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Abstract. New insights into our understanding of the semirelativistic excitation of
atomic hydrogen by electronic impact have been made possible by combining the use
of polarized electron beams and intense laser field. The paper reviews relativistic the-
oretical treatment in laser-assisted electron scattering with particular emphasis upon
spin effects. Different spin configurations for inelastic electron-atom collisions is also
discussed. The role of laser field in such collision is of major importance and reveals
new information on the dynamics of the collision process. The examined modern the-
oretical investigations of such relativistic laser-assisted collisions have shown that the
need for experimental data is of a paramount importance in order to asses the accuracy
of our calculations.

PACS: 34.80.Dp, 12.20.Ds
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1 Introduction

The spin is not only an indispensable ingredient in atomic physics but also responsible
for many phenomena observed in solid-state physics. In addition to the uses of polarized
electrons in studies of atomic physics, there have been numerous studies of polarized
electron scattering and polarized electron emission from ferromagnetic solids over the
past decade. In 1975, the purpose of the Spin-Polarized Electron Source was to describe
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how this effect, which had been discovered in spin-polarized photoemission experiments
by Pierce et al. at the ETH-Zurich [1], could be used to provide a compact spin-polarized
electron gun. Later on, an experimental work has been done to produce electron beams in
which the spin has a preferential orientation. They are called polarized electron beams [2]
in analogy to polarized light, in which the field vectors have a preferred orientation. Ex-
tensive theoretical works have been performed by introducing relativistic and spin effects
in the collision between incident particles and atoms [3-6]. There are many reasons for
the interest in polarized electrons. One important reason is that in physical experiments
one endeavors to define as exactly as possible the initial and/or final states of the systems
being considered.

Since the 1960s when lasers became a worldwide-used laboratory equipment and
also large polarization effects in low-energy electron scattering were ascertained, ex-
perimental and theoretical studies of laser-matter interaction have witnessed continuous
progress. By virtue of the increasing progress in the availability of more powerful and
tunable lasers, such processes are nowadays being observed in laboratories [7-10]. Most
experimental and theoretical studies of laser-assisted electron-atom collisions were re-
stricted to the nonrelativistic regime and low-frequency fields, where it has been already
recognized that, as a general consequence of the infrared divergence of QED, large num-
bers of photons can be exchanged between the field and the projectile-target system. An
extension of the first-Born nonrelativistic treatment [11] to the relativistic domain was
formally derived for unpolarized electrons [12]. There have been also theoretical investi-
gations of relativistic scattering in multimode fields [13].

In the present paper we have to extended our previous results [14] to the case of
laser assisted inelastic excitation 1s to 2s of the atomic hydrogen by polarized electrons.
Therefore, we have begun with the most basic results of our work using atomic units
(a.u) in which one has (h̄ = me = e = 1), where me is the electron mass at rest. We have
used the metric tensor gµν = diag(1,−1,−1,−1) and the Lorentz scalar product defined
by (a.b) = aµbµ. The organization of this paper is as follows: the presentation of the
necessary formalism of this work in Section 2, the result and discussion in Section 3 and
at last a brief conclusion in Section 4.

2 Theory

The transition matrix element corresponding to the laser assisted inelastic excitation of
atomic hydrogen by electronic impact from the initial state i to the final state f is given
by

S f i=−i
∫

dt 〈ψq f
(r1)φ f (r2)|Vd|ψqi

(r1)φi(r2)〉 (1)

where Vd=1/r12−Z/r1 is the interaction potential, r1 are the coordinates of the incident
and scattered electron, r2 the atomic electron coordinates, r12 = |r1−r2| and r1 = |r1|. Be-
fore we present the most interesting results of our investigation regarding laser-assisted
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inelastic excitation of atomic hydrogen by electronic impact, we sketch the principal steps
of our theoretical treatment. The solutions of the Dirac equation for an electron with four-
momentum pµ inside an electromagnetic plane wave are well known [15]. They read for
the case of circular polarization of the field propagating along the Oz direction

ψq(x)=

(
1+

k/A/

2c(kq)

)
u(p,s)√

2VQ0
exp

[
−i(qx)−i

∫ kx

0

(Ap)

c(kq)
dφ

]
, (2)

where u represents a free electron bispinor satisfying the Dirac equation without field
and which is normalized by uu = u†γ0u = 2c2. Here the Feynman slash notation is
used, and V is the normalization volume. The physical significance of qµ = (Q/c,q)
is the averaged four-momentum (dressed momentum) of the particle inside the laser
field having a vector potential Aµ =(0,a1cos(kx),a2 sin(kx),0) with wave four-vector kµ:
qµ = pµ−kµ[A2/2(kp)c2].

In inelastic scattering, it is not only the state of the electron that is changed, but also
the state of the atom. Before starting the calculations, we clarified the different configura-
tions appearing with the orientations of the electron’s spin polarizations. We have many
possible scattering scenarios

1 e(↑)+H(↑)(1s)−→ e(↑)+H(↑)(2s)

2 e(↓)+H(↑)(1s)−→ e(↑)+H(↑)(2s)

3 e(↑)+H(↑)(1s)−→ e(↓)+H(↑)(2s)

4 e(↑)+H(↓)(1s)−→ e(↓)+H(↓)(2s)

6 e(↓)+H(↓)(1s)−→ e(↑)+H(↓)(2s)

7 e(↓)+H(↓)(1s)−→ e(↓)+H(↓)(2s)
...

...

Here, the up and down arrows indicate the direction of the electron’s and atom’s spin
polarization relative to some fixed axis. During the interaction, the products of states

with spin non flip are the same ϕ
†(↑
2s )(r2)ϕ

(↑)
1s (r2) = ϕ

†(↓)
2s (r2)ϕ

(↓)
1s (r2) and the product of

states with spin flip gives zero

ϕ
†(↑)
2s (r2)ϕ

(↓)
1s (r2)=

(
2−r2, 0,

−i(4−r2)
4r2c z,

(4−r2)
4r2c (−y−ix)

)



0
1

i
2cr2

(x−iy)

− i
2cr2

z




1

4
√

2π
e−2r2

= ϕ
†(↓)
2s (r2)ϕ

(↑)
1s (r2)

=0 (3)

with ϕ2s(r2) and ϕ1s(r2) are the wave functions of atomic hydrogen corresponding to
2s and 1s states respectively [16]. In this case, the probability that the bound electron
changes the orientation of its spin in the transition from the initial state 1s to the final
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state 2s is zero. Thus, the number of realistic configurations reduces many more. We
review first the basics needed for the description of spin polarization. Free electrons with
four-momentum p and spin s are described by the free spinors u(p,s), the vector sµ is
defined by

sµ =
1

c

(
|p|, E

c
p̂

)
, (4)

(with p̂=p/|p| ) is a Lorentz vector in a frame in which the particle moves with momen-
tum p. One easily checks the normalization and the orthogonality conditions respectively

s.s= sµ.sµ =−1; p.s= pµ .sµ =0. (5)

In practical calculations of quantum electrodynamic (QED) processes, we become ac-
quainted with a technique of calculation which allows the simple treatment of compli-
cated expressions especially the calculation of traces of products of many γ matrices. It is
based on a projection procedure. The appropriate operators which achieve this are called
spin projection operators. In the relativistic case, it is given by

Σ̂(s)=
1

2
(1+γ5s/), (6)

with γ5= iγ0γ1γ2γ3=−iγ0γ1γ2γ3. This operator has the following properties

Σ̂(s)u(p,±s)=±u(p,s). (7)

One can also apply this formalism to helicity states where the spin points in the direction
of the momentum p

s′λ =λ
p

|p|=λ p̂, λ=±1. (8)

We can then define a four spin vector as

s
µ
λ =

λ

c

(
|p|, E

c
p̂

)
. (9)

The starting point of our calculation is the laser-assisted DCS for atomic hydrogen by an
electron with well defined momentum pi and well defined spin si. If the final spin s f is
also measured, the polarized DCS then reads as

dσ

dΩ f
(λi,λ f )=

+∞

∑
n=−∞

dσ(n)

dΩ f
(λi,λ f ), (10)

with

dσ(n)

dΩ f
(λi,λ f )=

|q f |
|qi|

1

(4πc2)2

∣∣u(p f ,s f )Γnu(pi,si)
∣∣2 |Hinel(∆s)|2

∣∣∣∣
Q f =Qi+nω+E1s1/2−E2s1/2

. (11)
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The quantity Hinel(∆s) which represents the integral part is given by [17]:

Hinel(∆)=− 4π√
2
(I1+ I2+ I3), (12)

with I1, I2 and I3 are as follow:

I1=
4

27c2

∫ +∞

0
dr1r1e−

3
2 r1 j0(∆r1)=

4

27c2

1

((3/2)2+∆2)
,

I2=
6

27
(

1

c2
−4)

∫ +∞

0
dr1r2

1e−
3
2 r1 j0(∆r1)=

2

27
(

1

c2
−4)

3

((3/2)2+∆2)2
,

I3=−4

9
(1+

1

8c2
)
∫ +∞

0
dr1r3

1e−
3
2 r1 j0(∆r1)=

8

9
(1+

1

8c2
)

∆2−27/4

((3/2)2+∆2)3
.

(13)

Using REDUCE [18], the spinorial part obtained after tedious calculations reads as

∣∣u(p f ,s f )Γnu(pi,si)
∣∣2 = Tr{Γn

(1+λiγ5s/i)

2
(cp/i+c2)Γn

(1+λ f γ5s/ f )

2
(cp/ f +c2)},

=
{

J2
n(z)A+

(
J2
n+1(z)+ J2

n−1(z)
)
B+

(
Jn+1(z)Jn−1(z)

)
C

+Jn(z)
(

Jn−1(z)+ Jn+1(z)
)
D
}

. (14)
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Figure 1: The different TDCSs (Unpolarized DCS, Spin polarized DCS with (λi =λ f =0)) scaled in 10−9 as a
function of the angle θ f . The relativistic parameter is γ= 1.0053, the electrical field strength is E= 0.05 a.u.
The geometric parameters are θi =45◦, φi =0◦, φ f =45◦ and the number of photons exchanged are n=±100.
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with Γn =γ0Γ†
nγ0 and Γn is explicitly detailed in our previous work [19].

Before presenting our analytical results, we would like to emphasize that the RE-
DUCE code we have written for obtaining the four coefficients A, B, C and D gave very
long analytical expressions which were difficult to incorporate in the corresponding latex
manuscript. Thus, we prefer to give below, for example, just the coefficient A multiplying
the Bessel function J2

n(z).

A=
1

(2(k.p f )2(k.pi)2c8)

[
2(k.p f )

2(k.pi)
2λ f λi|pf|2|pi|2c8cos(θi f )−2(k.p f )

2(k.pi)
2λ f λi|pf|2

×c6cos(θi f )E2
i +2(k.p f )

2(k.pi)
2λ f λi|pf||pi|c10−2(k.p f )

2(k.pi)
2λ f λi|pi|2c6cos(θi f )E2

f

+2(k.p f )
2(k.pi)

2λ f λic
8cos(θi f )E f Ei+2(k.p f )

2(k.pi)
2λ f λic

4cos(θi f )E2
f E2

i +2(k.p f )
2

×(k.pi)
2|pf||pi|c10cos(θi f )+2(k.p f )

2(k.pi)
2c12+2(k.p f )

2(k.pi)
2c8E f Ei+2(k.p f )

2(k.pi)

×λ f λi|a||pi|2c4cos(θi f )E f ω−2(k.p f )
2(k.pi)λ f λi|a|c2 cos(θi f )E f E2

i ω−2(k.p f )
2(k.pi)|a|c6

×Eiω+2(k.p f )(k.pi)
2λ f λi|a||pf|2c4 cos(θi f )Eiω−2(k.p f )(k.pi)

2λ f λi|a|c2cos(θi f )E2
f Eiω

−2(k.p f )(k.pi)
2|a|c6E f ω−2(k.p f )(k.pi)(k.s f )λ f λi|a||pf||pi|2c6cos(θi f )ω+2(k.p f )(k.pi)

×(k.s f )λ f λi|a||pf|c4cos(θi f )E2
i ω−2(k.p f )(k.pi)(k.s f )λ f λi|a||pi|c8ω−2(k.p f )(k.pi)(k.si)

×λ f λi|a||pf|2|pi|c6 cos(θi f )ω−2(k.p f )(k.pi)(k.si)λ f λi|a||pf|c8ω+2(k.p f )(k.pi)(k.si)λ f λi

×|a||pi|c4cos(θi f )E2
f ω−(k.p f )(k.pi)λ f λia

2|pf||pi|c2ωa2+k.p f )(k.pi)λ f λia
2 cos(θi f )E f Eiω

2

+2(k.p f )(k.pi)λ f λi|a||pf|2|pi|2c4cos(θi f )ω
2−2(k.p f )(k.pi)λ f λi|a||pf|2c2cos(θi f )E2

i ω2

+2(k.p f )(k.pi)λ f λi|a||pf||pi|c6ω2−2(k.p f )(k.pi)λ f λi|a||pi|2c2cos(θi f )E2
f ω2−2(k.p f )(k.pi)

×λ f λi|a|c4 cos(θi f )E f Eiω
2+2(k.p f )(k.pi)λ f λi|a|cos(θi f )E2

f E2
i ω2+(k.p f )(k.pi)a2c4ω2

−2(k.p f )(k.pi)|a||pf||pi|c6cos(θi f )ω
2−2(k.p f )(k.pi)|a|c8ω2+2(k.p f )(k.pi)|a|c4E f Eiω

2

+(k.p f )(k.si)λ f λia
2|pf|c2Eiω

2−(k.p f )(k.si)λ f λia
2|pi|c2 cos(θi f )E f ω2−(k.pi)(k.s f )λ f λi

×a2|pf|c2cos(θi f )Eiω
2+(k.pi)(k.s f )λ f λia

2|pi|c2E f ω2+(k.s f )(k.si)λ f λia
2|pf||pi|c4cos(θi f )

×ω2+(k.s f )(k.si)λ f λia
2c6ω2−(k.s f )(k.si)λ f λia

2c2E f Eiω
2
]

At this stage, note that if λiλ f = 1 during the scattering process, which physically
means that there is no helicity flip occurring but if λiλ f =−1, this means that a helicity
flip occurred. In the absence of the laser field (E=0 a.u), this coefficient reduces to

A=
1

c4

[
λ f λi|pf|2|pi|2c4cos(θi f )−λ f λi|pf|2c2cos(θi f )E

2
i +λ f λi|pf||pi|c6−λ f λi|pi|2c2

cos(θi f )E
2
f +λ f λic

4cos(θi f )E f Ei+λ f λicos(θi f )E
2
f E2

i +|pf||pi|c6cos(θi f )+c8+c4E f Ei

]

We note that without laser field, equations (10) and (11) reduce to the well-known po-
larized (first-Born) differential cross section of inelastic excitation of atomic hydrogen by
electronic impact.
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Figure 2: The different TDCSs (Unpolarized DCS, Spin flip DCS and Spin non flip DCS) scaled in 10−9 as a
function of the angle θ f . The relativistic parameter is γ= 1.0053, the electrical field strength is E= 0.05 a.u.
The geometric parameters are θi =45◦, φi =0◦, φ f =45◦ and the number of photons exchanged are n=±100.

3 Results and discussion

The spin-polarized differential cross sections dσ(n)/dΩ f are computed for the laser-assisted
semirelativistic excitation of atomic hydrogen by electronic impact, where n denotes the
number of photons absorbed or emitted. With a view to qualitative comparison with our
previous work [14], kinematics and the geometry parameters are chosen in accordance
with those used in Ref. [14]. The direction of the laser field is chosen parallel to Oz axis.

The corresponding spin unpolarized differential cross section dσ(n)/dΩ f results are also
presented for comparison.

In view of equation (14) if the mathematical condition (λi=λ f =0) is used, the spino-
rial part takes the following form

∣∣u(p f ,s f )Γnu(pi,si)
∣∣2= 1

4
Tr{Γn(cp/i+c2)Γn(cp/ f +c2)} (15)

In comparison with the unpolarized spinorial part

1

2 ∑
sis f

∣∣u(p f ,s f )Γnu(pi,si)
∣∣2=Tr{Γn(cp/i+c2)Γn(cp/ f +c2)} (16)

it may be noted from equations (15) and (16) that the spin unpolarized DCS is equal to
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Figure 3: The different TDCSs (Unpolarized DCS, Spin flip DCS and Spin non flip DCS) scaled in 10−13 as a
function of the relativistic parameter γ, the geometric parameters are θi =45◦, φi =0◦, φ f =45◦ and θ f =45◦.
The electrical field strength is E=0.5 a.u and the number of photons exchanged are n=±50.
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Figure 4: The different TDCSs (Unpolarized DCS, Spin flip DCS and Spin non flip DCS) scaled in 10−22 as a
function of the relativistic parameter γ, the geometric parameters are θi =45◦, φi =0◦, φ f =45◦ and θ f =45◦.
The electrical field strength is E=0.5 a.u and the number of photons exchanged are n=±50.

two times to the spin polarized DCS but only under the condition (λi =λ f =0)

dσ(n)

dΩ f
=2× dσ(n)

dΩ f
(λi =0,λ f =0), (17)

this equation represents our first consistency check. The numerical results are displayed
in Fig. 1, where we have plotted the two DCSs (2 times spin polarized DCS with (λi=λ f =
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Figure 5: The behavior of the degree of polarization P as a function of the angle θ f varying from −180◦ to

180◦ and the relativistic parameter γ scaled in 10−2 in absence of the laser field.

0) and spin unpolarized DCS ) by varying the angle θ f of the scattered electron. As it is
seen in this figure, we have indistinguishable curves. The most important result (second
consistency check) is the sum of polarized DCS (spin flip) and polarized DCS (spin non
flip) always gives the spin unpolarized DCS as this is shown in Fig. 2.

Fig. 3 shows the different spin polarized and unpolarized DCSs versus the relativistic
parameter γ. It is apparent from this figure that the kinetic energy of the incident electron
has an important effect in the spin orientation. For much of the high energy range, the
spin polarized DCS (spin non flip) is approximately equal to the spin unpolarized DCS
and the spin polarized DCS (spin flip) is equal to zero. The physical meaning of this
result is that : in high energy, the probability that the incident electron changes its spin is
zero.

In order to clarify the situation in which we have seemingly overlapping curves for
the three approaches in Fig. 3, we give in Fig. 4 the three approaches (spin polarized (spin
flip and spin non flip) and the spin polarized DCS). As it is noticed, the spin polarized
DCS (spin non flip) and the spin unpolarized DCS overlap but the spin polarized DCS
(spin flip) converges to zero.

Our main interest is the polarization degree of the electron after the event. This quan-
tity is defined as

P=

dσ(n)

dΩ f
(spin non flip)− dσ(n)

dΩ f
(spin flip)

dσ(n)

dΩ f
(spin non flip)+ dσ(n)

dΩ f
(spin flip)

, (18)

Fig. 5 shows the polarization degree, which is related by equation (18) to the spin
polarized differential cross section ratio. A tree dimensional plot of this quantity is given
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versus the angle θ f and the relativistic parameter γ. The first observation that can be
made concerns the shape of the polarization degree that is strongly changed with the rel-
ativistic parameter γ. An interesting behavior emerges with increasing γ, particularly for
θ f =0◦, where the polarization degree performs a plateau-like behavior. This emphasizes
the fact that the spin polarized DCS is very sensitive to the variation of the relativistic
parameter γ and this fact has to remain true for the case in the presence of the laser field.
This is consistent with the results shown in Figs. 3 and 4.

4 Conclusion

We have studied the laser assisted inelastic excitation of atomic hydrogen by polarized
electrons. We unraveled the influence of the orientation of the spin-polarization of the in-
coming and scattered electrons relative to the orientation of the spin-polarization of the
bound electron. These spin effects depend strongly on the energies of the incoming elec-
tron. It is observed that in the transition from 1s state to 2s state, the electron’s probability
for changing its spin is zero.
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