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Abstract. This paper studies various mathematical methods for image recon-

struction in electrical impedance and magnetic induction tomography. Linear,

nonlinear and semilinear methods for the inverse problems are studied. De-

pending on the application, one of these methods can be selected as the image

reconstruction algorithm. Linear methods are suitable for low contrast imag-

ing, and nonlinear methods are used when more accurate imaging results are

required. A semilinear method can be used to preserve some properties of the

nonlinear inverse solver and at the same time can have some advantages in com-

putational time. Methods design specifically for jump in material distribution

as well as dynamical imaging have been reviewed.
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1. Introduction

Imaging is the science of building 2D or 3D reconstructions from exterior mea-
surements. The applications include medical and industrial tomography, geomag-
netic prospecting, ground penetrating radar, industrial non-invasive testing and
many others. Computational imaging algorithms involve the solution of large-scale
inverse problems, in the form of constrained or unconstrained optimization prob-
lems. Due to the similarities in the underlying mathematical formulations of the
problems, one can design algorithms which can be combined to solve large classes
of applications problems.

Many imaging problems belong to the general class of the inverse problem, whose
solutions are extremely sensitive to data errors (and rounding errors in the com-
putations). An approximated solution to these problems can be computed by in-
corporating a priori information about the desired solution into the reconstruction
model. This information can be defined explicitly, e.g., by requiring the solution
to satisfy given constraints or to lie in a given subspace, or the information can
be implicit, e.g., by requiring that the solution satisfies certain smoothness condi-
tions. The algorithms that incorporate these requirements into the solution process
are called regularization algorithms, and they usually take the form of a linear or
nonlinear optimization algorithm that involves a combination of a “goodness-of-fit”
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(such as the residual norm) and a “quality measure” (such as a semi-norm) of the
solution.

Low frequency electromagnetic tomography techniques (less than 20 MHz) are
used to non-invasively create cross sectional images of the objects with contrasts in
one or more of the passive electromagnetic properties (PEP) including conductivity,
permittivity and permeability. Magnetic induction tomography (MIT) [26], [37],
[46], [55], [48] is a relatively new member of the electromagnetic imaging family,
which works based the eddy current in conductive objects. Image reconstruction of
MIT and the three other members of this family, including magnetostatic perme-
ability tomography (MPT) [61], [31], electrical impedance tomography (EIT) [16],
[7] and electrical capacitance tomography (ECT) [82] have been studied in this
paper.

EIT is the oldest member and was introduced in a medical context by Barber and
Brown [6], [30]. ECT has been used for industrial process tomography applications
mainly for materials with low permittivity and negligible conductivity. This review
will study MIT in conductivity imaging mode and MPT for permeability imaging.
EIT considered here works in electrical conductivity mode, so it is referred to as
electrical resistance tomography (ERT).

In MIT and MPT a magnetic field from an excitation coil is applied to the ob-
ject. MIT is based on concept of the eddy current that originates with Michael
Faraday’s discovery of electromagnetic induction in 1831. In MIT, a time vary-
ing magnetic field is induced in the sample material using a magnetic coil with
alternating current. This magnetic field causes an eddy current to be generated
in conducting materials. These currents, in turn, produce small magnetic fields
around the conducting materials. The smaller magnetic fields generally oppose the
original field, which changes the transimpedance between excitation and sensing
coils. Thus, by measuring the changes in transimpedance between magnetic coils
as it traverses the sample, we can identify different characteristics of the sample.
In MPT there is no eddy current and changes in magnetostatic fields due to the
presence of a permeable object can be detected by sensing coils. The mutual in-
ductances between excitation and sensing coil is the measurement data in MIT. In
ERT electrical current is applied to the conductive body via excitation electrodes
and resulting electric voltages are measured in peripheral electrodes. In ECT elec-
tric potential is applied to the excitation electrodes and capacitances are measured
between pairs of electrodes. ERT requires direct contact between the imaging area
and the electrodes, but MIT and MPT are fully contactless, and ECT can be used
without direct contacts.

All these modalities are inherently complex. They need energization of target
region, sensors, electronics, data acquisition and data processing. Induced voltages
in MPT and MIT, measured voltages in ERT electrodes and measured capacitances
between ECT electrodes are the data for the image reconstruction.

Image reconstruction in EIT is more advanced than for ECT and MIT. For in-
stance, nonlinear image reconstruction methods, including most commonly used
regularized Gauss-Newton, are now widely adapted for EIT imaging but not for
ECT or MIT. The area of image reconstruction in ECT and MIT is still very un-
derdeveloped. In the past few years many interesting works have been done in the
area of sensor design [49], electronic design [79], [37] and basic understanding of
the sensitivity maps in MIT [54]. Various types of linear reconstruction methods
were used for the image reconstruction of ECT and MIT [83], [38], [8]. In ECT
the main focus was to generate images by fast methods, so the computational time
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and complexity of a nonlinear solver could be a reason why it has not been ex-
ploited. Non-phenomenological methods (methods that do not consider and thus
are not benefiting from the knowledge of the underlying physics of the measure-
ment system) such as Neural Network and Genetic algorithm were used for image
reconstruction [21], [39]. In phenomenological methods such as regularized Gauss-
Newton methods one needs to numerically model the underlying physical problem.
Modeling of the electric fields in ECT and ERT involves solving a Laplacian elliptic
partial differential equation and scalar fields. The finite element method (FEM) is
a powerful tool to solve such a problem. In MIT, further development of the im-
age reconstruction (phenomenological method) requires computation of the general
eddy current problem involving vector fields. Some simplified models were used
earlier by using scalar fields in MIT [24], which were not accurate to model for
higher frequency cases. Edge FEM are developed for the eddy current problem to
enhance the computation of vector fields. In the past decade finite element solution
of the eddy current problem has been an active area of research [9], [11], [20]. In
this paper we use nodal and edge finite elements for the forward problem in ECT,
MPT and MIT.

Recently, shape based reconstruction techniques have become more popular in
EIT. The shape reconstruction method is intended to be applied in situations where
approximate values of the parameters inside non-smooth, high-contrast structures
are available, but the sizes, shapes, locations and geometry of these structures are
unknown. For example, shape reconstruction method has been studied in [34],
monotonicity based shape reconstruction in [76], linear sampling methods in [10],
and level set method in [17]. So far most of these schemes have been applied to
simulated data. The linear sampling method was applied to real measurement data
in EIT and the results were reported in [29]. We have designed a narrowband level
set method for the shape reconstruction. The method was applied successfully
to experimental data in ECT and ERT. This shape reconstruction algorithm is
a nonlinear inversion scheme, which makes use of a numerical shape propagation
technique, the so-called level set technique, which originally was developed for the
modeling of moving interfaces [57], [18].

The dynamical image reconstruction methods are assuming an important rule
in low frequency electromagnetic imaging. Their importance is mainly because of
the fact that these imaging methods are potentially very fast so that time varying
and functional imaging is a very good feature. There are many different version
of dynamical imaging, in this paper we only briefly review the linear Kalman filter
[78], [33], [32], [63].

This paper is organized as follows. The forward problem based on finite element
solution is briefly studied in section 2. The image reconstruction methods are
studied in section 3 and section 4 present some sample results. Most of the image
reconstruction methods explained in section 3 are general and can be used in any
other tomography or inverse problem application.

2. Forward problem

The forward problem is a simulation of the observation process, when the excita-
tion and internal material properties are given. The main equations for the forward
problem in electrical and electromagnetic tomography are the Maxwell’s equations.
Assuming time-harmonic fields with angular frequency ω Maxwell’s equations are

(1) ∇× E = −jωµH
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(2) ∇ · µH = 0

(3) ∇×H = (σ + jωε) E + Js

(4) ∇ · εE = 0

Here E and H are the magnetic and electric fields, σ is conductivity, µ magnetic
permeability and ε permittivity. For the purpose of low frequency application in
this paper we ignore the wave propagation effect [16]. Depending on the operation
frequency the wave effect may need to be considered [73], [26], [84]. The forward
problem in EIT and ECT can be formulated in scalar field. The forward problem
in MIT involves calculation of vector field. Vector based finite element are used
to solve the forward problem in MIT. Vector finite element can be defined as a
member of Whitney elements, which will be discussed here.

2.1. Whitney finite elements. Edge finite element has its origin from a work by
Whitney [81] in differential forms in algebraic topology. Nedlec [44], [45] is the first
scientist to extend the edge finite elements in three dimensional. Since then edge
finite elements have been used in various electromagnetic problems. Eddy current
and magnetostatic problems are among many other electromagnetic problems that
are benefited from the advancement of edge FEM [9], [20]. In [1], edge elements
are used for an integral formulation for computational electromagnetic.

Edge finite element is a member of family of vector finite elements. Whitney
elements are from three forms including, 0-form defined for a scalar potential φ
bases for first order nodal FEM, 1-form defined for the edges and a vector potential
u and it is the base for the edges FEM and 2-form defined for vector field u and it
is the base for the facet elements.

In a general any Whitney form associated with p-simplex i0, i1, i2, ..., ip is

(5) wi0,...,ip = p!
p∑

j=1

(−1)jφijd
0φi0 ...... ∧ d0φij−1 ∧ d0φij+1 ∧ ... ∧ d0φip

where φi is a piecewise linear function that has value 1 in node i and zero in other
nodes of the element and d0 is the exterior derivation. The value of a variable x
can be defined by x =

∑
i φi(x)xi with xi value of x in node i and

∑
i φi(x) = 1.

The operator d1 is for grad φ for 0-form and d2 is for curl u for 1-form and d3 is
for div u for 2-form. Based on equation (5) the lowest order is the form of degree
zero defined in nodes. We have wi = φi, which has value 1 at node i and zero in
any other nodes. The function wi is continuous across facets. If i and j are nodes
for an edge, the 1-form belonging to this edge is wij = φi∇φj −φj∇φi. Tangential
component of wij is 1 along edge between nodes i, j and zero along any other
edges. Tangential component of the vector field wij is continuous across facets. If
i, j, k are nodes belonging to a face, the 2-form belonging to the facet elements is
wijk = φi∇φj ∧ φk + φj∇φk ∧ sφi + φk∇φi ∧ sφj . The normal component of the
vector field wijk is continuous across facets.

Conformity of the Whitney forms is an interesting property of them. The confor-
mity of Whitney elements is grad w0 ⊂ w1 and curl w1 ⊂ w2 and div w2 ⊂ w3,
here w3 is for scalar fields and has the same properties as 0-form.
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In this study we are working with nodal FEM based 0-form and edge FEM based
on 1-form. Properties of nodal FEM that make them interesting for the scalar field
computations are very well known, we use nodal FEM for the forward problem of
ERT and ECT (scalar fields). We also use an edge finite element technique for
vector field computation in eddy current and magnetostatic problems.

Edge FEM has some promising advantages compared with the more conventional
nodal FEM for vector field computations. In edge FEM a vector field is represented
using a basis of vector valued functions. Nodal FEM was used for the vector fields in
electromagnetic. Although nodal FEM is easy and straightforward and its outcome
accurate, several serious problems have been identified when the ordinary nodal-
based finite elements were employed to compute vector electric or magnetic fields,
most notably

• Long computation time
• Large memory requirements
• Lack of adequate gauge conditions for vector magneto-static analysis
• Satisfaction of the appropriate boundary conditions at material and con-

ducting interfaces
• Difficulty in treating the conducting and dielectric edges and corners due

to the field singularities associated with these structures
• Occurrence of non-physical or so-called spurious solutions, especially in

wave-guide and scattering problems, etc.

A very important advantage of edge FEM in computational electromagnetic is
their superiority in imposing physically necessary continuity properties for inter-
elements, and not imposing any additional continuity. For eddy current and mag-
netostatic problems we developed edge FEM based on a formulation involving edge
finite element modeling of the magnetic vector potential A [9]. The tangential
component of A is continuous between two neighboring elements, which satisfies
tangential continuity of the electric fields. The magnetic flux density is curl of
magnetic vector potential, continuity of tangential component of magnetic vector
potential ensures the normal continuity of magnetic flux density. Continuity of nor-
mal component of the magnetic flux density and tangential component of electric
fields are two physical continuity and are satisfied by edge finite element formula-
tion.

2.2. Forward problem in EIT. The forward problem in both ECT and EIT
consists of an electrostatic approximation to Maxwell’s equations. The fundamental
unknown of the forward problem is the electric potential u. Given the conductivity
distribution (γ = σ) in EIT or the permittivity distribution (γ = ε) in ECT, u is
calculated in the domain of interest Ω by solving the partial differential equation

(6) ∇ · γ∇u = 0

with suitable boundary conditions on ∂Ω which are further specified below. The
forward problem in EIT is to predict the voltage on the sensing electrodes given
the applied current to the exciting electrodes. The electric current applied to the
excitation electrodes and the potential between electrodes are measured using phase
sensitive detection and a differential amplifier. With metallic electrodes in contact
with an aqueous solution the boundary conditions are described by the Complete
Electrode Model (CEM) [72]. With current Il on electrode El having contact
impedance zl, the complete electrode boundary conditions are
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(7a) Vl = u + zlσ
∂u

∂n

(7b) Il =
∫

El

σ
∂u

∂n
dx2

where Vl is the constant voltage on the l-th electrode, and σ∂u/∂n = 0 on the
boundary where there is no electrode.

2.3. Forward problem in ECT. ECT sensors measure the dielectric permittiv-
ity of a sample. A typical ECT sensor comprises a circular array of 8 or 12 plate
electrodes, mounted on the outside of a non-conducting pipe, surrounded by an
electrical shield. For metal walled vessels, the sensor must be mounted internally,
using the metal wall as the electrical shield (Figure 1.a. Figure 1 shows an ex-
perimental ECT system. Additional components include radial and axial guard
electrodes, of which many configurations have been tried, to improve the quality
of the measurements and hence images. It is not necessary for the electrodes to
make physical contact with the specimen, so they can be used on conveyor-lines,
or externally mounted to plastic piping to reduce the risk of contamination. In a
typical measurement pattern the voltage is applied to one electrode and the rest of
the electrodes are grounded.

The electric charge is then measured as electric current from the electrodes.
The forward problem in ECT is the prediction of the collected charge on sensing
electrodes for a given permittivity distribution and the electric potential on the
exciting electrodes. Mathematically this amounts to solving Ac1U = 0 where the
system matrix is A = Ac1. The boundary condition here is to apply the potential
vk to the active electrode and potential zero to the remaining electrodes. This is
modeled by the Dirichlet boundary condition

(8a) u = vk on Ek

(8b) u = 0 on ∂Vd\ ∪k Ek

where Vd is the region containing the field (possibly an infinite region), ε is dielectric
permittivity, and Ek is the k−th electrode, held at the potential vk, usually attached
at the surface of an insulator. The electric charge on the k−th electrode is given
by

(9) Qk =
∫

Ek

ε
∂u

∂n
dx2

where n is the inward normal on the k−th electrode.

2.4. Forward problem in MPT and MIT. There has been number of MIT
system designed for medical and industrial applications. Systems that are sensitive
to the primary field are designed by Cardiff, Manchester, Moscow group. A 5 kHz
MIT system designed at the Manchester University [42] is designed for the metal
flow visualization a high contrast, high conductivity imaging, the rest of the systems
are designed for the low contrast low conductivity imaging. The systems insensitive
to the primary magnetic fields are designed by Graz group and Karlsruhe. Figure
2 shows an experimental MIT system (20 kHz excitation frequency) designed by
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(a)

(b)

Figure 1: (a): Cross section through sensor showing electrodes and screen, (b):
The PTL (Process Tomography Limited, Wilmslow, www.tomography.com) ECT
system showing sensor, ECT system and host computer

Alex Korjenevesky’s group in Russia [37], [38], [39]. A 16 coils MIT system (10 kHz
excitation frequency) was designed and built by Cardiff MIT group [25], [79], [80]. In
Bio-impedance group of Graz University of Technology Austria various interesting
steps are taken to design and build MIT system and improvement of gradiameters
techniques for MIT [53],[52], [56]. Multifrequency MIT system with frequency range
between 50 kHz-1MHz has been designed [50]. A different gradiameter was designed
for MIT measurement (4 MHz excitation frequency) by Dr Claudia Igney in the
university of Karlsruhe Germany [49], [48].

Figures 3 illustrate the Graz MIT prototype and the images obtained from the
system will be presented in following sections. The system mainly consists of pla-
nar gradiometers (PGRAD), low-noise amplifiers and digital signal processing for
achieving high signal to noise ratio (SNR) and a excitation coil (s), EXC.

To solve the MIT imaging problem, one needs to simulate the measurement
process. In MIT the general eddy current problem is an accepted approximation
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Figure 2: MIT system by Alex Korjenevsky

Figure 3: MIT system by Hermann Scharfetter

of the Maxwell’s equations. In this section we ignore the wave propagation effect
and present the author’s implementation of the forward eddy current problem using
edge FEM.

Edge finite element has originated from work by Whitney [81] in differential
forms in algebraic topology. Nedlec [44], [45] was the first scientist to extend the
edge finite elements to three dimensions. Since then edge finite elements have been
used in various electromagnetic problems [11].

We use a formulation based on magnetic vector potential A and electric potential
V . First order tetrahedral edge finite elements are employed to model the magnetic
vector and the first order nodal tetrahedral elements electric scalar potential. We
have developed a more general eddy current software for time harmonic eddy current
modeling. For the field quantities we have E = −jω(A +∇V ) (the time derivative
for electric potential is used to ensure the symmetry of linear system of equations)



EMT/ECT/EIT 415

and B = ∇ ×A. Let us consider the quasi-static electromagnetic fields governed
by

(10) ∇× (ν∇×A) + jωξ(A +∇V ) = Js.

(11) jω∇ · (ξ(A +∇V )) = 0

where ξ = σ + jωε and σ , ε are the electric conductivity and permittivity and
ν = 1/µ.

The boundary conditions of A×n = 0 on Γ, the surface of the whole simulation
domain and n·(−jωξA−jωξ∇V ) = 0 on Γe, the surface of the eddy current region.
Far field boundary conditions of normal component of magnetic field density zero
are set. In edge FEM the degree of freedom is the tangential components of the
vector field. The linear system of equations can be solved using the Incomplete
Conjugate Gradient (ICCG) method. The electric vector potential Ts is defined in
the coil region to represent the current in the excitation coil. Here ∇ × Ts = Js

and using this formulation guarantees a divergence free current source for the right
hand side of equation (10) and improves the convergence of the linear solver. For
simple coil shapes we are using some analytical formulation for the computation
of Ts [9], and there is no need to mesh the coil itself. For complicated coil shapes
the boundary value problem ∇× ( 1

σ∇×Ts) = 0 is solved with suitable boundary
conditions in the coil region. More detailed study of the current source modeling
will be presented later in this section.

Finite element discretization of (10) ,(11) using edge basis functions yields
∫

Ω

(∇×N
1
µ
· ∇ ×A)dx3 +

∫

Ωe

(jωξN · (A +∇V ))dx3

=
∫

Ωc

(∇×N ·Ts)dx3

(12)

and

(13)
∫

Ωe

(jωξ∇φ · (A +∇V ))dx3 = 0.

where N is any linear combination of edge basis functions, Nij = φi∇φj − φj∇φi,
φ is standard nodal basis, Ω is the entire region, Ωe the eddy current region, and
Ωc the current source region. ∇×N and ∇L are constant in each elements so the
integration is simple within an element. For those terms including N we calculate
the volume integrals by Gaussian quadratures method. The Gaussian quadratures
provide the flexibility of choosing not only the weighting coefficients but also the
locations where the functions are evaluated. We use five Gaussian points to evaluate
the integrals in each tetrahedral element.
The induced voltages (Vm) in sensing coils are calculated using

(14) Vm = −jω

∫

Ωc

(A · J0)dx3

where J0 is a virtual unitary current passing through the coil.
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2.5. Sensitivity analysis. In image reconstruction it is often required to have a
calculation of the sensitivity of measured data due to a small change in parameters
to be imaged. The efficient sensitivity formulas are established based on sensitivity
theorem in Maxwell’s equations. A general study have been given in [71], [19]. The
general form of the sensitivity formula for an excitation and sensing is

∫

Γ

δE1 ×H2 · n dx2 =
∫

Ω

−jωδµH1 ·H2 + (δσ + jωδε)E1 ·E2 dx3
(15)

where the left hand side is representing sensing and excitation by surface integral on
surface Γ and the right hand side is the volume integral over the perturbed region
Ω. H1 and E1 are the magnetic and electric fields when sensor 1 is excited and
H2 and E2 are the magnetic and electric fields when sensor 2 is excited. For each
of these modalities an efficient formula can be derived to calculate the sensitivity
map.

For ECT and ERT at each point in the domain the calculated sensitivity is
essentially proportional to the inner product of two electric field vectors Ei ·Ej at
the given location. In particular, we have for ERT

(16)
dVij

dσ
δσ =

∫

Ω

δσ Ei ·Ej dx3

and for ECT

(17)
dVij

dε
δε = −

∫

Ω

δεEi ·Ej dx3.

Here, Ω is the perturbed region and Ei and Ej are the calculated electric fields of
the forward problem when electrodes i and j are excited. This sensitivity formula
results in an efficient method for the assembly of the Jacobian matrix. In the
FEM model introduced in the previous section, we have E = −∇u. For MPT the
sensitivity formula for a change in permeability is proportional to H1 ·H2 and it
is expressed as follows

(18)
∂Vij

∂µk
=

jων0

IiIjµ2
k

[Ai
e]




∫

Ωek

[∇×Ne] · [∇×Ne]T dx3


 [Aj

e]
T

where Ne is the edge based shape function in element e.
Equation (19) gives us the sensitivity of the voltage induced in coil i when coil j is
excited with respect to µk relative permeability of element k. Here ν0 is the inverse
of the permeability of free space, Ωek is the volume of element number k and Ij

and Ii are excitation currents for coils. And for MIT the sensitivity formula [65]
for change in conductivity values is proportional to E1 ·E2

(19)
∂Vij

∂σk
= − ω2

IiIj
Ai

e




∫

Ωek

Ne ·Ne
T dx3


 (Aj

e)
T

3. Image reconstruction

The formulation of image reconstruction for one or more internal PEP character-
istics from a set of boundary measurements is an example of an inverse boundary
value problem. The definition of the forward problem [4] is ”Given some boundary
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conditions on the boundary ∂Ω of an object Ω ⊂ R3, and a distribution of param-
eter p within Ω, find the resulting measurement set y on ∂Ω”. The solution to
the forward problem can be expressed in the form of a general non-linear forward
operator y = F (p), where F : P → Y and F ∈ C∞(P, Y ), where p ∈ P and y ∈ Y .
Similarly, the inverse problem may be stated as follows ”Given a distribution of
PEP characteristics p and a distribution of measurements y on ∂Ω derive the PEP
parameter p within Ω. This can be represented by y = F−1(p).” If we have an
estimated p0 that is close to the ideal solution, then the resulting forward solution
y0 = F (p0) is close to y. Under suitable conditions one can expand the forward
operator in a Taylor series. We now state sufficient conditions for the existence
of a Taylor expansion. A general map F : P → Y between two Banach spaces is
considered. The Fréchet derivative of F at a point p in a subset U ⊂ P is defined
as a bounded linear map by F

′
such that

(20) lim
h→0

F (p + h)− F (p)− F
′
(p)

h
= 0

If F
′

exists F is differentiable at p and if F
′

is continuous of p, then F is called
continuously differentiable (F ∈ C1(P, Y )). If the second derivative of F , described
by F

′′
p , exists we say it is twice differentiable at p, and we say F ∈ Cr(P, Y ) if F

(r)
p

is continuous. If F ∈ Cr(P, Y ) for all r we say F is smooth or F ∈ C∞(P, Y ). For
F ∈ Cr(P, Y ) Taylor’s theorem states

(21) F (p + h) = F (p) + F
′
p(h) + (

1
2!

)F
′′
p (h, h) + ...(

1
r!

)F (r)
p (h, h, ..., h) + o(hr)

For r = 1 this reduces to (20). Here o(hr) is the Landau symbol stands for
any map defined in a neighborhood of the origin of a Banach space P satisfy-

ing limh→0
o(hr)
‖ h ‖r

= 0. If p0 is an estimate close to the actual solution, the forward

map can be extended by the Taylor series

(22) y = F (p0) + F
′
p(p0)(p− p0) + (

1
2!

)(p− p0)T F
′′
p (p0)(p− p0) + o(‖ p− p0 ‖2)

In the discrete case the matrix representation of F
′
in standard basis is J ∈ Rm×n

the Jacobian matrix and F
′′

represented by H ∈ Rm×n, the Hessian (the discrete
representation of the Hessian is a matrix for a single multivariable function, but for
a vector value function it is a tensor). Here p ∈ Rn and y ∈ Rm are finite numbers
of the parameter to be estimated and measured respectively. Putting ∆y = y−y0

and ∆p = p− p0 leads to

(23) ∆y = J∆p + ∆pT H∆p + o(‖ p− p0 ‖2)
Neglecting terms after the first, linear term constitutes the perturbation approach
and the problem reduces to inversion of the matrix representation of J at p0. This is
therefore a linear problem which may well be ill-posed, and is amenable to standard
matrix inversion methods. Its success is largely dependent on how closely the initial
estimate is to the correct solution, and how little effect is played by higher-order
terms in equation (23). The linear methods require a different experiment that
measures ∆y as the difference between two states. This approach provides a means
of imaging which is sensitive to the change in PEP.
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3.1. Linear inverse problems. Linear reconstruction relies on the fact that for
small changes, the measurement ∆y can be approximated in a linear fashion with
the parameter ∆p, which may be expressed using the Jacobian matrix J as

(24) ∆y = J∆p + o(‖ ∆p ‖)

This could be interpreted as seeking either a difference image from the difference
between two sets of measurement data, or it could be a step in a non-linear it-
erative algorithm in which the voltage difference is taken between calculated and
measured data. If the number of unknowns is smaller or bigger than the number
of the measurements, then the matrix J is not square. In such a case we can use
the Moore-Penrose generalized inverse, however we must also consider the stability
of the solution. In particular, measurement noise and computational errors that
occur during the forward modeling means that the perturbations in object prop-
erties that can be reconstructed have also to be big enough, in order to create
sufficient signal changes above the noise and computation errors. Mathematically
this is described as the ill-posedness of the inverse problem. This means that the
minimization of a misfit between data and model is difficult, and that small errors
in the measurements or simulations can lead to large errors in the solution. For
this reason, some assumptions, which incorporate as much prior information as is
practical, are required.

3.1.1. Singular value decomposition: The inverse problems of finding PEP
using electromagnetic tomography are ill-posed. Hadmard [27] gives a definition of
an ill-posed problem saying that the solution does not exist or is not unique or is
not a continuous function of the data. The third condition is one of the biggest
problems in electromagnetic tomography. An arbitrary small perturbation of the
data can create an arbitrarily large perturbation of the solution. Singular value
decomposition (SVD) provides a means to study the ill-posedness of an inverse
problem. In equation (24) in our definition of a linear inverse problem. SVD of J
is

(25) J = UΣVT =
n∑

i=1

uiσivT
i

here U = (u1,u2, ...,un) ∈ Rm×n and V = (v1,v2, ...,vn) ∈ Rn×n are matrices
with orthonormal columns called singular vectors, UT U = VT V = In, and the
diagonals of Σ includes the singular values, which are positive numbers (σ1, σ2, ...σn)

sorted in non-increasing order. If matrix J is invertible then ∆p =
∑n

i=1

uT
i ∆y
σi

vi

is the solution to our linear problem. A plot of singular values will tell us how
ill-posed a particular inverse problem is. Truncated SVD (TSVD) can be used to
solve an ill-posed problem by ignoring n − k number of small singular values in

∆pls =
∑k

i=1

uT
i ∆y
σi

vi giving a least square solution ∆pls. TSVD was used for the

MIT image reconstruction and was reported in [13].
A comparison between the decay of ‖ui∆y‖ and σi’s is the basis for the Picard

criterion [28]. If the decay of ‖ui∆y‖ is faster than the decay of σi’s then ∆pls

will be an acceptable solution. Different measurement strategies can be compared
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based on Picard criteria, given one can estimate the noise level for each measure-
ment strategy and also one can calculate the SVD for that particular measurement
strategy.

If we can reduce the large decay of the singular values, in other words increase
the condition number of the system of equations artificially we can have an approxi-
mation solution for the problem. By doing that we regularize the ill-posed problem.

For example replacing σi by σnew
i =

σ2
i + α2

σi
we have ∆pls =

∑n
i=1

uT
i ∆y
σnew

i

vi that

can be solved in a stable manner. Choosing a small value of α has a small ef-
fect on lager singular values, whilst at the same time smaller singular values are
contributing in the solution in stabilized way. Because of the regularization the
contribution, the smaller singular values in the solution are not the exact reflection
of those singular values of the components in the measurements.

3.1.2. Underdetermined and overdetermined: We are looking to find ∆p in
the interior given measured data ∆y on the boundary. Solving the inverse problem
by minimizing

(26) ∆pls = argmin (‖ ∆y − J∆p ‖2)
This is the so called output least squares approach. If J is a square matrix ∆p =
J−1∆y. When J is not square we need

(27) ∆p = J+∆y

Where J+ = JT (JJT )−1 in the underdetermined case and J+ = (JT J)−1(JT ) for
the overdetermined case. In many cases the image reconstruction problem is an
underdetermined problem.

3.1.3. Tikhonov regularization: A big change in ∆p makes a small change
on the measurements. This means that the optimization in (26) fails to produce
a correct result. In order to overcome the ill-posedness we need to regularize,
imposing additional information about the solution. A penalty term can be added
to the optimization problem

(28) ∆pGT = argmin ‖ ∆y − J∆p ‖2 +α2 ‖ R(∆p−∆p0) ‖2
A simple choice for the regularization penalty term is the Tikhonov regular-

ization. The aim of this regularization is to dampen the contribution of smaller
singular values in the solution. The matrix R is a regularization matrix which
penalizes extreme changes in parameter p removing the instability in the recon-
struction at the cost of producing artificially smooth images. TSVD achieves this
goal by explicitly removing those smaller singular values. In Tikhonov regulariza-
tion, by adding a penalty term the effect of smaller singular values are dampened
in an implicit way. The parameter α controls the trade-off between fitting the data
and violating the prior assumption.

The regularization would mean making the resulting linear system better con-
ditioned. But it does not necessarily mean having a solution that is acceptable.
An acceptable solution can be achieved by considering the realistic situation in the
measurement as well as the material side. In the measurement side we would like
to include the reality of the electronic noise and any other sources of errors either
in the measurement or in the model. In the parameter side, a good initial guess is



420 M. SOLEIMANI

a good regularization which means ‖ ∆p −∆p0 ‖ is small. The inversion step in
discrete form is

(29) ∆p = (JT J + α2RT R)−1(JT ∆y + α2RT R∆p0)

A simple form is the standard Tikhonov where R = I and assuming ∆p0 = 0

(30) ∆p = (JT J + α2I)−1(JT ∆y)

3.1.4. Generalized SVD:. Generalized SVD (GSVD) of a pair of matrices J ∈
Rm×k and R ∈ Rn×k. The singular values of JT J and RT R are the square of
singular values of J and R. GSVD is a good tool to analyze the regularized system.
Here m < k and n = k, and the pair can be decomposed to U,V, Θ,C,S ∈ Rk×k

where [J, 0] = UCΘ−1, R = VSΘ−1, here U and V are orthogonal and Θ is
square and nonsingular and C and S are diagonal matrices of the singular values

of J and R. Given λi =
Cii

Sii
for i = 1, 2...k, and ∆yf = ∆y, 0] ∈ Rk the general

Tikhonov solution can be written as ∆p =
∑k

i=k−n ξi
uT

i ∆yf

λi
θi, and ξi is the filter

factor and ξi =
λ2

i

λ2
i + α2

. This factor tends to zero when λi is very small compared

to α, which means rejecting the effect of smaller singular values in the solution. The
filter factor in TSVD is 1 for selected singular values and zero for the rejected ones.
And for standard Tikhonov the filter factor is ξi =

σi

σ2
i + α2

where σi is i-th singular

value of matrix J. The Picard criteria from GSVD information is also useful for
analyzing the regularized system with the expected noise level in measurement data
[28].

3.1.5. Other methods: In Newton one step reconstruction (NOSER) [15] the

regularization matrix is RT R = diag(JT J). Replacing σi to σnew
i =

σ2
i + α2li

σi
, and

li is diagonal elements of J. We have ∆pls =
∑n

i=1

uT
i ∆y
σnew

i

vi that can be solved in

a stable manner.
Krylov subspace methods such as preconditioned conjugate gradient (PCG) also

act as an implicit regularization for the ill-posed inverse problem and can be effi-
cient when used for the large scale problems. A simpler iterative algorithm is the
Landweber iteration scheme used in ECT image reconstruction. Let us consider
Landweber’s iterations as give by the formulation

(31) ∆pi+1 = ∆pi + λJT (∆y − J∆pi)

where the fixed parameter λ is a relaxation parameter. If ‖ I − λJT J ‖22< 1 or
0 << 2‖JT J‖22 the method will converge. The method can be expressed as an SVD

filter with the filter factor for iteration i is ξi =
(1− (1− λσ2

i ))i

σi
. A hybrid method

is

(32) ∆pi+1 = ∆pi + λ(JT J + α2RT R)−1(JT )(∆y − J∆pi)
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This is an algorithm for finding the nearest local minimum of a function which
presupposes that the gradient of the function can be computed. The method of
steepest descent is also called the gradient descent method. The steepest descent
method is given by iteration ∆pi+1 = ∆pi + λiJT (∆y − J∆pi) and in iteration i

we calculate λi =
‖ JT (∆y − J∆pi) ‖
‖ JJT (∆y − J∆pi) ‖ .

3.2. Nonlinear inverse problems. Nonlinear methods are suitable to recon-
struct the absolute values whereas linear methods are useful for difference imaging.
First we begin from minimization of the residual error

(33) g(p) =
1
2
‖ y − F (p) ‖2

Consider D(p) = y − F (p). Here gradient of g is ∇g(p) = F
′
(p)(y − F (p)).

(34) D(p + h) = D(p) + D′(p)h +
(

1
2

)
F
′′
(p)h2 + o(‖ h2 ‖)

Newton’s method began as a method to approximate the roots of functions, equiv-
alently, here solutions to equation g(p) = 0. A Newton-Raphson iteration is
pi+1 = pi + ∇g(pi), gradient of g can be used to optimize g(p) by D(p + h) ≈ 0.
By ignoring second order term we have D(p + h) = D(p) + D

′
(p)h so D

′
(p)h =

D(p + h) − D(p). The iterations are in a way that D(p + h) → 0, which means
h = D

′
(p)−1D(p). Therefore Newton-Raphson iterations can be written pi+1 =

pi + F ′(pi)−1(y − F (pi)). The Hessian for the function g can be calculated

(35) H(p) = D
′
(p)T D

′
(p) + D

′′
(p)D(p) = F

′
(p)T F

′
(p) +

k∑

j=1

F
′′
j (p)(Fj(p)− yj)

By ignoring second derivative term in the Hessian the Gauss-Newton iteration can
be written pi+1 = pi −H(pi)−1∇g(pi). The Gauss-Newton method is a standard
optimization technique for well-posed problems. By replacing Hessian with identity,
we can build a nonlinear conjugate gradient (NLCG) algorithm with regularization
[3]

Data: Measurement data
Result: Solution of the nonlinear inverse problem
initialization;
for i=1,2,... do

if ‖ ∇g(pi) ‖2< tol then
break ;

else

βi =
‖ ∇g(pi) ‖2
‖ ∇g(pi−1) ‖2 ;

Λi = −(W∇g(pi) + α2I) + βiΛi−1 ;
end
line search for λi ;
pi+1 = pi + λiΛi;

end
Algorithm 1: Nonlinear CG algorithm

here tol is the tolerance and α is the regularization parameter. A weighting function
W can be used to improve the efficiency of NLCG and was applied to the EIT
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problem. NLCG does not require calculation of the Hessian and using adjoint
formulation one can calculate the ∇g efficiently.

A nonlinear Landweber can be described by iteration pi+1 = pi + λF ′(pi)(y −
F (pi)). In the regularized Gauss-Newton method the second order term in the
Hessian is approximated. The regularized optimization is to find p, given p0 as the
initial guess, R(p) is the regularization function, and we also include regularization

parameter α we have g(p) =
1
2
‖ y − F (p) ‖2 +α2R(p)

For regularized Gauss-Newton the iteration steps are pi+1 = pi−H(pi)−1∇g(pi),
where H(pi) = F

′
(pi)T F

′
(pi) + α2R

′′
(pi), where H is the modified Hessian here

and R(p) is regularization function and ∇g(pi) = F
′
(pi)(F (pi) − y) + α2R

′
(pi).

Here R′(pi) and R
′′
(pi) are the first and second derivatives of R(p) with respect to

pi. The regularized Gauss-Newton (GN) algorithm is as follows:

Data: Measurement data
Result: Solution of the nonlinear inverse problem
Initialization ;
for i=1,2,... do

if Stopping criteria is satisfied then
break;

else
Material distribution pi in step i ;
Calculate the forward model F(pi) ;
Calculate the sensitivity term F

′
(pi) ;

Choose regularization parameter α ;
Compute gradient by ∇g(pi) = F

′
(pi)(F(pi)− y) + α2R

′
(pi) ;

Compute G-N approximation of H by
H(pi) = F(pi)

′
F(pi) + α2R

′′
(pi) ;

Calculate δpi = −H(pi)−1∇g(pi) ;
Update the material distribution pi+1 = pi + λiδpi, here λi is
the step size ;

end
end

Algorithm 2: G-N algorithm

3.2.1. Linearized Tikhonov steps: Let’s consider the generalized Tikhonov reg-
ularization

(36) p = argmin(‖F(p)−Ym‖2 + α2‖R(p− p0)‖2)
Iin discrete form we have iteration steps such that

∆pi =
(
Ji

T Ji + α2LT L
)−1

Ji
T

(
(Ym − F

(
pi))− α2RT R(pi − p0

)
)(37)

For i = 1 this is a linear reconstruction algorithm. Here Ji is the Jacobian calculated
for the inverse parameter pi, Ym is the vector of measurements and the forward
solution F (pi) is the predicted measurement from the forward model with param-
eter pi. There are methods to find the best regularization parameter for linear
problems, for example L-Curve method [28]. Morozov’s stopping criteria has been
used to stop the iterations [43]. The iteration will stop when ‖ F(pi) −Ym ‖< ε,
where ε is the noise level estimated in measurement system.
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3.3. Semi-linear methods. In the Newton-Kantorovich [36] the same Jacobian
matrix is used in all iterations. In a sense that the forward problems are solved in
each iteration but the Jacobian matrix is not updated, the method is a semilinear
method. With the aim of speeding up Newton type algorithms the Broyden Quasi-
Newton (BQN) method has been studied for EIT [40] and capacitance tomography
by [67].

In the BQN technique one needs to solve the forward problem in each step and the
inverse of the Jacobian matrix can be updated with direct formula as follows. If F
is the forward map and Ym is the measurement capacitance, we define D = F−Ym

and γ = Di+1 −Di and ∆pi+1 = pi − pi+1. The material distribution that best
describes the actual solution is the one that makes D ≈ 0. The solution for this
particular permittivity can be found using the iterative equation

(38) pi+1 = pi + HiDi

We start with an initial guess, and update the solution for each iteration. Hi

is an approximation of the inverse of the Jacobian matrix related to permittivity
distribution pi. Instead of calculating the Jacobian matrix and solving a linear
system of equation in each iteration, the matrix H can be updated with O(n2)
operations, n is the number of pixels of the image as follow

(39) Hi+1 = Hi +
(∆p−Hiγi)∆pT

i Hi

∆pT Hiγi

It has been shown that the method has super-linear convergence and that the set of
matrices Hi, i = 1, 2, 3, ... converges to Htrue (The inverse of the Jacobian matrix at
the point ptrue where D = 0 is satisfied). The initial guess for the BQN method is
important to the convergence. If we start close to the solution the BQN converges
fast. If the initial guess is far from the solution, the BQN may not converge. A
mixed regularized Gauss-Newton and BQN are used for the high contrast imaging,
where the first few steps are using regularized Gauss-Newton and when we are
approaching the solution we can benefit from faster BQN iteration [40].

3.4. Methods for material with jump changes.

3.4.1. Total variation regularization: Although Tikhonov type regularization
provides a good method to reconstruct smooth parameters both in terms of contrast
and shape, it fails to reconstruct the sharp edges and absolute values for the high
contrast case. TV regularization is a more suitable method for both sharp edges
and high contrast. Using TV regularization to reconstruct the sharp edges has
been discussed in [66] for ECT using experimental data. Complicated shape objects
such as rectangular shape and cross shape objects, which has sharp edges has been
reconstructed successfully using TV scheme. The recovery of sharp edges in MIT
using TV regularization is similar to the ECT problem. In other words, the TV
functional is used to encourage blocky images as a regularized solution. The TV
functional of a continuum σ

(40) GTV(σ) =
∫

Ωin

|∇σ(x)|dx

Here we choose to use minimum total variation method. Let’s the area of each facet
i between two voxels be qi and i = 1, 2, .., I. The k-th row of the matrix S ∈ RI×P
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(here I is number of facets and P is number of tetrahedral elements) is chosen to
be Sk = [0, ...0, 1, ...,−1, 0, ..., 0], where 1 and -1 occur in the columns related to
the tetrahedron with common facets k. Each row of Sk has been weighted with
the surface area of qk of the facet k, where RTV = ST QS is the regularization
matrix and Q is a diagonal matrix with Q(k, k) = qk. The term ‖ RTVσ ‖1
gives an approximation to the total variation of the distribution σ. In [64], TV
regularization was applied to the experimental data of industrial MIT, a good
separation between highly conductive inclusions could not be achieved by smoothing
Tikhonov regularization and was achieved by TV method.

3.4.2. Level set method: In the level set technique [58], [41] the boundaries of
the shapes are represented by the zero level set of a level set function f . More
specifically, if D is the inclusion with conductivity (or permittivity) pint embed-
ded in a background with conductivity (or permittivity) pext, the boundary of the
inclusion, which is also an interface between two materials, is given by

(41) ∂D := {r : f(r) = 0}
where the image parameter at each point r is

(42) p(r) =
{

pint {r : f(r) < 0}
pext {r : f(r) > 0}

If we change this level set function for example by adding an update, we move the
shapes accordingly. This relation is used in the level set technique when construct-
ing updates δf to a given level set function f such that the shapes are deformed in
a way which reduces a given cost function.

We want to combine well-known and very efficient optimization techniques (in
particular the general idea of a Gauss-Newton approach) with our newly developed
shape based inversion approach. Using optimization strategies for the shape inver-
sion as an alternative to a shape evolution approach was already suggested in the
early paper by Santosa [51]. In order to mathematically derive this new optimiza-
tion scheme for our situation, we will denote the mapping which assigns to a given
level set function fD the corresponding parameter distribution p by p = Φ(fD).
The parameter distribution p has the same meaning as in the traditional Gauss-
Newton inversion scheme. The only difference is that in the shape based situation
it is considered as having only two values, namely an interior value and an exterior
value. (Certainly, this assumption can be generalized by allowing these interior and
exterior values to be smoothly varying functions, separated by the interface. We
will not consider this extension here.) Moreover, in our new approach it will only
be an intermediate parameter, linking the data finally to the new basic unknown
of the inverse problem, namely the level set function fD.

Having defined this mapping Φ, we can now replace the iterated parameter
pn by pn = Φ(fDn) = Φ(fn). Instead of the classical pixel/voxel based forward
mapping F (p) we need to consider now in the new Gauss-Newton type approach
the combined mapping G(f) = F (Φ(f)).

If we perturb the latest best guess for the level set function f by some small
correction δf , the linearized response in the data will be

(43) G
′
[f ]δf = F

′
[Φ(f)]Φ

′
[f ]δf

according to the chain rule. Plugging this into a Gauss-Newton type algorithm, and
using an update formula for the level set function as it was derived and discussed
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in [51], we try to calculate successive updates δf for the level set function such that
the shape corresponding to the final level set function fits the simulated measure-
ments to the given data as accurately as possible. The discretized form of Φ

′
[Ψ] is

described by K, and the Jacobian of G by B. Then, the new Gauss-Newton update
is

(44) Ψn+1 = Ψn + λn

(
BT

nBn + α2LT L
)−1

BT
n (Ad −G (Ψn))

with

(45) B = JK, BT = KT JT , BT B = KT JT JK.

Here L is the regularization matrix and has been chosen as identity matrix in this
paper. Notice that (45) implies that BT B can be restricted to be defined only
on the narrowband, since both K and KT contain discretized versions of χρ(r),
Ad is measurement data, α is the regularization parameter and λn is the step-size
parameter. Here χρ, is the indicator function of a small narrow band of half-width ρ
centered at ∂D. This is like a band pass filter in space. The iteration is terminated
using Morozov’s criterion: when the residual error falls below the measurement
accuracy [43].

With an iterative method using an update formula for level set function we try to
fit the measurement data to the simulated ones. Based on the assumption that the
number of elements: N , number of measurements: M , and the number of Nodes:
P . The inclusion is D and the boundary of the inclusion is ∂D. The numerical
implementation is as follows

• N × 1 vector containing level set function Ψ which has the same format as
the real conductivity. This is assigned to the center of each element. So pk

is the conductivity of element number k and Ψk is defined for k = 1, 2, ..., N .
Where pk = pint and Ψk < 0 for inclusion and pk = pext and Ψk > 0 for
back ground.

• Beginning with an initial guess for level set such as an spherical inclusion
with level set function Ψk = (X −X0)2 +(Y −Y0)2 +(Z −Z0)2− r2 where
(X0, Y0, Z0) are cartesian coordinates of the center and r is radius of the
sphere.

• Search for zero level set Ψk = 0, for each element k = 1, 2, ..., N compare
sign of Ψk with sign of the nearest neighbors. If Ψk changes its sign, choose
the center of that element as an interface.

• Narrowband function, requires a N × 1 vector indication narrow bands,
those which are in narrowband get 1 and the others 0.

• Updating the δΨ level set using equation (44).
• Optionally smooth the level set function.
• Calculate the conductivity in step n as pn = pint when Ψ < 0 and pn = pext

when Ψ > 0.
• Stop the iteration if the residual error is smaller than the noise level Visu-

alization the shape results

3.4.3. Monotonicity method: Monotonicity based technique was introduced for
EIT shape reconstruction [76]. The resistance matrix in EIT has the monotonicity
property and the inversion method has been designed based on that [74].It is pos-
sible to show that the second order moment of the impedance matrix in MIT has
the monotonicity property [74], [68], [75]

(46) Re {Z0 (jω)− Zη (jω)} = ω2P(2)
η + o

(
ω4

)
, ω → 0
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where Re is for real part of a complex number, ω is the angular frequency, Z0(jω)
is the impedance matrix when the conductor is not present and Zη(jω) is the
impedance matrix when a conductor of resistivity η is present. The main property
of the second order moment is its monotonicity

(47) η1 (x) ≥ η2 (x) in Ωe ⇒ P(2)
1 ≥ P(2)

2

where P(2)
k is the second order moment associated to the conductivity 1/ηk.

For two phases problem, (47) can be recast as

(48) Dβ ⊆ Dα ⊆ Ωe ⇒ P(2)
α ≥ P(2)

β

where Ωe is the eddy current region, P(2)
γ , for γ ∈ {α, β} is the second order moment

related to a resistivity ηγ defined as

(49) ηγ (x) =
{

ηi ∀x ∈ Dγ

ηb ∀x ∈ Ωe/Dγ

The monotonicity (47) and (48) have been proved for a numerical model, however,
it is possible to show that they hold also for the actual second order moment. The
monotonicity satisfied in MIT involves P(2) whereas we measure the impedance
matrix δZ (jω) at the angular frequencies ω1, . . . , ωv. Therefore, we need a prelim-
inary step to apply the non-iterative inversion method aimed to extract P(2) from
the measured data. A detailed description of this calculation can be seen in [74].

Here we briefly summarize the monotonicity shape reconstruction method based
on second order moment data. The inversion method presented (see [76, 75] for
details) can be applied to two-phase problems and is a quantitative non-iterative
inversion method requiring the solution of a number of direct problems growing as
O(N) or less [75]. We obtain the proposition at the basis of the inversion method

(50) P(2)
η1
6⊆ P(2)

η2
⇒ D1 6⊆ D2.

Proposition (50) is a criterion allowing us to exclude the possibility that D1 is
contained in D2 by using the knowledge of the matrices P(2)

η1 and P(2)
η2 . Notice that

(50) does not exclude that D1 and D2 are overlapped, i.e. does not exclude the
case D1∩D2 6= ∅ where ∅ is the void set. Let us initially assume that the measured
resistance matrix P̃(2) is noise free (P̃(2)) corresponds to an unknown anomaly
occupying region V ), that the conductive domain Ωc is divided into N ”small”
non-overlapped parts Ω1, . . . , ΩN and that the anomalous region V is union of
some Ωk’s. Proposition (50) yields in a rather natural way to the inversion method.
In fact, to understand if a given Ωk is part of V , we need to compute the largest
and smallest eigenvalues of the matrix P(2)

Ωk
− P̃(2). If the eigenvalues have opposite

sign, then P(2)
Ωk
−P̃(2) is not positive definite and, thanks to (50) applied to P̃(2) (V )

and P(2)
Ωk

(Ωk) it follows that ΩkV . Since, by construction, Ωk is either contained
in V or external (we are assuming that V is union of some Ωj ’s), it follows that Ωk

cannot be included in V . Therefore, the reconstruction Vext is given by the union
of those Ωk’s such that P(2)

Ωk
− P̃(2) is positive semi-definite.

It is worth noting that criterion (50) is a sufficient condition to exclude Ωk from
V . In other words, V ⊆ Vext. Criterion (50) can also be used to identify some
of the extra Ωk’s contained in Vext. Indeed, if Ωk is contained in Vext but not in
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V , then V ⊆ Vext\Ωk and, therefore, P̃(2) − P(2)
Vext\Ωk

is a positive semi-definite

matrix. Thus, when P̃(2) −P(2)
Vext\Ωk

is not a positive semi-definite matrix, we can
infer that Ωk is surely part of V . Defining Vint as the union of those Ωk such that
P̃(2) − P(2)

Vext\Ωk
is not a positive semi-definite matrix, we have, by construction,

that Vint ⊆ V .
In practice, the noise affecting the measurements, the model error introduced

when we assume that V is union of some Ωk, the error made in estimating P̃(2) from
the measured data, make the problem more complicated. Some eigenvalues, among
which the ones having the smaller absolute value, may be completely contaminated
by these source of error. Therefore, testing if a matrix as P(2)

Ωk
− P̃(2) or P̃(2) −

P(2)
Vext\Ωk

is positive semi-definite or not, may give completely wrong information.
To overcome the problem, it is appropriate to introduce a way to quantify how much
a matrix is ”close” to be a positive semi-definite matrix. A possible choice, that
resulted to be very effective [76]-[75], consists of introducing a sign index defined
on an arbitrary square, symmetrical and non-vanishing matrix A as

(51) f (A) =
∑

i λi∑
i |λi|

where λi is the i−th eigenvalue of the given matrix A. We notice that |f (A)| ≤ 1
and f (A) = 1 (f (A) = −1) if and inly if the matrix is positive (negative) semi-
definite.

To compute Vext we associate to each Ωk the number sk = f
(
P(2)

Ωk
− P̃(2)

)
, then

we define V ε
ext as the union of those Ωk such that sk ≥ ε and, finally, we find the

value ε′ such that
∥∥∥P̃(2) −P(2)

V ε
ext

∥∥∥ is minimum, (‖·‖ being a matrix norm). The set

V ε′
ext, corresponding to ε′, is taken as Vext. It is worth noting that it is no longer

guaranteed that V ⊆ Vext.
Similarly, to compute Vint we associate to each Ωk ⊆ Vext the number tk =

f
(
P̃(2) −P(2)

Vext\Ωk

)
, then we define V ε

int as the union of those Ωk ⊆ Vext such that

tk ≤ 1− ε and, finally, we find the value ε
′′

such that
∥∥∥P̃(2) −P(2)

V ε
int

∥∥∥ is minimum,

(‖·‖ being a matrix norm). The set V ε′′
ext, corresponding to ε′′, is taken as Vint. Also

in this case, it is no longer guaranteed that Vint ⊆ V but only the obvious condition
Vint ⊆ Vext. Here we call the first test (to exclude the pixels), test 1 and the second
test (include pixels), test 2. The algorithm for tests 1 and 2 are shown in pseudo
code of algorithms 3 and 4.

The efficiency of this inversion algorithm is high: it requires the computation
of a number of matrices P(2)

S , where S is Ωk or Vext\Ωk, and the eigenvalues for
computing the sign indices sk and tk. The number of matrices P(2)

S to be computed
is proportional to the number of elements (the number of Ωk’s) of the subdivision
of the domain Ωc. Moreover, the computation of P(2)

S is very efficient because
it corresponds to the solution of an elliptic problem but in a bounded domain
that can be described by a sparse matrix. On the contrary, the direct problem
(calculation of the trans-impedance matrix) involve either a differential formulation
in an unbounded domain associated to a sparse stiffness matrix, or an integral
formulation defined on the region occupied by the materials and associated to a
fully populated stiffness matrix.
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Data: Measurement data
Result: Classification of the pixels
Test 1. Consider all N pixels labeled 1 to N .;
for k = 1 : N ;
Compute the second order moments by performing the forward solution with
only ηk equal to ηS (other resistivity equal to ηB) in multiple frequency;
Compute and store the sign index sk ;
end;
Consider all distinct values of the stored sign index;
Classify the resistivity image using threshold 1− ε1 = sk;
Select the classified resistivity image with the smallest error;
The result is a set of pixels which are definitely part of the background, that
is V2, and a set which contains the inclusion but may also contain
background, that is VExt.;

Algorithm 3: Monotonicity method, first test

Data: Measurement data
Result: Classification of the pixels
Test 2. Consider only pixels which are definitely not part of the background,
that is the set VExt from Test 1, with pixels labeled 1 to T.;
for k = 1 : T;
Compute the second order moments by performing the forward solution with
ηk equal to ηB and other resitivities in VExt equal to ηS , and other
resistivities equal to ηB ;
Compute and store the sign index tk ;
end;
Consider all distinct values of the stored sign index;
Classify the pixels in VExt using threshold 1− ε1 = tk;
(other pixels classified as background from Test 1);
Select the classified resistivity image with the smallest error;
The result is a set of pixels which are definitely part of the inclusion, that is
V1.;

Algorithm 4: Monotonicity method, second test

3.5. Time-varying model and inverse solver based on the linearized Kalman
filter.

3.5.1. Formulation of the time-varying model. We consider the inverse prob-
lem as a state estimation problem to estimate the time-varying material distribu-
tion. Suppose that a measurement has been made at time tk and that the in-
formation it provides is to be applied in updating the estimate of the state of a
system at time tk. It is also assumed that the problem has been discretized with
respect to the time variable. In the state estimation problem, we need the so-called
time-varying model which consists of the state equation (the temporal evolution
of the conductivity distribution) and the measurement equation (the relationship
between the conductivity distribution and voltages on the boundary). In general,
the temporal evolution of the material distribution pk in the object Ω is assumed
to be of the linear form

(52) pk+1 = Fk pk + wk
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where Fk ∈ RN×N is the state transition matrix at time tk and N is the number of
states (conductivity distribution). Usually there is no a priori information on the
time evolution of the conductivity distribution so that we take Fk ≡ IN (the identity
matrix) for all tk, to obtain the so-called random-walk model. It is assumed that wk

is white Gaussian noise with the following known covariance matrix Γw
k ∈ RN×N ,

(53) Γw
k ≡ E

[
wk wT

k

]

which determines the rate of time evolution in the conductivity distribution.
Next, consider the observation model. Let Yk ∈ RL, defined as

(54) Yk ≡ [Y1,k, Y2,k, . . . , YL,k]T

be the voltages measured by the k-th excitation pattern. Then the relationship
between the conductivity distribution and measured voltages can be described by
the following nonlinear mapping with measurement error

(55) Yk = Uk(σk) + vk

where the measurement error vk ∈ RL is assumed to be white Gaussian noise.
Linearizing (55) about the nominal value (best conductivity value) p0, we obtain

(56) Yk = Uk(σ0) + Jk(σ0) · (pk − p0) + H.O.Ts + vk

where H.O.Ts represents the higher-order terms which are assumed to be additional
white Gaussian noise, and Jk(p0) ∈ RL×N is the Jacobian matrix defined by

(57) Jk(p0) ≡ ∂Uk

∂p

∣∣∣∣
p=p0

.

Let us define a pseudo-measurement as

(58) yk ≡ Yk − Uk(p0) + Jk(p0) · p0

then we obtain the following linearized measurement equation as

(59) yk = Jk(p0) · pk + v̄k

where v̄k ∈ RL is assumed to be composed of the measurement and linearization
errors with the following known covariance as

(60) Γk ≡ E
[
v̄k v̄T

k

]
.

3.5.2. Inverse solver based on the linearized Kalman filter. In Kalman
filtering approach we estimate the state vector σk on the basis of a measurement
taken up to the time tk. With the Gaussian assumptions the required estimate
is obtained by minimizing the cost functional which is formulated on the basis of
the above state and measurement equations (52) and (59), respectively. The cost
functional for the linearized Kalman filter (LKF) is of the form

(61) Ξ(pk) =
1
2

[
‖pk − p0‖C−1

k
+ ‖yk − Jk(p0) · pk‖Γ−1

k

]

where ‖x‖A denotes xT Ax, and Ck ∈ RN×N is the error covariance matrix, which
is defined by

(62) Ck ≡ E
[
(pk − p0) (pk − p0)

T
]
.

The two norms on the right-hand side in (61) refer to the weighted norms, having
the inverse of the given covariances as weighting matrices.

By minimizing the cost functional (61), we can obtain the recursive linearized
Kalman filtering algorithm. The basic steps of the computational procedure for the
Kalman estimator are as follows [22] , [23]:
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• time updating (prediction)

(63) Ck|k−1 = Fk−1 Ck−1|k−1 FT
k−1 + Γw

k−1

(64) pk|k−1 = Fk−1 pk−1|k−1

• measurement updating (filtering)

(65) Gk = Ck|k−1 JT
k

(
Jk Ck|k−1 JT

k + Γk

)−1

(66) Ck|k = (IN −Gk Jk)Ck|k−1

(67) pk|k = pk|k−1 + Gk

(
yk − Jk pk|k−1

)
.

Hence, we can find the estimated state vector pk|k ∈ RN for the true state vector
pk in a recursive minimum mean square error sense. The Kalman gain matrix
Gk ∈ RN×L in (65) does not depend on the state vector, because the Jacobian
matrix only depends on the nominal value p0 in (57). Therefore, it is possible
to pre-compute the error covariance extrapolation (63), Kalman gain matrix (65),
and error covariance update (66) off-line and store the Kalman gain matrix for
minimizing the on-line computational time.

A striking feature is that the Kalman filtering technique is an on-line recur-
sive form in place of the off-line batch form of the Newton-Gauss method. This
eliminates the need to store past measurements in order to estimate the present
state.

4. Numerical results

In this section we are presenting some numerical results that show some advance-
ments in various imaging modalities. First we choose a simple numerical example
in MIT to illustrate the reconstruction procedure. The true and reconstructed con-
ductivity values for 20 unknowns (grouping elements to generate only 20 unknowns)
can be seen in Fig. 4 for noise free data. The number of unknowns are small so as
expected the inverse solver can reconstruct all 20 values with a good accuracy, and
the quantitative reconstruction degrades when 2 percent Gaussian noise (2 percent
of the average of measured data) was added to the simulated data (see Fig. 4).
It is worth mentioning that in this example the same mesh was used to solve the
forward problem as well as the inverse problem. Figure 5 show the reconstruction
of three copper bars, diameter 19 mm each and an aluminum bar diameter 12.5
mm. The test was carried out by experimental MIT system and four bars were
located in four corner of the imaging area. For MPT results, we inserted two bars
with a relative permeability of 4 into the cylinder as a test phantom (see figure 6.a
), and the background permeability is 3. Figure 6.b shows the reconstructed image
from the test phantom of figure 6.a. Figure 6 is a cross section cylindrical region of
interest for imaging. Figure 7 shows reconstructions for some situations with ECT
data which have been used already earlier for a different reconstruction method
in [83]. To evaluate the level set and pixel based algorithms, the experimental
data was used from an 8 electrode sensor 84 mm in diameter. The measurement
electrodes are 10 cm long (third direction) and are mounted symmetrically on the
outside of an insulating pipe, and 28 measurement data are used the image and
shape reconstruction. In the first example, a ring of Perspex with a circular object
(Perspex 26 mm in diameter) in the centre is considered. In the second example two
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circular objects (Perspex 32 mm in diameter each) considered. The third example
considers a single ring of Perspex with a circle in centre (air with diameter 26mm),
and the fourth example one circular object (Perspex 32 mm in diameter) near the
wall. All these inclusions are Perspex objects with relative permittivity of 1.8, and
the background is free space with relative permittivity of 1.
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Figure 4: Reconstruction of 20 unknown using noise-free data and data with noise

Figure 5: Reconstruction of three copper rods and one aluminum rod using exper-
imental data of MIT

An annular shape object is a difficult task for high contrast MIT due to the
screening effect of the eddy current. An experimental test example of an annular

(a) (b)

Figure 6: Reconstruction of the test phantom in (a)True, (b), the image is a cross
section of cylinder using simulated MPT data.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Reconstruction of plastic bar(s) and ring using regularized linear steps,
permittivity 1.8 for plastic, figure (a) is a rod in centre, (b) a rod close to wall, (c)
two rods close to wall and (d) a ring
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Figure 8: An annular object with the experimental data using metal object

object is presented here. Figure 8 shows reconstruction of an annually shape object
with copper ring and rod using 8 nonlinear steps of regularized Gauss-Newton.

Figure 9, three big copper rods (19 mm in diameter) using experimental data
and our level set method [70].

Figure 10 shows the reconstruction of three metal objects with radius 0.02 cen-
tred at (-0.05,-0.02) m and (-0.05,-0.03) m and a cylinder with radius 0.03 m centred
at (0,0) m using our monotonicity method and multifrequency MIT data [69]. The
gray area is that area that could not be classified either as background nor as in-
clusion. Monte Carlo Marko Chain (MCMC) algorithm was used in [5] to classify
the pixels that can not be classified using monotonicity method.

Figure 11 shows 3D ERT reconstruction of true object with the result of ex-
cluding and including test. The ERT system here includes 32 electrodes. The
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(a) (b)

Figure 9: (a): True object and (b): Level set reconstruction

(a) (b)

Figure 10: Shape reconstruction of three object, (a): True object and (b): Mono-
tonicity classification

background conductivity is 1 Sm−1 and the inclusion has conductivity 2 Sm−1.
The mesh was the simple mesh provided by EIDORS [47]

(a) (b) (c)

Figure 11: Example of monotonicity reconstruction in 3D ERT, (a): True shape,
(b): First test and (c): second test

Figure 12 is a multifrequency image reconstruction by Patricia Brunner [12]. The
method is based on frequency-differential, which is of high interest in motionless
organs like the brain, where a state-differential method cannot be applied. An
equation for frequency-differential MIT was derived taking into consideration the
frequency dependence of the sensitivity matrix. The frequency-differential method
shows a good localization of the perturbation.
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An edge detection based regularization technique was applied by Raymon Casanova
[13], in which the improvement has been made on detecting objects as it can be seen
in experimental test of figure 13. Tikhonov regularization for the cases with strong
discontinuities tends to produce blurred images. In [13] the performance of an edge-
preserving regularization method, called ARTUR [14], is evaluated in the context
of magnetic induction tomography (MIT). ARTUR is a deterministic method based
on half-quadratic regularization, where complementary a priori information may be
introduced in the reconstruction algorithm by the use of a nonnegativity constraint.
Results show advantage of edge-preserving method to Tikhonov regularization.

Figure 12: Frequency difference imaging in MIT reconstruction

Figure 13: Reconstructed images of four objects with the same electrical conduc-
tivity (1 S/m) evenly distributed around the centre of the region of interest at a
distance d from it: a) and e) 1.5 cm, b) and f) 2 cm, c) and g) 3 cm, d) and h) 4
cm. The first row concerns Tikhonov regularization and the second row ARTUR
with nonnegativity constraining.

To show the linear Kalman filter we use an experimental example of MIT shown
in figure 14. For each step, the bar is moved by half its radius. As can be seen the
position of the bar can be clearly reconstructed for each step, despite the change
in excitation. In the second example, the copper bar is moved towards the centre;
this time in steps equal to the radius of the bar. Again the position of the bar can
be distinguished.
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Figure 14: Reconstruction of a moving object by using the Kalman filter, left is the
static image of a moving object and right is the temporal images

5. Discussion and future directions

Various image reconstruction methods have been reviewed for number of soft
field tomography techniques. The paper gives an unified overview of different types
of numerical methods for image reconstruction arising from electrical impedance
tomography and magnetic induction tomography. The methods discussed are the
linear methods, the nonlinear methods, the semi-linear methods, methods for dis-
continuous coefficients and methods that are based on a time-varying model.

The nonlinear inverse problem can be solved using regularized linear iterative
steps and there are needs for more studies in the solution of linear system of equa-
tions arising in each nonlinear step. One can further explore efficient ways of
regularization and especially the choice of the regularization parameter. Compu-
tational imaging in two and, in particular, three dimensions involve the processing
of large amounts of data, and must be performed with algorithms suited for such
large-scale problems. Hence there is a growing interest in iterative algorithms that
only involve matrix-vector multiplications and thus avoid the high computational
complexity of classical factorization algorithms. Another advantage of the iterative
methods is that they only require the operation of the forward model on the itera-
tion vectors, and they are matrix-free in the sense that they only require access to
a computational module that produces the result of applying the forward operator
to a vector. Hence the forward operator is not restricted to be a (sparse) matrix
it can be a sophisticated model that involves, say, the solution of a partial differ-
ential equation. It is precisely these features and advantages of iterative methods
that make them well suited for designing modular regularization algorithms which,
in principle, can make use of any forward operator, as long as it is available as a
computational module.

Application of the level set method and AMG for complex conductivity can be
an interesting future study [59]. One needs to study further surface based (curve
based) regularization schemes when using the level set method. Application of
AMG in curl curl operator of magnetostatic and eddy current forward problem
will be a very helpful tool to speed up the forward solvers. Use of TV regularized
level set [17] is particulary an attractive method and could be used for real world
application. One could study the simultaneous reconstruction of permeability and
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complex conductivity using MIT data. Similar to the optical tomography (recov-
ering absorption and scattering coefficient) [3] some normalization is required to
stabilize the inverse problem here. Adaptive multi-frequency excitation could be
an interesting aspect in MIT, where sensors can be excited simultaneously but with
differen frequencies. These frequency can be chosen so that they create the best
distinguishability. Experimental validation of absolute value imaging can be an
interesting next step [60]

The exterior boundary movement is a major source of error in many EIT applica-
tions such as thorax imaging. Simultaneous reconstruction of boundary movement
and internal material distribution has been given in [62] and [35] using experimen-
tal data, which can reduce the artifact due to the surface movement. But in some
application deformation of the exterior boundary could be a source of more inde-
pendent data. When imaging a deformable media such as breast cancer monitoring,
the electrodes could be located adaptively and be allowed to move. In addition reg-
istration techniques are required to track the location of the potential tumor while
we deform the breast. Taking into account the mechanical properties of the object
(here breast) is required in order to register the images from each movement. By
relocating the electrodes (by deforming the media), one can generate multiple data
set as well as the optimum data. For such a goal in EIT, we need to develop moving
boundary forward solvers as well as tomographic software for moving objects. The
adaptive location of the sensors (electrodes) is a nonlinear optimization problem,
and far more challenging that adaptive excitation pattern.

This paper has focused on the development that are the bases for the modu-
lar imaging algorithms using the finite element method (FEM), which has specific
applications in electrical impedance tomography and magnetic induction tomogra-
phy. We suggest that by having modular inverse solvers we can choose between
reconstruction algorithms and regularization schemes. It is known that each re-
construction method is able to detect some information regarding the object, so it
could be an idea to have a main management software to make a decision on which
reconstruction algorithm to be selected. To make it clear, here is a simple example.
If we do not know if the material distribution is two phase or not, we may first use
a pixel based reconstruction to recover the material distribution. By analyzing the
information acquired from this step we may be able to deduce that the material
was two phase, now better information can be extracted by using a shape based
method.

This work is not a complete overview of all image reconstruction methods for
low frequency electromagnetic imaging. It only covers certain aspects of the com-
putational methods. There is still scop for further innovation and development in
this area. For the forward problem, we may have to use more complicated modeling
to account for more sources of the errors [77] or use more advanced approximation
error models to compensate for the simplified models [2]. For the inverse problem,
the mathematical modeling of the desired and meaningful solutions and modeling
of meaningful regularization terms will be very important. It seems that the com-
putational technology to play a key rule in further development of electrical and
electromagnetic tomography. As a concluding remark, I would like to mention that
the delay between an elegant algorithm developed by a mathematician and use of
the algorithm in experimental set ups is very high. This gap could be filled by
computational scientists and mathematical engineers.
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