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Abstract. In this paper, the time-dependent Maxwell’s equations used to modeling
wave propagation in dispersive lossy bi-isotropic media are investigated. Existence
and uniqueness of the modeling equations are proved. Two fully discrete finite ele-
ment schemes are proposed, and their practical implementation and stability are dis-
cussed.
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1 Introduction

The research on numerical analysis and modeling of electromagnetic wave propagation
in dispersive media (especially metamaterials) has been a subject of increasing interest
over the recent years (cf. [1,6,10–14,16,19–21] and references cited therein). In this paper,
we consider the wave propagation problem in dispersive lossy bi-isotropic (BI) media,
which are characterized by more complicated constitutive relations than those classical
dispersive media models such as Debye and Lorentz models [10]. In BI media, the mag-
netic and electric fields are coupled. Electromagnetic waves in such media have some
interesting characteristics such as optical rotatory dispersion [15].
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Though some FDTD schemes (cf. [7]) have been developed for solving BI media, to
our best knowledge, there is no rigorous mathematical analysis (such as the existence and
uniqueness) of this model. Furthermore, to overcome the disadvantage of FDTD schemes
for complex geometric problems, it is interesting to develop some finite element method
for modeling wave propagation in BI media. Our major goal of this paper is to initiate
the analysis of these new modeling equations and develop some efficient finite element
methods to solve them.

In this paper, we denote C (sometimes with a sub-index) a generic constant inde-
pendent of the mesh size h and the time step size ∆t. We also use some common nota-
tions [17]:

H(div;Ω)=
{

v∈ (L2(Ω))3 : ∇·v∈ (L2(Ω))3
}

,

H(curl;Ω)=
{

v∈ (L2(Ω))3 : ∇×v∈ (L2(Ω))3
}

,

H0(curl;Ω)=
{

v∈H(curl;Ω) : n×v=0 on ∂Ω
}

,

for any bounded Lipschitz polyhedral domain Ω in R3 with connected boundary ∂Ω.
Moreover, we let (Hα(Ω))3 be the standard Sobolev space equipped with norm ‖·‖α .
When α=0, we just denote ‖·‖0 for the (L2(Ω))3 norm.

The rest of the paper is organized as follows. In Section 2, we first present the time-
dependent governing equations for modeling wave propagation in BI media. Then we
prove the existence and uniqueness of the modeling equations. We also present a stability
result. In Section 3, we develop two fully-discrete finite element schemes for solving the
BI media model equations. Solvability, stability of these schemes are discussed. Finally,
we conclude the paper in Section 4.

2 The governing equations

The description of the dispersive lossy BI media is given by the constitutive relations [15]:

D=ǫ(ω)E+
√

ǫ0µ0(χ−iκ(ω))H , (2.1a)

B=µ(ω)H+
√

ǫ0µ0(χ+iκ(ω))E, (2.1b)

where E and H denote the electric field and magnetic field, D and B denote the elec-
tric and magnetic flux densities respectively, ǫ0 and µ0 are the vacuum permittivity and
permeability respectively, the number i =

√
−1, χ ≥ 0 is the nonreciprocity parameter,

and κ(ω) is the chirality parameter. Furthermore, the permittivity ǫ(ω) and permeability
µ(ω) depend on the wave frequency ω. Experiments found that a Condon model can
be used to describe the frequency of the chirality κ(ω), and both ǫ(ω) and µ(ω) follow
a second-order Lorentz model. Since the resonance frequencies of κ(ω), ǫ(ω) and µ(ω)
are found to be very close in experiments, in practice they are assumed to be the same,
in which case, the frequency domain constitutive relations (2.1a)-(2.1b) are expressed as
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(we corrected some typos of (3)-(4) in [7]):

D=ǫ0ǫ∞E+
ǫ0(ǫs−ǫ∞)ω2

0

ω2
0−ω2+i2ω0ξω

E+
χ

cv
H− i

cv

ωτω2
0

ω2
0−ω2+i2ω0ξω

H, (2.2a)

B=µ0µ∞H+
µ0(µs−µ∞)ω2

0

ω2
0−ω2+i2ω0ξω

H+
χ

cv
E+

i

cv

ωτω2
0

ω2
0−ω2+i2ω0ξω

E, (2.2b)

where cv=1/
√

ǫ0µ0 represents the light speed in vacuum, ξ∈ [0,1) is the loss parameter,
ǫs and ǫ∞ are the permittivities at zero and infinity frequencies, respectively, µs and µ∞

are the permeabilities at zero and infinity frequencies, respectively, and τ > 0 is a time
constant.

Using the following rules

iω→ ∂

∂t
, ω2→− ∂2

∂t2
,

the constitutive equations (2.2a)-(2.2b) can be written in time domain as

∂2
D

∂t2
+2ω0ξ

∂D

∂t
+ω2

0D=ǫ0ǫ∞

∂2
E

∂t2
+2ǫ0ǫ∞ω0ξ

∂E

∂t
+ǫ0ǫsω

2
0E

+
χ

cv

(∂2
H

∂t2
+2ω0ξ

∂H

∂t
+ω2

0H

)

− τ

cv
ω2

0

∂H

∂t
, (2.3a)

∂2
B

∂t2
+2ω0ξ

∂B

∂t
+ω2

0B=µ0µ∞

∂2
H

∂t2
+2µ0µ∞ω0ξ

∂H

∂t
+µ0µsω

2
0H

+
χ

cv

(∂2
E

∂t2
+2ω0ξ

∂E

∂t
+ω2

0E

)

+
τ

cv
ω2

0

∂E

∂t
. (2.3b)

To make the problem complete, (2.3a)-(2.3b) need to be coupled with the Ampere’s
law and Faraday’s law written as follows:

∂D

∂t
=∇×H, (2.4a)

∂B

∂t
=−∇×E. (2.4b)

Furthermore, we assume that the governing equations (2.2a)-(2.3b) are subject to the per-
fectly conducting (PEC) boundary condition

n×E=0 on ∂Ω, (2.5)

and initial conditions

E(x,0)=E0(x), H(x,0)=H0(x), D(x,0)=D0(x), B(x,0)=B0(x), (2.6a)

Et(x,0)=E1(x), H t(x,0)=H1(x), Dt(x,0)=D1(x), Bt(x,0)=B1(x), (2.6b)
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where n is the unit outward normal to ∂Ω, and Ei, H i, Bi and Di, i=0,1, are some given
functions.

In the rest of this section, we shall show that the problem (2.3a)-(2.6b) is well-posed.
For a function u(t) defined for t ≥ 0, let us denote its Laplace transform by û(s) =

L(u)=
∫

∞

0 e−stu(t)dt. Taking the Laplace transform of (2.3a)-(2.4b), we have

(i) s2
D̂+2ω0ξsD̂+ω2

0D̂=ǫ0ǫ∞s2
Ê+2ǫ0ǫ∞ω0ξsÊ+ǫ0ǫsω

2
0Ê

+
χ

cv
(s2

Ĥ+2ω0ξsĤ+ω2
0Ĥ)− τ

cv
ω2

0sĤ+ F̃0(s), (2.7a)

(ii) s2
B̂+2ω0ξsB̂+ω2

0B̂=µ0µ∞s2
Ĥ+2µ0µ∞ω0ξsĤ+µ0µsω

2
0Ĥ

+
χ

cv
(s2

Ê+2ω0ξsÊ+ω2
0Ê)+

τ

cv
ω2

0sÊ+G̃0(s), (2.7b)

(iii) sD̂−D0=∇×Ĥ, (2.7c)

(iv) sB̂−B0=−∇× Ê, (2.7d)

where we have absorbed all related initial conditions into F̃0(s) and G̃0(s), i.e.,

F̃0(s)= sD0+D1+2ω0ξD0−ǫ0ǫ∞(sE0−E1)−2ǫ0ǫ∞ω0ξE0

− χ

cv
(sH0+H1+2ω0ξH0)+

τω2
0

cv
H0,

G̃0(s)= sB0+B1+2ω0ξB0−µ0µ∞(sH0+H1)−2µ0µ∞ω0ξH0

− χ

cv
(sE0+E1+2ω0ξE0)−

τω2
0

cv
E0.

Multiplying (2.7a) and (2.7b) by s, and using (2.7c) and (2.7d) respectively, we obtain

−p(s)∇× Ê=q(s)Ĥ+
( χ

cv
sp(s)+

τ

cv
ω2

0s2
)

Ê+G0(s), (2.8a)

p(s)∇×Ĥ = r(s)Ê+
( χ

cv
sp(s)− τ

cv
ω2

0s2
)

Ĥ+F0(s), (2.8b)

where we denote

p(s)= s2+2ω0ξs+ω2
0 , (2.9a)

q(s)=(µ0µ∞s2+2µ0µ∞ω0ξs+µ0µsω
2
0)s, (2.9b)

r(s)=(ǫ0ǫ∞s2+2ǫ0ǫ∞ω0ξs+ǫ0ǫsω
2
0)s, (2.9c)

G0(s)= sG̃0(s)−p(s)B0, (2.9d)

F0(s)= sF̃0(s)−p(s)D0. (2.9e)

Multiplying (2.8b) by q(s) and using (2.8a) to eliminate Ĥ , we have

r(s)q(s)Ê+p(s)∇×
[

p(s)∇× Ê+
( χ

cv
sp(s)+

τ

cv
ω2

0s2
)

Ê+G0(s)
]

−
( χ

cv
sp(s)− τ

cv
ω2

0s2
)[

p(s)∇× Ê+
( χ

cv
sp(s)+

τ

cv
ω2

0s2
)

Ê+G0(s)
]

+q(s)F0(s)=0,
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which can be rewritten as

p2(s)∇×∇× Ê+2
τ

cv
ω2

0s2 p(s)∇× Ê+
[( τ

cv
ω2

0s2
)2

−
( χ

cv
sp(s)

)2
+r(s)q(s)

]

Ê

=
( χ

cv
sp(s)− τ

cv
ω2

0s2
)

G0(s)−q(s)F0(s)−p(s)∇×G0(s)≡FG(s). (2.10)

A weak formulation of (2.10) can be formed as: Find Ê∈H0(curl;Ω) such that

A(Ê,u)=(FG(s),u), ∀u∈H0(curl;Ω), (2.11)

where the bilinear form A(·,·) is given by

A(Ê,u)=p2(s)(∇× Ê,∇×u)+2
τ

cv
ω2

0s2 p(s)(∇× Ê,u)

+
[( τ

cv
ω2

0s2
)2

−
( χ

cv
sp(s)

)2
+r(s)q(s)

]

(Ê,u). (2.12)

Theorem 2.1. Under the conditions

√
µ∞ǫ∞ ≥χ, ǫs ≥ǫ∞, µs ≥µ∞, (2.13)

where equal signs cannot be true at the same time, there exists a unique solution Ê∈H0(curl;Ω)
for the problem (2.11).

Proof. First, it is easy to see that A(Ê,u) is bounded in H0(curl;Ω) norm, i.e.,

A(Ê,u)≤C‖Ê‖
H0(curl;Ω)‖u‖

H0(curl;Ω). (2.14)

To prove the existence and uniqueness, we shall further confirm the coercivity of the
bilinear form A(·,·). Note that q(s) and r(s) defined in (2.9b) and (2.9c) can be written as

q(s)=µ0µ∞sp(s)+µ0(µs−µ∞)ω
2
0s

and
r(s)=ǫ0ǫ∞sp(s)+ǫ0(ǫs−ǫ∞)ω

2
0s,

from which we obtain

q(s)r(s)=µ0ǫ0µ∞ǫ∞(sp(s))2+µ0ǫ0ω2
0s2 p(s)[µ∞(ǫs−ǫ∞)+ǫ∞(µs−µ∞)]

+µ0ǫ0(ǫs−ǫ∞)(µs−µ∞)ω
4
0s2.

Hence we have
( τ

cv
ω2

0s2
)2

−
( χ

cv
sp(s)

)2
+r(s)q(s)=

( τ

cv
ω2

0s2
)2

+µ0ǫ0(µ∞ǫ∞−χ2)(sp(s))2

+µ0ǫ0ω2
0s2 p(s)[µ∞(ǫs−ǫ∞)+ǫ∞(µs−µ∞)]

+µ0ǫ0(ǫs−ǫ∞)(µs−µ∞)ω
4
0s2. (2.15)
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On the other hand, by the arithmetic-geometric mean inequality, we have

2
τ

cv
ω2

0s2 p(s)(∇× Ê,Ê)≥−δp2(s)‖∇× Ê‖2
0−

1

δ

( τ

cv
ω2

0s2
)2
‖Ê‖2

0, (2.16)

where the arbitrary constant δ>0.
Using (2.15) and (2.16), and the property p(s)> s2, we have

A(Ê,Ê)≥(1−δ)p2(s)‖∇× Ê‖2
0+

(

1+ Ind− 1

δ

)

ǫ0µ0(τω0)
2ω2

0s4‖Ê‖2
0

+[µ0ǫ0(µ∞ǫ∞−χ2)(sp(s))2+µ0ǫ0(ǫs−ǫ∞)(µs−µ∞)ω
4
0s2]‖Ê‖2

0, (2.17)

where we denote Ind=[µ∞(ǫs−ǫ∞)+ǫ∞(µs−µ∞)]/(τω0)2.
From (2.13) and (2.17), we can see that Ind> 0. Hence choosing 1> δ ≥ 1/(1+ Ind)

guarantees that
A(Ê,Ê)≥C‖Ê‖2

H0(curl;Ω)
,

which, along with the boundness (2.14), guarantees the existence and uniqueness of a
solution Ê∈H0(curl;Ω) by the Lax-Milgram lemma.

The existence and uniqueness of a solution Ĥ is implied from (2.8a). From (2.7c) and
(2.7d) and the existence of solutions Ĥ and Ê, we see that solutions D̂ and B̂ exist and
are unique. The inverse Laplace transforms of functions Ĥ,Ê,D̂ and B̂ are the solutions
of the original time-dependent problem (2.3a)-(2.6b).

Remark 2.1. In [7], two examples of BI media are considered. The first one chooses the
parameters

µs =µ∞ =1, ǫs =6, ǫ∞ =4, τ=20ps, ω0=4πGHz, ξ=0, χ=0,

which satisfy the assumption (2.13). In this case, Ind≈31.66.
The second example chooses the parameters

µs =1.5, µ∞ =1, ǫs =6, ǫ∞ =4, τ=15ps, ω0=6πGHz, ξ=0.2, χ=0.1,

which also satisfy the assumption (2.13). In this case, Ind≈50.04.

By the ordinary differential equation theory, we can solve (2.3a) for D, and (2.3b) for
B analytically.

Lemma 2.1. The solution of (2.3a) can be written as

D(t)= e−δt(C1cosαt+C2sinαt)+Dp(t), (2.18)

where the particular solution (cf. [10, 12])

Dp(t)=
∫ t

0
g(t−s)

[

ǫ0ǫ∞Ett+2ǫ0ǫ∞ω0ξEt+ǫ0ǫsω2
0E

+
χ

cv
(H tt+2ω0ξH t+ω2

0H)− τω2
0

cv
H t

]

ds. (2.19)
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Here the kernel g(t)=α−1e−δt sinαt, and the parameters are

δ=ω0ξ, α=
√

ω2
0−δ2=ω0

√

1−ξ2, C1=D(x,0), C2=(Dt(x,0)+δC1)/α.

Similarly, the solution of (2.3b) can be written as

B(t)= e−δt(C̃1cosαt+C̃2sinαt)+Bp(t), (2.20)

where the particular solution

Bp(t)=
∫ t

0
g(t−s)

[

µ0µ∞H tt+2µ0µ∞ω0ξH t+µ0µsω
2
0H

+
χ

cv
(Ett+2ω0ξEt+ω2

0E)+
τω2

0

cv
Et

]

ds. (2.21)

Here the kernel g(t) has the same form as that for Dp, and the parameters are

C̃1=B(x,0), C̃2=(Bt(x,0)+δC̃1)/α.

Finally, for the problem (2.3a)-(2.6b) we have the following stability.

Theorem 2.2. The solution (E,H,D,B) of (2.3a)-(2.6b) satisfies the following stability: for any
t∈ [0,T],

(‖E‖2
0+‖Et‖2

0+‖H‖2
0+‖H t‖2

0+‖B‖2
0+‖Bt‖2

0+‖D‖2
0+‖Dt‖2

0)(t)≤C, (2.22)

where the constant C>0 depends on T and the initial condition functions

‖E(0)‖0, ‖H(0)‖0, ‖B(0)‖0, ‖D(0)‖0, ‖Et(0)‖0, ‖H t(0)‖0, ‖Bt(0)‖0, ‖Dt(0)‖0. (2.23)

Proof. Multiplying (2.3a) by Et and integrating the resultant over Ω, we have

1

2
ǫ0ǫ∞

d

dt
‖Et‖2

0+2ǫ0ǫ∞ω0ξ‖Et‖2
0+

1

2
ǫ0ǫsω2

0

d

dt
‖E‖2

0

+
χ

cv
(H tt+2ω0ξH t+ω2

0 H,Et)−
τω2

0

cv
(H t,Et)−(Dtt+2ω0ξDt+ω2

0D,Et)=0. (2.24)

Similarly, multiplying (2.3b) by H t and integrating the resultant over Ω, we have

1

2
µ0µ∞

d

dt
‖H t‖2

0+2µ0µ∞ω0ξ‖H t‖2
0+

1

2
µ0µsω

2
0

d

dt
‖H‖2

0

+
χ

cv
(Ett+2ω0ξEt+ω2

0E,H t)+
τω2

0

cv
(Et,H t)−(Btt+2ω0ξBt+ω2

0B,H t)=0. (2.25)
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Summing up (2.24) and (2.25), we obtain

1

2

d

dt

[

ǫ0ǫ∞‖Et‖2
0+ǫ0ǫsω

2
0‖E‖2

0+µ0µ∞‖H t‖2
0+µ0µsω

2
0‖H‖2

0

]

+
χ

cv

[

(H tt+2ω0ξH t+ω2
0H,Et)+(Ett+2ω0ξEt+ω2

0E,H t)
]

−(Dtt+2ω0ξDt+ω2
0D,Et)−(Btt+2ω0ξBt+ω2

0B,H t)≤0. (2.26)

Using (2.4a), (2.4b), and the PEC boundary condition (2.5), we have

(Dtt,Et)+(Btt,H t)=(∇×H t,Et)−(∇×Et,H t)=0. (2.27)

Integrating (2.26) from 0 to t, and using (2.27) and the following identity

∫ t

0

[

(H tt,Et)+(Ett,H t)
]

dt=(H t,Et)(t)−(H t,Et)(0), (2.28)

we have

1

2

[

ǫ0ǫ∞‖Et‖2
0+ǫ0ǫsω

2
0‖E‖2

0+µ0µ∞‖H t‖2
0+µ0µsω

2
0‖H‖2

0

]

(t)

≤1

2

[

ǫ0ǫ∞‖Et‖2
0+ǫ0ǫsω

2
0‖E‖2

0+µ0µ∞‖H t‖2
0+µ0µsω

2
0‖H‖2

0

]

(0)

− χ

cv

[

(H t,Et)(t)−(H t,Et)(0)
]

−
∫ t

0

χ

cv

[

(2ω0ξH t+ω2
0H,Et)+(2ω0ξEt+ω2

0E,H t)
]

dt

+
∫ t

0

[

(2ω0ξDt+ω2
0D,Et)+(2ω0ξBt+ω2

0B,H t)
]

dt. (2.29)

It is easy to see that all the right hand side terms can be bounded by the left hand side
terms except those involving D and B, which can be bounded by Lemma 2.1 as shown
below.

From (2.18) and (2.19), we can see that ‖D(t)‖0 can be bounded by a function of

‖Et(t)‖0, ‖E(t)‖0, ‖H t(t)‖0, ‖H(t)‖0, ‖D(0)‖0, ‖Dt(0)‖0, ‖Et(0)‖0, ‖H t(0)‖0,

where we used integration by parts for terms Ett and H tt in (2.19).

Similarly, from (2.20) and (2.21), we can see that ‖B(t)‖0 can be bounded by a function
of

‖Et(t)‖0, ‖E(t)‖0, ‖H t(t)‖0, ‖H(t)‖0, ‖B(0)‖0, ‖Bt(0)‖0, ‖Et(0)‖0, ‖H t(0)‖0.

Differentiating (2.18), we obtain

Dt(t)= e−δt[(C2α−C1δ)cosαt−(C2δ+C1α)sinαt)]+D
′
p(t), (2.30)
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where the derivative

D
′
p(t)=

∫ t

0
gt(t−s)

[

ǫ0ǫ∞Ett+2ǫ0ǫ∞ω0ξEt+ǫ0ǫsω
2
0E

+
χ

cv
(H tt+2ω0ξH t+ω2

0H)− τω2
0

cv
H t

]

ds. (2.31)

Here kernel

gt(t)=
ω0

α
e−δt cos(θ+αt), where θ=cos−1

( α√
α2+δ2

)

=cos−1
√

1−ξ2.

From (2.30) and (2.31), we can see that ‖Dt(t)‖0 can be bounded by a function of

‖Et(t)‖0, ‖E(t)‖0, ‖H t(t)‖0, ‖H(t)‖0, ‖D(0)‖0, ‖Dt(0)‖0, ‖Et(0)‖0, ‖H t(0)‖0.

By the same arguments, we can prove that ‖Bt(t)‖0 can be bounded by a function of

‖Et(t)‖0, ‖E(t)‖0, ‖H t(t)‖0, ‖H(t)‖0, ‖B(0)‖0, ‖Bt(0)‖0, ‖Et(0)‖0, ‖H t(0)‖0.

Substituting estimates of ‖D(t)‖0, ‖B(t)‖0, ‖Dt(t)‖0, ‖Bt(t)‖0 into (2.29), and using the
Gronwall inequality [5], we obtain

[

ǫ0ǫ∞‖Et‖2
0+ǫ0ǫsω

2
0‖E‖2

0+µ0µ∞‖H t‖2
0+µ0µsω

2
0‖H‖2

0

]

(t)≤C, ∀t∈ (0,T], (2.32)

where the constant C>0 depends on T and initial condition functions (2.23).
Eq. (2.32), along with the fact that ‖B(t)‖0, ‖Bt(t)‖0, ‖D(t)‖0 and ‖Dt(t)‖0 are bounded

by those left hand side terms of (2.32) and functions (2.23), concludes the proof.

3 Design of some fully-discrete finite element schemes

To design a finite element method to solve (2.3a)-(2.6b), we partition Ω by a family of
regular cubic or tetrahedral meshes Th with maximum mesh size h. Depending upon
the regularity of the solution, we can use a proper order Raviart-Thomas-Nédélec (RTN)
mixed finite element space (cf. [17, 18]): For any l ≥ 1, on a tetrahedral element, we can
choose

Uh=
{

uh ∈H(div;Ω) : uh|K ∈ (pl−1)
3⊕ p̃l−1x, ∀K∈Th

}

, (3.1a)

V h =
{

vh∈H(curl;Ω) : vh|K ∈ (pl−1)
3⊕Sl, ∀K∈Th

}

, (3.1b)

where the subspace Sl ={~p∈ ( p̃l)
3 : x·~p=0}; while on a cubic element we choose

Uh=
{

uh ∈H(div;Ω) : uh|K ∈Ql,l−1,l−1×Ql−1,l,l−1×Ql−1,l−1,l, ∀K∈Th
}

, (3.2a)

V h=
{

vh ∈H(curl;Ω) : vh|K ∈Ql−1,l,l×Ql,l−1,l×Ql,l,l−1, ∀K∈Th
}

. (3.2b)
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Here p̃k denotes the space of homogeneous polynomials of degree k, and Qi,j,k denotes
the space of polynomials whose degrees are less than or equal to i, j,k in variables x,y,z,
respectively. To accommodate the boundary condition (2.5), we define a subspace of V h:

V
0
h =

{

vh∈V h : n×vh=0
}

. (3.3)

Finally, we divide the time interval I = [0,T] by N+1 uniform points ti = i∆t, where
∆t=T/N, and i=0,··· ,N. Furthermore, we denote uk =u(·,tk) and introduce the differ-
ence operators:

δ2
τuk =(uk+1−2uk+uk−1)/(∆t)2, ūk =

1

2
(uk+1+uk−1), δ2τuk=(uk+1−uk−1)/(2∆t).

With the above preparations, we can now develop a fully discrete finite element
scheme for solving (2.3a)-(2.6b): Given initial approximations

E
0
h, H

0
h, B

0
h, D

0
h, E

1
h, H

1
h, B

1
h, D

1
h, (3.4)

at time levels t0 and t1, for any n≥1 find E
n+1
h ∈V0

h , D
n+1
h ∈Vh, H

n+1
h ,Bn+1

h ∈Uh such that

(i) (D
n+1
h −D

n−1
h ,φh)−2∆t(H

n
h ,∇×φh)=0, ∀φh∈V0

h , (3.5a)

(ii) (B
n+1
h −B

n−1
h ,ψh)+2∆t(∇×E

n
h ,ψh)=0, ∀ψh∈Uh, (3.5b)

(iii) δ2
τD

n
h+2ω0ξδ2τ D

n
h+ω2

0D̄
n
=ǫ0ǫ∞δ2

τE
n
h+2ǫ0ǫ∞ω0ξδ2τ E

n
h+ǫ0ǫsω

2
0Ē

n

+
χ

cv
(δ2

τ H
n
h+2ω0ξδ2τ H

n
h+ω2

0 H̄
n)− τω2

0

cv
δ2τ H

n
h , (3.5c)

(iv) δ2
τB

n
h+2ω0ξδ2τ B

n
h+ω2

0B̄
n
=µ0µ∞δ2

τ H
n
h+2µ0µ∞ω0ξδ2τ H

n
h+µ0µsω

2
0H̄

n

+
χ

cv
(δ2

τE
n
h+2ω0ξδ2τE

n
h+ω2

0Ē
n)+

τω2
0

cv
δ2τE

n
h . (3.5d)

Note that the scheme (3.5a)-(3.5d) is explicit in that at each time step we can first solve
(3.5a)-(3.5b) for D

n+1
h and B

n+1
h , independently; then we solve (3.5c)-(3.5d) as a system for

E
n+1
h and H

n+1
h .

Theorem 3.1. Under the assumption (2.13), the system (3.5c)-(3.5d) is solvable for E
n+1
h and

H
n+1
h .

Proof. Note that the coefficient matrix for (En+1
h ,Hn+1

h )′ can be written as:

A=











ǫ0ǫ∞

(∆t)2
+

ǫ0ǫ∞ω0ξ

∆t
+

ǫ0ǫsω2
0

2

χ

cv

( 1

(∆t)2
+

ω0ξ

∆t
+

ω2
0

2

)

− τω2
0

2cv∆t

χ

cv

( 1

(∆t)2
+

ω0ξ

∆t
+

ω2
0

2

)

+
τω2

0

2cv∆t

µ0µ∞

(∆t)2
+

µ0µ∞ω0ξ

∆t
+

µ0µsω2
0

2











,
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whose determinant equals

|A|=ǫ0µ0(ǫ∞µ∞−χ2) f 2(∆t)+
ǫ0µ0ω2

0

2
f (∆t)

[

ǫ∞(µs−µ∞)+µ∞(ǫs−ǫ∞)
]

+
ǫ0µ0ω4

0(ǫs−ǫ∞)(µs−µ∞)

4
+
( τω2

0

2cv∆t

)2
, (3.6)

where we denote f (∆t)=1/(∆t)2+ω0ξ/∆t+ω2
0/2. It is easy to see that |A|>0 under the

assumption (2.13). Hence the matrix A is invertible, which concludes the proof.

Similarly, we can develop another fully discrete finite element scheme for solving
(2.3a)-(2.4b): Given initial approximations (3.4), for any n≥ 1 find E

n+1
h ∈V0

h , D
n+1
h ∈Vh,

H
n+1
h , B

n+1
h ∈Uh such that

(i) (D
n+1
h −D

n−1
h ,φh)−2∆t(H̄

n
h ,∇×φh)=0, ∀φh∈V0

h , (3.7a)

(ii) (B
n+1
h −B

n−1
h ,ψh)+2∆t(∇× Ē

n
h ,ψh)=0, ∀ψh ∈Uh, (3.7b)

(iii) δ2
τD

n
h+2ω0ξδ2τ D

n
h+ω2

0D
n=ǫ0ǫ∞δ2

τE
n
h+2ǫ0ǫ∞ω0ξδ2τ E

n
h+ǫ0ǫsω

2
0E

n

+
χ

cv
(δ2

τ H
n
h+2ω0ξδ2τ H

n
h+ω2

0H
n)− τω2

0

cv
δ2τ H

n
h , (3.7c)

(iv) δ2
τB

n
h+2ω0ξδ2τ B

n
h+ω2

0B
n =µ0µ∞δ2

τ H
n
h+2µ0µ∞ω0ξδ2τ H

n
h+µ0µsω

2
0H

n

+
χ

cv
(δ2

τE
n
h+2ω0ξδ2τE

n
h+ω2

0E
n)+

τω2
0

cv
δ2τE

n
h . (3.7d)

First, we like to remark that this scheme is different from the scheme (3.5a)-(3.5d) in
that this scheme is fully coupled for all unknowns E

n+1
h , H

n+1
h , B

n+1
h and D

n+1
h . This fact

makes implementing this scheme quite challenging, but we shall show below that the
unknowns can be separated after some calculations.

Multiplying (3.7a) by 1/(∆t)2+ω0ξ/∆t and using (3.7c) to eliminate D
n+1
h , we obtain

( ǫ0ǫ∞

(∆t)2
+

ǫ0ǫ∞ω0ξ

∆t

)

(En+1
h ,φh)−

( 1

∆t
+ω0ξ

)

(H
n+1
h ,∇×φh)

+
[ χ

cv

( 1

(∆t)2
+

ω0ξ

∆t

)

− τω2
0

2cv∆t

]

(H
n+1
h ,φh)

=(R1,φh)+
( 1

∆t
+ω0ξ

)

(H
n−1
h ,∇×φh), (3.8)

where R1 is given as

R1=−
(

ǫ0ǫsω2
0−

2ǫ0ǫ∞

(∆t)2

)

E
n
h−

( ǫ0ǫ∞

(∆t)2
− ǫ0ǫ∞ω0ξ

∆t

)

E
n−1
h − χ

cv

(

ω2
0−

2

(∆t)2

)

H
n
h

−
[ χ

cv

( 1

(∆t)2
−ω0ξ

∆t

)

+
τω2

0

2cv∆t

]

H
n−1
h +

2

(∆t)2
D

n−1
h −

( 2

(∆t)2
−ω2

0

)

D
n
h . (3.9)
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Similarly, using (3.7b) and (3.7d), we can obtain

(µ0µ∞

(∆t)2
+

µ0µ∞ω0ξ

∆t

)

(H
n+1
h ,ψh)+

( 1

∆t
+ω0ξ

)

(∇×E
n+1
h ,ψh)

+
[ χ

cv

( 1

(∆t)2
+

ω0ξ

∆t

)

+
τω2

0

2cv∆t

]

(En+1
h ,ψh)

=(R2,ψh)−
( 1

∆t
+ω0ξ

)

(∇×E
n−1
h ,ψh), (3.10)

where R2 is given as

R2=−
(

µ0µsω
2
0−

2µ0µ∞

(∆t)2

)

H
n
h−

(µ0µ∞

(∆t)2
− µ0µ∞ω0ξ

∆t

)

H
n−1
h − χ

cv

(

ω2
0−

2

(∆t)2

)

E
n
h

−
[ χ

cv

( 1

(∆t)2
−ω0ξ

∆t

)

− τω2
0

2cv∆t

]

E
n−1
h +

2

(∆t)2
B

n−1
h −

( 2

(∆t)2
−ω2

0

)

B
n
h . (3.11)

Hence, at each time step, the scheme (3.7a)-(3.7d) can be implemented as follows: we
first solve (3.8) and (3.10) as a system for E

n+1
h and H

n+1
h ; then we solve (3.7a) and (3.7b)

independently for D
n+1
h and B

n+1
h . Below we assure that the system formed by (3.8) and

(3.10) is indeed solvable.

Theorem 3.2. Under the assumption χ <
√

ǫ∞µ∞, the system (3.8) and (3.10) is solvable for

E
n+1
h and H

n+1
h .

Proof. To prove the solvability of the system (3.8) and (3.10), we assume that their right
hand sides are zero. Choosing φ=E

n+1
h and ψ= H

n+1
h in (3.8) and (3.10) and summing

up the resultants, we have

( 1

(∆t)2
+

ω0ξ

∆t

)[

ǫ0ǫ∞‖E
n+1
h ‖2

0+µ0µ∞‖H
n+1
h ‖2

0+2
χ

cv
(En+1

h ,Hn+1
h )

]

=0,

which is equivalent to

ǫ0ǫ∞‖E
n+1
h ‖2

0+µ0µ∞‖H
n+1
h ‖2

0+2
χ

cv
(En+1

h ,Hn+1
h )=0. (3.12)

From (3.12), we easily see that

(En+1
h ,Hn+1

h )≤0. (3.13)

On the other hand, we can rewrite (3.12) as

‖√ǫ0ǫ∞E
n+1
h +

√
µ0µ∞H

n+1
h ‖2=2

√
ǫ0µ0(

√
ǫ∞µ∞−χ)(En+1

h ,Hn+1
h )≥0,

which, combining with (3.13), shows that (En+1
h ,Hn+1

h ) = 0. Hence by (3.12), we have

‖E
n+1
h ‖0=‖H

n+1
h ‖0=0, which concludes the solvability of the system (3.8) and (3.10).
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Finally, we want to show that the scheme (3.7a)-(3.7d) is stable.

Theorem 3.3. Let cinv>0 be the constant in the standard inverse estimate [17]

‖∇×uh‖0≤ cinvh−1‖uh‖0, ∀uh∈V h. (3.14)

Under the time step constraint
cinv∆t

h
=O(1), (3.15)

and the condition χ<
√

ǫ∞µ∞, the solution (En+1
h ,Hn+1

h ,Dn+1
h ,Bn+1

h ) of (3.7a)-(3.7d) satisfies
the following stability: for any n≥1,

‖E
n+1
h ‖2

0+‖H
n+1
h ‖2

0+‖D
n+1
h ‖2

0+‖B
n+1
h ‖2

0

≤C
[

‖E
n
h‖2

0+‖E
n−1
h ‖2

0+‖H
n
h‖2

0+‖H
n−1
h ‖2

0

+‖D
n
h‖2

0+‖D
n−1
h ‖2

0+‖B
n
h‖2

0+‖B
n−1
h ‖2

0

]

, (3.16)

where the constant C>0 is independent of h and ∆t.

Proof. Choosing φh=(∆t)2
E

n+1
h in (3.8), ψh=(∆t)2

H
n+1
h in (3.10), then adding the results

together, we obtain

(1+ω0ξ∆t)
[

ǫ0ǫ∞‖E
n+1
h ‖2

0+µ0µ∞‖H
n+1
h ‖2

0+2
χ

cv
(En+1

h ,Hn+1
h )

]

=(∆t)2(R1,En+1
h )+∆t(1+ω0ξ∆t)(H

n−1
h ,∇×E

n+1
h )+(∆t)2(R2,Hn+1

h )

−∆t(1+ω0ξ∆t)(∇×E
n−1
h ,Hn+1

h ). (3.17)

First, using the assumption χ<
√

ǫ∞µ∞, we have

2
χ

cv
(En+1

h ,Hn+1
h )>−2

√
ǫ0ǫ∞µ0µ∞|(En+1

h ,Hn+1
h )|

≥−ǫ0ǫ∞‖E
n+1
h ‖2

0−µ0µ∞‖H
n+1
h ‖2

0,

which makes the left hand side terms of (3.17) bounded below by

C(1+ω0ξ∆t)(ǫ0ǫ∞‖E
n+1
h ‖2

0+µ0µ∞‖H
n+1
h ‖2

0).

In the following, we just need to estimate those right hand terms of (3.17). Using
the Cauchy-Schwarz inequality, the inverse estimate (3.14), and the arithmetic-geometric
mean inequality, we have

∆t(1+ω0ξ∆t)(H
n−1
h ,∇×E

n+1
h )≤(1+ω0ξ∆t)∆t·cinvh−1‖H

n−1
h ‖0‖E

n+1
h ‖0

≤(1+ω0ξ∆t)
[

δ1‖E
n+1
h ‖2

0+
1

4δ1
·(cinv∆t/h)2‖H

n−1
h ‖2

0

]

.
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Similarly, we have

∆t(1+ω0ξ∆t)(∇×E
n−1
h ,Hn+1

h )≤ (1+ω0ξ∆t)
[

δ2‖H
n+1
h ‖2

0+
1

4δ2
·(cinv∆t/h)2‖E

n−1
h ‖2

0

]

.

By the definition of R1, we obtain

(∆t)2(R1,En+1
h )≤δ3‖E

n+1
h ‖2

0+
1

4δ3
‖(∆t)2R1‖2

0

≤δ3‖E
n+1
h ‖2

0+
1

4δ3

∥

∥

∥

∥

(2ǫ0ǫ∞−ǫ0ǫsω
2
0(∆t)2)En

h+ǫ0ǫ∞(ω0ξ∆t−1)En−1
h

+
χ

cv
(2−ω2

0(∆t)2)H
n
h−

[ χ

cv
(1−ω0ξ∆t)+

τω2
0

2cv
∆t

]

H
n−1
h

+2D
n−1
h −(2−ω2

0(∆t)2)D
n
h

∥

∥

∥

∥

2

0

≤δ3‖E
n+1
h ‖2

0+
C

4δ3

(

‖E
n
h‖2

0+‖E
n−1
h ‖2

0+‖H
n
h‖2

0+‖H
n−1
h ‖2

0+‖D
n−1
h ‖2

0+‖D
n
h‖2

0

)

.

Similarly, by the definition of R2, we can obtain

(∆t)2(R2,Hn+1
h )≤δ4‖H

n+1
h ‖2

0+
C

4δ4

(

‖H
n
h‖2

0+‖H
n−1
h ‖2

0+‖E
n
h‖2

0

+‖E
n−1
h ‖2

0+‖B
n−1
h ‖2

0+‖B
n
h‖2

0

)

.

Combining the above estimates and choosing δi small enough, we have

‖E
n+1
h ‖2

0+‖H
n+1
h ‖2

0≤C
(

‖H
n
h‖2

0+‖H
n−1
h ‖2

0+‖E
n
h‖2

0+‖E
n−1
h ‖2

0

+‖B
n−1
h ‖2

0+‖B
n
h‖2

0+‖D
n−1
h ‖2

0+‖D
n
h‖2

0

)

,

which, along with (3.7c) and (3.7d), completes the proof.

Optimal error estimates can be proved using ideas similar to our previous work
(cf. [10, 12]). Due to its lengthy and technicality, we skip the proof. Similar stability
and error estimates can be proved for the scheme (3.5a)-(3.5d).

4 Conclusions

In this paper, we carry out the existence and uniqueness study of time-dependent
Maxwell’s equations in dispersive lossy bi-isotropic media. Two fully discrete finite ele-
ment schemes are developed and analyzed. More advanced numerical methods such as
hp finite element methods [2,3], discontinuous Galerkin methods [8,9,11], and multiscale
finite element methods [4, 22] will be considered in the future.
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