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Abstract. Through a simple, classical, energy conservation analysis, we propose a fi-
nite distance reinterpretation of the standard energy fraction definition used for the
single differential cross section (SDCS) for the electron-hydrogen S wave ionization
process. The energy modification is due to the fact that, at finite distances from the nu-
cleus, the continuum electrons have to overcome the remaining potential energy to be
completely free. As a consequence, the flux formula for extracting - at finite distances
- SDCS is also modified. Differently from the usual observations, the proposed cor-
rections yield finite and well behaved SDCS values also at the asymmetrical situation
where one of the continuum electrons carries all the energy while the other has zero
energy. Results of calculations performed at various impact energies, for both singlet
and triplet symmetry, are presented and compared favorably with benchmark theoret-
ical data. Although we do not know how, we believe that finite distance effects should
strongly affect the evaluation of the flux and consequently the SDCS, also in the full
electron-hydrogen case.

PACS: 34.8.Dp, 03.65.Nk, 34.10.+x
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1 Introduction

The solution of the quantum three-body Coulomb break-up problem is notoriously dif-
ficult both from a scattering theory and a numerical point of view. In the last decade,
several numerical approaches have been put forward [1–8] to deal, in particular, with
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the single ionization of atomic hydrogen by electron impact: remarkable good agree-
ment between several theoretical results, and with the available experimental data, was
observed.

The present work aims to investigate some issues related to the extraction of cross
sections from the asymptotic part of the (numerically evaluated) scattered wave function.
While numerical solutions of the Coulomb three-body problem are now available with
different methods, they are generally restricted to finite regions of the configurations
space; this is directly associated to the computer clusters size. The main difficulty is to
ensure that the appropriate asymptotic behavior is reached, and this requires very large
domains (several hundreds atomic units, see e.g. [7]). Besides, some difficulties occur
because all the channels are entangled when solving the Schrödinger equation. In the
particular case of the ionization of hydrogen by electron impact, the elastic, excitation,
and the ionization channels are all present and coupled. Investigating and comparing
extractions procedures is of interest also for more complicated break up problems, the
e-H case serving as benchmark test.

Different strategies have been used to extract ionization cross sections from the com-
puted solutions. One of them is based on the counting of particles by means of the quan-
tum mechanical probability current designed by Peterkop and his coworkers [9–11]. This
flux formula procedure has two main advantages. First of all, it is independent of the
description of the electrons in the final state which, for long range interactions, has a cer-
tain arbitrariness. Secondly, since the flux formula corresponds to counting particles, it
is adequate not only for infinite, but also, for finite domains (which is always the case for
numerical solutions). The usual technique to extract differential cross sections consists in
extrapolating to infinity the results obtained on a finite domain (the infinite domain corre-
sponds to the exact solution, which can be compared with the experimental macroscopic
domains). In spite of these advantages, the flux formula has been somehow abandoned
because it yielded a bad e-H SDCS behavior for extreme unequal energy sharing [10].
This unphysical behavior has been associated [11] to the fact that the ionization flux at
finite distances is contaminated by discrete –excitation– channels. Other procedures to
calculate cross sections use integral formulae; they do not present any difficulties asso-
ciated to the finite domains as they yield convergent results. For this reason, integral
formulae have been favoured [12], and the flux formula has been finally discarded. In
this contribution, we revisit the flux formula: in a specific, benchmark, case we will show
that it can be successfully used if an appropriate finite distances’ correction is taken into
account, and that the contribution of discrete two-body channels (which indeed should
be present and coupled to the ionization channel) is not, to our mind, responsible for the
failure of the procedure.

The Temkin-Poet (TP) model [14, 15] of e-H scattering provides an ideal test of any
method that aims to study the problem of ionization. This simplified S wave model, in
which angular momentum is neglected (the electron-electron repulsion is spherically av-
eraged), contains all the complexities of a three-body Coulomb problem, in particular the
long range nature of the Coulomb interactions. The TP model has been systematically
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used as a benchmark to test different numerical approaches (see [5, 7, 16–19] and refer-
ences therein). Here we will consider it to discuss the use of the flux formula to extract
the scattering information from the wave function evaluated on finite domains. For the
present purpose, the latter is calculated within a Sturmian approach (see [5, 16, 20] and
references therein).

There may be several reasons for what is seemingly a failure of the flux formula. One
reason may be associated to the usual geometrical/kinematical assumption that, at large
distances, the electrons’ coordinates and momenta are proportional to each other (free
electrons); this is actually never true for Coulomb potentials because of their long range.
Geometrical and flux directions considerations have been investigated in a separate con-
tribution [13]. Another possible reason is related to the way in which the energy sharing
is defined at finite distances (the particles kinetic energy differs whether considered at
finite or infinite distances).

In this contribution, we introduce, within the TP e-H problem, an alternative and
more realistic definition of the energy sharing value for finite domain calculations. It
takes into account the finite-distance effect that the particles have to overcome: the re-
maining Coulomb potential “tail”. Consequently, the energy fraction evaluated at finite
distances differs from that usually associated to the particles reaching freely the asymp-
totic region. The proposed classical energy correction modifies also the expression pro-
viding the SDCS. We will see that our simple reinterpretation (i) clearly shows that finite
distance effects are present; (ii) improves the overall results and (iii) removes the unphys-
ical behavior of the S wave e-H SDCS evaluated with the flux formula.

Our proposal of the energy sharing reinterpretation at finite distances is strictly ap-
plicable only to the S wave model. Indeed, in this case, the interaction potentials are
separable and it is possible to clearly attribute the energy to each electron: one electron is
fast and free, while the other one is slow and feels the nuclear potential. A similar screen-
ing approximation is used when SDCS are evaluated with integral formulae, where the
final state is considered to be a product of a Coulomb function for the slower electron
and a free spherical wave for the faster one [19]. While our classical, screening, approach
cannot be applied to the full physical e-H problem, finite distance effects are necessarily
present. Indeed, the inter electronic potential energy is again shared between the two
electrons but a simple classical energy analysis is obviously not feasible; knowing how
this occurs is equivalent to solving the quantum mechanical problem itself. In fact we be-
lieve that a solution-dependent definition of the energy sharing fraction is possible and
adequate to the rescue of Peterkop’s flux formula [13]. We do not aim to provide here a
prescription on how to do it, we believe that finite distance effects should strongly affect
the evaluation of the flux and consequently the SDCS, also in the real case, and should be
taken into account also in integral formulae. This contribution illustrates the sensitivity to
neglecting the Coulomb potential barrier when a finite domain calculation is performed.
For the complete problem, such a potential energy exists, and ignoring it can be the cause
of serious differences in cross sections evaluations.

Another issue of interest, within the TP model, is what happens for the SDCS at the
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equal energy fraction value. Indeed, the extraction of that magnitude from the scattering
wave function (whatever the way it is evaluated) with a s-matrix representation [7] or
some integral formulae [19] involves a free state for the faster electron and a Coulombic
one for the slower one. When crossing the equal energy sharing value, an interchange
of coordinates occurs and we have a potential discontinuity. As a consequence of the
discontinuous final state description, a sharp slope of the singlet SDCS is observed at
the symmetric energy fraction value. In contrast with this inconsistent observation, the
application of the flux formula (Exterior Complex Scaling (ECS) [11] or Sturmian results)
yields the correct continuous (zero valued) slope. This property is a direct consequence
of the expected continuity of the asymptotic scattering wave function and its derivative
when one perpendicularly crosses the surface r1= r2.

The rest of this paper is organized as follows. In Section 2, we present the model
equation, the usual SDCS definition through the flux formula given by Peterkop and the
corrections based on a classical energy conservation analysis. In Section 3, results are
presented and compared to benchmark data for several energies, and for both singlet
and triplet symmetries. A small summary is given in Section 4.

We employ atomic units (m= h̄= e= 1) throughout, that means distances in units of
a0, energy in Hartrees and the SDCS in units of πa2

0.

2 Theory

Let Ψ+ be the three-body solution of the Schrödinger equation for hydrogen ionization
by electron impact:

[
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]

Ψ+(r1,r2)=0 (1)

where ri (i=1,2) denote the electrons coordinates and r12 = |r1−r2| is the inter electronic
distance. We set the function Ψ+ as Ψ+ = Ψ+

sc+Ψ0, where Ψ0 represents the prepared
collisional state and Ψ+

sc the scattering wave function which contains all the physical in-
formation about the collision process. According to Pauli exclusion principle, we have
the symmetry condition Ψ+(r1,r2)=(−1)SΨ+(r2,r1) depending on whether the two elec-
trons form a singlet (S= 0) or a triplet (S= 1) spin state. As in Ref. [16] (and references
therein), we will consider an initial state:

Ψ0(r1,r2)=
1√
2

[

1√
π

e−r1 eiki.r2+(−1)S(1↔2)

]

,

where ki =
√

2(E−(−0.5)), i.e. the symmetrized/antisymmetrized product of a plane
wave times an hydrogenic bound state. The scattering function Ψ+

sc satisfies the non ho-
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mogeneous Schrödinger equation:
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, (2)

where E is the total energy of the system.
Let ρ and α be the hyperspherical coordinates defined through r1 = ρcosα and r2 =

ρsinα (0≤ρ≤∞, 0≤α≤π/2). Equation (2) must be solved together the following bound-
ary condition

lim
ρ→∞

Ψ+
sc(r1,r2)=A(ω5)ρ

−5/2e
i
(

Kρ− C(ω5)
K log[2Kρ]

)

, (3)

where A(ω5) is the scattering amplitude; ω5 represents the five hyperangular coordi-
nates. The factor C(ω5), which can be considered as an angular dependent Coulomb
charge, is defined as:

C(ω5)=− Z

cosα
− Z

sinα
+

∞

∑
l=0

4π

2l+1

l

∑
m=−l

(−1)mYl
−m(r̂2)Yl

m(r̂1)

{

secαtanl α

cscαcotl α

}

,

where the upper (lower) value is for α<π/4 (α>π/4).
The scattering amplitude A(ω5) is related to the single differential cross section through

|A(ω5)|2 and corresponds to finding – asymptotically – the two electrons in directions r̂i

with kinetic energies E1=Ecos2 α and E2=Esin2α (E=E1+E2).
Within the Temkin-Poet S wave model, angular momentum is neglected, and 1/r12 is

replaced by 1/r> where r>=Max[r1,r2]. In this case for α<π/4 (respectively α>π/4),
the −1/r1 (respectively −1/r2) potential is removed from the left-hand-side of Eq. (1) or
(2). The boundary condition (3) becomes

lim
ρ→∞

Ψ+
sc(r1,r2)=A(α)ρ−5/2e

i
(

Kρ− γ(α)
K log[2Kρ]

)

, (4)

where K=
√

2E, A(α) is the scattering amplitude and the factor γ(α) is defined as:

γ(α)=

{

− 1
sinα if α<π/4

− 1
cosα if α>π/4

.

Consequently the SDCS

dσ

dE2
∝ |A(α)|2 (5)

now depends only on α which defines not only the coordinates r1 and r2 but also mea-
sures, in the asymptotic region, the ratio tanα = k2/k1 between the local momenta of
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the electrons. SDCS are usually shown as a function of the energy fraction defined as
ǫ= sin2 α= E2/E (the same results would be obtained by using E1/E). Since the SDCS
is symmetric with respect to α=π/4, only half of the range, i.e. 0≤ ǫ≤ 0.5, needs to be
considered.

2.1 Flux formula for the single differential cross section

For the electron-hydrogen scattering problem (full problem or TP model), the single dif-
ferential cross section is defined as the ratio between the number of electrons which pop-
ulate a given final continuum state by the incident flux of particles:

dσ=
dN

ki
. (6)

The quantity dN can be calculated as [9]

dN= JρdΩ̂,

where dΩ̂ is the (five dimensional) solid angle element

dΩ̂=ρ5sin2 αcos2 αdαsinθ1dθ1dϕ1sinθ2dθ2dϕ2.

Jρ is the flux density in the radial hyperspherical direction, which can be written as

Jρ =ℑ
{

(

Ψ+
sc

)∗ ∂Ψ+
sc

∂ρ

}

=
1

2i

[

(

Ψ+
sc

)∗▽Ψ+
sc−Ψ+

sc

(

▽Ψ+
sc

)∗]
.(cosα,sinα) (7)

where the dot in the second equality indicates a scalar product. Taking into account the
expression dE2 =2Esinαcosαdα, and integrating over the angles θi and ϕi (i=1,2), the α
dependent SDCS reads

dσ

dE2
=

(4π)2

k02E
Jρρ5sinαcosα. (8)

This flux formula has been applied [10] to evaluate the SDCS, from the scattered wave
function at finite distances ρ and for values of α which are far enough from 0 and π/2.
Extrapolating procedures have been applied to obtain, on one hand, the flux value at
infinite ρ values and, on the other hand, to obtain its values for the energy sharing corre-
sponding to α=0 and α=π/2.

2.2 Reinterpretation of the energy fraction

In this section we introduce a correction for extracting the SDCS which takes into account
that the evaluation is performed at finite values of the hyperspherical coordinate ρ, when
the two escaping electrons are still interacting with the nucleus.
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The proposed modification consists in reinterpreting the continuum energy fraction
value at finite distances. Consider first the case α<π/4, i.e. r1 > r2. Electron 1 is free.
At finite distances, electron 2 feels the Coulomb potential, and since the total energy E is
conserved we can write

E=E− 1

ρsinα
(9)

where E > E is the effective kinetic energy (see Fig. 1). The two electrons share this
finite-distance kinetic energy with the proportions E1=E cos2 α and E2=E sin2α (note that
E1+E2=E).

E

0

E
1

E
2

2

1

r
−

2
r

Figure 1: (Color online) Energy representation in the case α<π/4. Usually, the kinetic energy E is considered
as shared (E1 and E2) by the two escaping electrons. Taking into account the Coulomb barrier (−1/r2), at
finite distances, the effective kinetic energy to be considered is E (see text).

As electron 2 reaches infinity, it has to overcome the remaining Coulomb potential
barrier, so that it possesses asymptotically a kinetic energy of

Ê2=E sin2α− 1

ρsinα
; (10)

note that the full energy is conserved as Ê1+ Ê2 = E (Ê1 = E1 as electron 1 is free). In
summary, according to this picture, the usual energy fraction ǫ=E2/E=sin2α, should be
replaced by

ǫ→ ǫ̂=
Ê2

E
=

E
E

sin2α− 1

Eρsinα

= sin2 α− cos2 α

Eρsinα
. (11)
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Consider now the case α>π/4, i.e. r2>r1. At finite distance the kinetic energy is now
Ē=E+1/(ρcosα). This time electron 2 is free, and it is electron 1 which has to overcome
the Coulomb barrier, so that

Ē1= Ē cos2α− 1

ρcosα
, (12)

and therefore Ē2 = E− Ē1 = sin2α[E+1/(ρcos(α)] by energy conservation. The energy
fraction associated to electron 2 is

ǫ→ ǫ̂=
Ē2

E
=sin2 α+

sin2 α

Eρcosα
. (13)

Three major observations stem from the new definition. First, there is a shift with re-
spect to the usual energy fraction: for a given α<π/4, the energy fraction ǫ̂<ǫ while for
α>π/4, ǫ̂>ǫ. Secondly, the zero of the new variable ǫ̂ does not correspond to α=0; at fi-

nite distances, and depending on the value of E, the domain 0<α<δ(ρ)≃arcsin([ρE]−1/3)
yields a negative ǫ̂ which is unphysical and is discarded (similarly, for α>π/4 the do-
main π/2>α>π/2−δ(ρ) is discarded). As illustrated in Fig. 2, the zero energy fraction
value for finite domains is approximated by Eqs. (11) or (13) by potential curves in the
(r1,r2) plane; this allow us to identify, for a given energy E, the ionization region. Finally,
as α approaches π/4 (from below or above), the equal energy sharing value ǫ̂=0.5 is not
reached at finite distances. Setting α=π/4 in (11) and (13) we have:

ǫ̂l

(π

4

)

=
1

2

(

1−
√

2

Eρ

)

<0.5

ǫ̂r

(π

4

)

=
1

2

(

1+

√
2

Eρ

)

>0.5.

We therefore have a left-right jump of
√

2/(Eρ) which is directly related to the discon-
tinuity of r> in the TP model. Due to the finite value of ρ, the new energy fraction is
limited to the domain 0< ǫ̂< ǫ̂l

(

π
4

)

and ǫ̂r

(

π
4

)

< ǫ̂< π
2 . As ρ→∞, the shift (and hence the

jump) in the energy fraction disappears, as expected, and one recovers the usual picture
over the whole domain 0<ǫ<0.5. It is worth noting that it is not ρ and E separately, but
the product ρE that intervenes in the modification.

Moreover, as a consequence of the newly defined asymptotic kinetic energy Ê2, dE2

has to be replaced by dÊ2 leading to a structural modification of the SDCS given by Eq.
(8) which has to be replaced by

dσ

dE2
→ dσ

dÊ2

=
dσ

dE2
f (α,ρE) (14)
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Figure 2: Ionisation threshold contours for different energy values E according to the new definition of the
energy-sharing given by Eqs. (11) and (13). The arcs at fixed hyperradius values ρ show the angular regions
considered when counting ionized electrons.

with the correction factor

f (α,ρE)=
[

1+ 1+sin2 α
2Eρsin3 α

]−1
. (15)

For all values of α, the modified SDCS are affected (diminished) by this factor which is
always smaller than 1. The correction is particularly strong for small α values, as f (α→
0,ρE)→ 0. In the illustration below, we will see that the energy fraction shift, together
with the modified SDCS formula, modifies the SDCS extracted at finite distances, and
remove the unphysical behavior close to the zero energy fraction value.

The energy fraction reinterpretation discussed above is only applicable within the TP
approximation, since the interaction potentials are separable. We consider that the faster
electron is free while the slower is the one which has to overcome the Coulomb tail barrier
(a similar approximation is used when SDCS are evaluated with integral formulas where
final states are Coulombic or free depending of the electrons’ velocities [19]). Similarly
to the model, for the complete physical problem, the two electrons need to overcome the
nuclear potential, and when reaching the asymptotic region they share the inter electronic
potential energy term (which is finite at finite distances, except at the electron-electron
cusp). However, as the system is correlated, it is not possible to state how this occurs.
This said, similarly to what happens for the S wave model, a modification of the energy
fraction should be taken into account at finite distances. As illustrated below such a
modification has very important effects in the extraction of SDCS results.
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To conclude this section, let us make some comments on what happens at equal en-
ergy sharing (α = π/4). As already mentioned in the Introduction, in some numerical
evaluations [7,8] of the singlet SDCS for the e-H process, a discontinuity in the derivative
is observed at α=π/4:

lim
x→0

d

dE2

(

dσ

dE2

)∣

∣

∣

∣

E/2−x

=− lim
x→0

d

dE2

(

dσ

dE2

)∣

∣

∣

∣

E/2+x

(16)

The jump is related to the final state used in such calculations, i.e. a simple product of
continuum waves (a Coulomb wave for the slower electron and a free one for the faster
one). This final state has the advantage of having well defined momenta and correspond
to an exact solution of the equation when all the particles are far from each other. Besides,
it avoids the divergency of the transition amplitude phase [21]. However, it introduces an
“if” behavior in the α-coordinate which causes the unphysical abrupt change in the SDCS
slope. Assuming the asymptotic region is reached, one may use the asymptotic relation
(4) and the cross section definition (5) to demonstrate formally that such behavior should
not be present. Indeed, using the continuity of the wave function and its derivative when
crossing perpendicularly the surface r1=r2, one finds [13] that |A(α)|2, and consequently
also the SDCS, have a zero slope at π/4 when represented as a function of α, or as a
function of the variable sin2 α.

3 Results

We have solved the inhomogeneous Schrödinger Eq. (2) using a Sturmian approach (see
details in Ref. [5, 16, 20] where the capability of the method is shown). Essentially, we
use a double expansion on Sturmian functions for each radial coordinate ri (i= 1,2); all
basis functions are regular at ri=0 and they all possess the same outgoing flux boundary
condition. The scattering wave function is used to calculate the flux Jρ at several finite
distances ρ according to expression (7).

Below, we will present spin-weighted SDCS results for both the singlet and the triplet
solution of the TP e-H process. We start with a detailed analysis of the SDCS (uncorrected
and corrected) at total energy E of 1.5 a.u. (corresponding to an impact energy of 2 a.u.
(54.422 eV)). We then present the final (corrected) results also for other energies, i.e., at
1 a.u. (impact energy of 1.5 a.u. (40.817 eV)) and 5.01248 a.u. (impact energy of 5.51248
a.u. (150 eV)). In all cases, benchmark results are available and shown for comparison.
We have considered different finite values of ρ running from 1λ up to 41λ by steps of λ,
where λ=2π/

√
2E corresponds to the wavelength of the hyperspherical outgoing wave

given by Eq. (4). The largest ρ value considered are about 182 a.u. for E=1 a.u., 150 a.u.
for E=1.5 a.u., and 81 a.u. for E=5.01248 a.u.
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3.1 Uncorrected results

We start from the singlet and triplet SDCS results for an energy E=1.5 a.u. obtained from
the standard flux formula Eq.(8) calculated at 36 finite values of ρ. They are shown as
a function of the standard energy fraction value ǫ= sin2 α, in Fig. 3 (singlet) and Fig. 4
(triplet). Since the results are symmetric with respect to ǫ= 0.5, only half of the (typical
U-shaped) curve is shown. The extrapolated SDCS (ρ→∞) is also shown (solid dots with
line), and should be compared to the benchmark results of S. Jones and A. Stelbovics [7]
(dashed line) obtained with the Finite Element Method (FEM).

Several observations can be made: (i) all our calculated SDCS present a zero slope at
α=π/4 (as it should be); (ii) one clearly observes unphysical (oscillations and divergence)
behaviors near ǫ≃0 (the same behavior is found for ǫ≃1), even for quite large ρ values;
(iii) due to the large oscillations, the present extrapolated SDCS results can be considered
as accurate only for ǫ&0.05.

3.2 Corrected results

After applying the kinematical correction given by Eq. (11) and using the modified differ-
ential cross section formula (14), the data of Fig. 3 are shown on Fig. 5 as a function of the
new energy fraction ε̂. As indicated above, for finite values of ρ the equal energy fraction
value cannot be reached (dotted line on the right of the figure corresponding to ǫ̂l

(

π
4

)

);
as the product ρE increases the excluded domain clearly decreases, and disappears in
the limit of infinite distance. The corrected results show a significant modification close
to zero energy sharing, where the curves are closer to each other for all ρ values (note
that the vertical scale differs from that of Fig. 3). The correction related to the factor
f (α,ρE), is strongest for small energy fractions. The unphysical amplitudes close to the
axes have clearly been wiped out. This seems to indicate that the divergence observed
close to ǫ= 0 are not to be attributed to any specific physics (coupling to discrete chan-
nels), but rather to an inappropriate definition of the energy fraction when calculating
over finite ρ domains. Actually, for small values of α, some electrons considered to be in
the continuum with the usual definition, within our reinterpretation they are treated as
not reaching their escape velocity (although they can be very far from the nucleus). At
the same time, close to strongly asymmetric energy sharing, the correction factor f (α,ρE)
yields a decreasing SDCS, in contrast to the benchmark observation; this may possibly be
related to the intrinsic way of counting the particles through the flux formula.

We have extrapolated to infinity the SDCS calculated at finite values of ρ; simultane-
ously, the equal energy value is also reached. The results (solid dots with line, labelled
SF(1) in Fig. 5) give an overall good agreement with the benchmark curve (dashed line).
For energy fractions in the range (0.15,0.5) the new data are very close to the benchmark
values. A fair agreement is observed also quite close to asymmetrical energy sharing
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Figure 3: Singlet SDCS for the e-H processes at E=1.5 a.u. Dashed line: results from Jones and Stelbovics [7].
Solid lines: our evaluation of the flux formula approximation given by Eq. (8) as a function of ǫ= sin2 α, for
different values of ρ from 5λ up to 41λ in steps of λ (see text). Solid dots with line: our extrapolated results
in the range 0.05< ǫ<0.5.
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Figure 4: Same as Fig. 3 but for the triplet symmetry.

where there subsists a slight difference between our extrapolated results and the refer-
ence value given by Jones and Stelbovics. The discrepancy can be probably attributed
to the fact that we are only considering domains up to 150 a.u. for each radial coordi-
nate, while 500 a.u. were used within the FEM method [7]. For comparison, we have
also included in the figure the ECS result [11] (open symbols with lines); our data practi-
cally coincide with these for energy fractions in the range (0.05,0.5). It should be noted
that for small energy fractions the ECS data were extrapolated linearly from the smallest
value calculated directly (this will be called hereafter ECS technique). In the inset of Fig.
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Figure 5: Our singlet SDCS data of Fig. 3, corrected according to the kinematical correction given by Eq. (11)
and using the modified differential cross section formula (14). Extrapolated data (SF(1)) are shown by solid
dots with line. The benchmark data [7] (dashed line) are the same as in Fig. 3. The ECS results [11] are
also included (open symbols with line); using a similar extrapolation technique, our results extrapolated to zero
energy fraction (labelled SF(0)), are shown by solid squares with line in the inset.
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Figure 6: (Color online) Singlet SDCS for the e-H process, for three energies E=1 a.u. (top curves), 1.5 a.u.
(middle curves) and 5.0124 a.u. (bottom curves)). Results from Jones and Stelbovics [7] (dashed, dotted and
continuous thick lines, respectively) and Baertschy et al. [11] (open symbols with lines) are compared with our
(corrected and extrapolated) results (filled symbols with line). For illustration purposes the 5.012 a.u. data are
multiplied by 5.

5, the results are shown in the range (0,0.1). Our uncorrected results, extrapolated to
zero energy fraction (labelled SF(0)), are shown by solid squares with line and should be
compared only to the ECS data.
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Figure 7: (Color online) Same as Fig. 6 for triplet symmetry. No multiplying factor was introduced for the
5.012 a.u. data.

We have considered two other energy values (1 and 5.0124 a.u.) for which benchmark
values are also available. Our corrected and extrapolated SDCS results are presented in
Figs. 6 and 7 for the singlet and triplet symmetry respectively. The singlet SDCS decrease
as the incident energy increases; this monotonicity trend is not valid for the triplet case
(see analysis in [7]). The singlet benchmark data with the FEM method [7] are also shown
and present a discontinuous slope at equal energy sharing. On the other hand, our SDCS
obtained using the flux formula at finite values of ρ (not shown) and subsequently the
extrapolated curves (shown) always present a zero slope at equal energy sharing. This
correct behavior is also observed in the ECS results [11] (line with open symbols, for the
two lower energies only) obtained with the flux formula with a ρ→∞ extrapolation.

For our corrected SDCS, the corrections (recall that they depend on the product ρE,
for a given ρ) are relatively smaller (larger) at higher (lower) incident energies. The de-
creasing behavior close to the asymmetric energy sharing values is observable for the two
lowest incident energies but is practically absent for the largest one (5.0124 a.u.). When
comparing our results with the FEM calculations, we observe an overall agreement ex-
cept at strongly asymmetric energy sharing for the two lowest energies. In comparison
with the ECS results [11], our SDCS have slightly smaller values and are thus closer to
the benchmark values. We should recall here that the ECS data for energy sharing close
to ǫ= 0 and ǫ= 1 were obtained through a linear extrapolation in energy fraction (ECS
technique) as to eliminate the aforementioned divergences. Moreover, those results were
obtained with box sizes larger than what we have used here. Hence, we may consider
that our Sturmian calculation with the flux formula - once our correction procedure is
implemented - provides relatively better results.

We have also considered the triplet case, and obtained also a remarkable agreement
with the FEM calculations. It has to be noted that at equal energy sharing the disconti-
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Table 1: Singlet total ionization cross section (units of πa2
0) for the Temkin-Poet model of e-H scattering,

calculated with different formulas and integration techniques. The SF(1), SF(0) (ECS technique) and ECS
results are all obtained with the flux formula. Contrary to the SF(1) result, the integration used in SF(0) (ECS
technique) and ECS involves an energy fraction extrapolation.

Total energy E (a.u.)

Theory 1 1.5 5.0124

FEM [7] 0.01946 0.01472 0.002926
SF(1) 0.01954 0.01507 0.002926

SF(0) ECS technique) 0.01974 0.01550 0.002994
ECS [11] 0.02036 0.01536 —-

Table 2: Same as Table 1 for triplet symmetry.

Total energy E (a.u.)

Theory 1 1.5 5.0124

FEM [7] 0.002473 0.003103 0.002012
SF(1) 0.002552 0.003266 0.002060

SF(0) (ECS technique) 0.002469 0.003228 0.001920
ECS [11] 0.00270 0.00339 —-

nuity of the SDCS slope is not present for the triplet symmetry neither in our results nor
in other calculations; besides, the SDCS must be zero at that point. There is also better
agreement at the unequal energy regime, except for E=1.5 a.u., for which our corrected
and extrapolated result changes its slope just as in the singlet case (that phenomena is
not observed at the highest energy (5.0124 a.u. as for the singlet symmetry).

For completeness, we also provide total ionization cross sections (TCS), although
agreement for TCS does not guarantee good SDCS, since through integration discrep-
ancies are partially masked. We have integrated our extrapolated SDCS, and the results
are given in Tables 1 and 2 for the two symmetries. It is worth underlying that, for the two
lowest energies, the singlet TCS is an order of magnitude larger than in the triplet case.
When compared with benchmark values (FEM, [7]), in the worst case, we find that our
Sturmian results (SF) have a relative discrepancy of about 2% (singlet) and 5% (triplet).
This has to be compared with relative FEM versus ECS differences of, respectively, 4%
and 8%. We have also integrated our SF SDCS using the ECS technique of extrapolating
to 0 (and 1) energy fraction. By doing this we obtain results similar to the published ECS
data [11].

4 Summary and concluding remarks

In summary, we may say that the flux formula for e-H SDCS may be used at finite dis-
tances, provided one modifies the energy fraction definition to take into account that
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the continuum electrons have to overcome a Coulomb potential energy. This has been
illustrated with the TP model for the e-H process, for both singlet and triplet symme-
tries, and for three incident energies. The scattered wave function, numerically evalu-
ated with a Sturmian method, is used to calculate the flux at finite hyperradii and finally
provides sensible cross sections over practically the whole energy fraction domain. The
new definitions of energy fraction (11) and single differential cross section (14) eliminate
the divergence close to extreme asymmetric energy fraction usually observed with finite
distances calculations. Moreover, extrapolation to infinite distances yields overall good
agreement with benchmark results obtained with calculations performed up to much
larger distances.

In view of our results, we believe that the contribution of discrete channels is not
responsible for the unphysical SDCS behavior, and the subsequent failure of the flux
formula procedure. On top of that, the following simple reasoning seems to indicate the
same. Suppose one may decompose the scattering wave function as the sum

Ψ+
sc=Ψ+

exc+Ψ+
ion (17)

where Ψ+
exc is the excitation part and Ψ+

ion the ionisation one [23, 24]. Upon replacement
into the flux expression (7) we get

Jρ = ℑ
{

(

Ψ+
exc

)∗ ∂Ψ+
exc

∂ρ
+
(

Ψ+
exc

)∗ ∂Ψ+
ion

∂ρ

+
(

Ψ+
ion

)∗ ∂Ψ+
exc

∂ρ
+
(

Ψ+
ion

)∗ ∂Ψ+
ion

∂ρ

}

.

The nonlinearity of the flux operator as a function of Ψ+
sc is such that the coupling between

the excitation and ionisation channels is always present. Considering the fact that Ψ+
exc

includes excitation to all discrete states, and particularly to the Rydberg states with large
spatial extension, the coupling to the ionisation channel should be affected on a large
domain, and not only on the borders r1=0 and r2=0.

In the full physical problem, the inter electronic energy is also shared between the
two electrons, and similar finite distance arguments apply (although a detailed analysis
is not possible as the system is correlated). Hence, SDCS extracted from the flux (or any
other formulae), calculated from finite distance wave functions should also be affected.
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