary evolutions in a closed system is firstly given by the
Mandelstam and Tamm [1], then Margolus and Levitin provided another QSL (quantum
speed limit ) on the time evolution which is tighter than MT bound but does not recover
the MT one [2]. Later, the MT QSL and ML QSL are extended to be suitable for more
dynamical system [3–12]. However, QSL for the realistic molecular system has not been
proposed. Recently, Diego Paiva Pires and his co-workers construct a new fundamental
family of geometric quantum speed limits [13] and provide the quantity how much a
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certain geometric QSL is saturated. They take single-qubit unitary dynamics as an exam-
ple and prove that the geometric QSL corresponding to the quantum Fisher information
metric is tighter than the one corresponding to the Wigner-Yanase information metric,
but they do not give the result if a higher-dimensional quantum system is considered.
Here we extend the method to the molecular system and discuss the question whether it
is same to the single-qubit system. The algebraic model of the molecule has been applied
successfully to study vibrations in polyatomic molecules [14–18], and has been extended
to research the dynamical entanglement in small molecules [19, 20].

This paper proceeds as follows. In Sec. 2, the algebraic molecular model is first re-
viewed briefly, and the geometric quantum speed limits are given using the algebraic
model. In Sec. 3, the generalized geometric QSLs corresponding to the the quantum
Fisher information metric and the Wigner-Yanase information are calculated, then the rel-
ative difference between the dynamical evolution distance and the geodesic is discussed.
Finally, concluding remarks are given in Sec. 4.

2 Quantum Speed Limits metric in triatomic molecules

The algebraic Hamiltonian of a free linear triatomic molecule can be represented as two
coupled quadratic anharmonic oscillators using the U(2) algebra [21, 22]

Ĥ = h̄ω01

(

Â†
1 Â1+

Î01

2

)

+ h̄ω02

(

Â†
2 Â2+

Î02

2

)

−λ(Â†
1 Â2+ Â†

2 Â1), (1)

where ω01 and ω02 are the angular frequencies of the triatomic molecule corresponding
to the bond 1 and bond 2. λ is the coupling coefficient which depend on the experimental
values of realistic molecular spectra. The quadratic operators Â†

i , Âi, Î0i act on the state
|Ni,vi〉 [21],

Â†
i |Ni,vi〉=

√

(1−x0ivi)(vi+1)|Ni,vi+1〉

Âi|Ni,vi〉=
√

[1−x0i(vi−1)]vi|Ni,vi−1〉
Î0i|Ni,vi〉=1−2x0ivi|Ni,vi〉, (2)

where x0i=1/Ni is the anharmonic correction [23, 24].
The time-dependent wave function can be written as the following form when the

initial states are chosen to be |ψ(0)〉= |N1,v1〉⊗|N2,v2〉≡ |v0,vn−v0〉,

|ψ(t)〉= e−itĤ|ψ(0)〉
= e−itĤ|v0,vn−v0〉

=
∞

∑
k=0

(−it)k

k!
Ĥk|v0,vn−v0〉
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∞
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where Pm(t)=∑
∞
k=|m|Γ

m
k (t). When k=0, Γm

0 (t)=δ0,m, and when k=1,2,3,...,∞, the recursive

expression Γm
k (t) is

Γm
k (t)= − it

k
·
{
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k−1 (t)
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}

(4)

in which the function γ0,γ+,γ− can be obtained using algebraic operations

γ0(v1,v2)= h̄ω01(v
2
1−x01v2

1)+ h̄ω02(v
2
2−x02v2

2)

γ+(v1,v2)=−λ
√

(1−x01v1)(v1+1)·
√

[1−x02(v2−1)]v2

γ−(v1,v2)=−λ
√

[1−x01(v1−1)]v1 ·
√

(1−x02v2)(v2+1). (5)

where v1=v0+m,v2=vn−v0−m.

The analytical expression of reduced-density matrices can be given using the equation
(3),

ρ1(t)= Tr2ρ(t)

= Tr2{|ψ(t)〉〈ψ(t)|}

=
vn−v0

∑
m=−v0

vn−v0

∑
m′=−v0

Pm(t)Pm′
(t)∗|v0+m〉〈v0+m′|δm,m′

=
vn−n0

∑
m=−v0

|Pm(t)|2|v0+m〉〈v0+m|

=
vn−n0

∑
m=−v0

Pm(t)|v0+m〉〈v0+m|. (6)

According to the method in the reference [13], the generalized geometric Quantum
Speed Limits which represents a generic evolution between an initial stateρ0 and a final
stateρτ may be reduced as

G(ρ0,ρτ)=
∫ τ

0

√

g(t)dt, (7)
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since the evolution is unitary in our molecular system. g represents any contractive
Riemannian metric, when considering the quantum Fisher information metric and the
Wigner-Yanase information metric, respectively, it can be written as

gQF(t)=
1

2h̄2 ∑
m,m′

(Pm−Pm′
)2

Pm+Pm′ 〈v0+m|△Ĥ|v0+m′〉〈v0+m′|△Ĥ|v0+m〉, (8)

and

gWY(t)=
1

h̄2 ∑
m,m′

(
√
Pm−

√
Pm′)2〈v0+m|△Ĥ|v0+m′〉〈v0+m′|△Ĥ|v0+m〉, (9)

in which △Ĥ = Ĥ−〈Ĥ〉 and Pm is the eigenvalues of the evolved state ρt. The relative
difference is defined as

δ=
G(ρ0,ρτ)−L(ρ0,ρτ)

L(ρ0,ρτ)
, (10)

which quantifies how much the dynamics evolution differ from a geodesic with respect to
the considered metric. The more smaller quantity δ is, the tighter geometric QSL will be.
L(ρ0,ρτ) is defined as the geodesic distance between the initial state ρ0 and the final state
ρτ , its analytic expressions are known only related to the quantum Fisher information
metric [25] and the Wigner-Yanase information metric [26]

LQF(ρ0,ρτ)= arccos

(

Tr[
√√

ρ0ρτ
√

ρ0]

)

, (11)

and

LWY(ρ0,ρτ)= arccos(Tr[
√

ρ0
√

ρτ ]) . (12)

3 Results and disscussions

We here take the triatomic molecules HCN and DCN as concrete examples since the two
molecules have been successfully applied to study the vibrational excitation control and
dynamical entanglement [19, 20, 22]. The parameters of HCN and DCN molecules are
given in our previous work [27].

According to the Sec. 2, the dynamical evolution from the initial state ρ0=|ψ(0)〉〈ψ(0)|
to the final state ρτ need to be investigated, hence the various initial states v0 = 3,6,9,12
are considered in our current work. The relative differences δ for the various initial states
in HCN and DCN molecules are given in Figs. 1 and 2. From these two figures, we can
see the relative differences δ of the quantum Fisher information metric are both smaller
than the one of the Wigner-Yanase information metric for HCN and DCN molecules,
which means the former metric is tighter than the latter one, that is to say, the geometric
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Figure 1: The relative differences δ corresponding to the quantum Fisher information metric (QF) and the
Wigner-Yanase information metric (WY) for the initial states v0 =3,6,9,12 in HCN.
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Figure 2: The relative differences δ corresponding to the quantum Fisher information metric (QF) and the
Wigner-Yanase information metric (WY) for the initial states v0 =3,6,9,12 in DCN.

QSL based on the quantum Fisher information metric is more suitable to describe the
molecular dynamical evolution. However, with the increase of the vibrational state, the
relative difference δ become larger indicates that the general geometric QSL metric is no
longer adequate for studying the higher vibrational dynamical evolution. We can also
find the relative difference δ for the DCN molecule are smaller than the one for the HCN
molecule, which manifest the different molecules can affect the accuracy of the QSL met-
ric, we need minimizing the relative difference over different metrics in order to give the
tightest metric QSL for different molecules.
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4 Conculsions

The quantum speed limit metrics for molecules have been researched successfully using
the algebraic approach. The geometric QSL corresponding to the quantum Fisher infor-
mation metric is more suitable to describe the dynamical evolution in molecules. The
QSL metric is not only related to the initial evolution states but also to the molecule it-
self. In the following work, the approach can be extended to study the affect of the initial
mixed states for the QSL metric, and the quantum limit speed time for a given dynamical
evolution in realistic molecules can also be studied.
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