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A LOCAL COMPUTATIONAL SCHEME FOR HIGHER ORDER

FINITE ELEMENT EIGENVALUE APPROXIMATIONS

XIAOYING DAI, LIHUA SHEN, AND AIHUI ZHOU

Abstract. Based on some coupled discretizations, a local computational scheme

is proposed and analyzed in this paper for a class of higher order finite element

eigenvalue approximations. Its efficiency is proven by theoretical and numerical

evidences. It is shown that the solution of an eigenvalue problem in a higher

order finite element space may be reduced to the solution of an eigenvalue

problem in a lower order finite element space, and the solutions of some linear

algebraic systems in the higher order finite element space by some local and

parallel procedure.
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1. Introduction

Motivated by efficient eigenvalue computations in quantum chemistry, in this
paper, a local computation scheme is proposed and analyzed for a class of higher
order finite element eigenvalue approximations. With this new proposed scheme,
solving an elliptic eigenvalue problem will not be much more difficult than the local
solutions of some standard elliptic boundary value problem. Our scheme is an
iterative approach, which is related to that in [18, 19]. The scheme in this paper,
however, is based on global and local coupled discretizations.

It is well known that efficient electronic structure computations are usually de-
sired in quantum chemistry and nano-materials computations. In modern electronic
structure computations, the so-called density functional theory is fundamental, with
which Kohn-Sham equations need to be solved [7, 15, 16, 17, 21]. Note that Kohn-
Sham equations are nonlinear eigenvalue systems in three dimensions, the matrices
resulting from both real space and reciprocal space techniques are large, and the
number of eigenvalues and eigenvectors required is proportional to the number of
atoms in the molecular system. Hence, an iteration procedure of solving a large
number of eigenvalues of large scale linear systems must be involved. Moreover, in
order to obtain the numerical solution with satisfactory accuracy, the number of
iterations are usually very large, too. In a word, efficient electronic structure com-
putations require large scale eigenvalue computing [7, 11, 16, 17, 22, 26, 29, 30].
Therefore, it is significant to improve the approximation accuracy or reduce the
computational cost in solving such linear eigenvalue problems (in three dimensions)
at each iteration step.

As the finite element method is one of most effective numerical methods, we
shall consider to use the finite element scheme to discretize eigenvalue problems.
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Although the finite element method is capable of providing accurate solutions to
both all-electron [27] and pseudopotential [6, 23] formulations of Kohn-Sham equa-
tions, its application to all-electron problems in molecules and solids has so far
been limited by the large number of basis functions required to adequately describe
all-electron solutions near nuclei, where the solutions can have cusps and oscillate
rapidly [7, 22, 31, 34]. To make the finite element method to be competitive with
conventional methods in the all-electron context, specialize basis functions, such as
isolated atomic solutions or Gaussian functions, will likely need to be added to the
standard finite element basis to increase the efficiency of the representation. In the
context of pseudopotentional setting, however, the original Kohn-Sham equations
become smooth and their solutions are much smoother and simpler [6, 7, 22, 23, 27].
Thus the finite element method with piecewise polynomial bases is immediately ap-
plicable. Since higher order finite elements are usually recommended when the data
is smooth, it is very natural to apply a higher order finite element method to the
pseudopotential formulation of Kohn-Sham equations. Indeed, the higher order
finite element approach has been proved to be accurate and efficient in modern
electronic structure computations (see, e.g., [1, 7, 14, 30, 31, 32, 34]).

The computational complexity of higher order finite element discretizations, how-
ever, is larger than that of lower order finite element discretizations. To reduce the
complexity, in this paper, we will propose some new technique for fast higher order
finite element eigenvalue approximations. This technique is based on our under-
standing of local behaviors of finite elements solutions to some elliptic problems. By
using this technique, the computational complexity can be resolved through some
coupled discretizations that can be carried out in local. The main idea of our new
algorithm is to use a lower order finite element to approximate the low frequency of
the solution and then to use some linear algebraic systems to correct the residual
(which contains mostly high frequencies) in the higher order finite element space
by some local and parallel procedure.

The central computation in solving Kohn-Sham equations is the repeated solu-
tion of the following model eigenvalue problem, which is also called as a Schrödinger
equation, posed on a convex polygonal domain Ω ⊂ R

3:

{

−∆u + V u = λu in Ω,

u = 0 on ∂Ω,
(1.1)

where V is some potential function and is smooth in the pseudopotential setting.
Let us now use such a simple example to give a little more detailed but informal

description of the main idea and the main result in this paper. Let Sh,1
0 (Ω) and

Sh,2
0 (Ω), satisfying Sh,1

0 (Ω) ⊂ Sh,2
0 (Ω) ⊂ H1

0 (Ω), be the linear finite element space
and the quadratic finite element space associated with a finite element grid T h(Ω),
respectively. We may employ the following algorithm to discretize (1.1) to obtain
eigenvector approximations (on Ω0 ⊂ Ω locally) (see Section 3.1):

(1) Solve an eigenvalue problem in the linear finite element space: Find λh,1 ∈

R
1, uh,1 ∈ Sh,1

0 (Ω) such that ‖uh,1‖0,Ω = 1 and

∫

Ω

(∇uh,1 · ∇v + V uh,1v) = λh,1

∫

Ω

uh,1v ∀v ∈ Sh,1
0 (Ω).
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(2) Solve a linear boundary value problem in the quadratic finite element space:

Find eh,2 ∈ Sh,2
0 (Ω0) such that

∫

Ω0

(∇eh,2 · ∇v + V eh,2v)

= λh,1

∫

Ω0

uh,1v −

∫

Ω0

(∇uh,1 · ∇v + V uh,1v) ∀v ∈ Sh,2
0 (Ω0).

(3) Set uh,2 = uh,1 + eh,2 in Ω0.

If, for example, λh,1 is the first eigenvalue of the problem at the first step, then
under some reasonable assumption we can establish the following result (see Section
3.1)

‖∇(u − uh,2)‖0,D = O(h2),(1.2)

where u is an eigenvector associated with the first eigenvalue λ of (1.1) that satisfies
‖u‖0,Ω = 1 and D ⊂⊂ Ω0 that means D ⊂ Ω0 and dist (∂D \ ∂Ω, ∂Ω0 \ ∂Ω) > 0.

This is a very satisfying result. As a consequence, for example, we can then design
the following local computational scheme: first, solve the eigenvalue problem in the
linear finite element space over a finite element mesh T h(Ω), then solve some linear
boundary value problems on a collection of overlapped subdomains in the quadratic
finite element spaces associated with the same mesh T h(Ω) in parallel, and finally
compute some Rayleigh quotient to obtain a new eigenvalue approximation λh,2

which satisfies (see Section 3.2)

|λh,2 − λ| = O(h4).

It is easy to see that, with this new scheme, the computing scale is significantly
reduced. More precisely, we can largely resolve the computational complexity and
keep the same approximation accuracy as that of solving the eigenvalue problem
in the global quadratic finite element space. The theoretical tool for motivating
this idea is the local error estimates for finite element approximations developed in
[35, 38] (see also Section 2).

The rest of the paper is organized as follows. In the next section, we shall review
the local behaviors of finite element solutions discovered and studied in [35, 38],
which have been introduced to design local and parallel finite element algorithms
based on two-grid discretizations [35, 36, 37, 38]. Based on the local behaviors of
finite element solutions and some coupled discretizations, a new local computational
scheme for higher order finite element eigenvalue approximations is devised and
analyzed in Section 3. In Section 4, some numerical results are reported. It is
shown by the numerical results that our scheme is very efficient. Finally, some
concluding remarks are given.

2. Preliminaries

In this section, we shall describe some basic notation, then provide several prop-
erties of the finite element approximation to a linear second order elliptic boundary
value problem and some classic error estimates of a standard finite element dis-
cretization for elliptic eigenvalue problems.

Let Ω be a bounded domain in R
d(d ≥ 1). We shall use the standard notation for

Sobolev spaces W s,p(Ω) and their associated norms and seminorms, see, e.g., [2, 10].
For p = 2, we denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0},
where v |∂Ω= 0 is in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω and ‖ · ‖Ω = ‖ · ‖0,2,Ω. (
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In some places of this paper, ‖ · ‖s,2,Ω should be viewed as piecewise defined if it is
necessary.) The space H−1(Ω), the dual of H1

0 (Ω), will also be used.
For D ⊂ G ⊂ Ω, we use the notation D ⊂⊂ G to mean that dist(∂D \ ∂Ω, ∂G \

∂Ω) > 0 (see Figure 1 for 2−d cases). For simplicity, we assume that Ω and its any
subdomain involved in this paper are polytopic. Note that any w ∈ H1

0 (Ω0) can be
naturally extended to be a function in H1

0 (Ω) with zero outside of Ω0 when Ω0 ⊂ Ω,
thus we shall state this fact by the slightly abused notation H1

0 (Ω0) ⊂ H1
0 (Ω).

D

G

Ω Ω

D

G

Figure 1. Subdomains

Throughout this paper, we shall use the letter C (with or without subscripts)
to denote a generic positive constant which may stand for different values at its
different occurrences. For convenience, the symbol <

∼ will be used in this paper.

That x1 <
∼ y1 means that x1 ≤ C1y1 for some constant C1 that is independent of

mesh parameters.
Assume that T h(Ω) = {τ} is a mesh of Ω with mesh-size function h(x) whose

value is the diameter hτ of the element τ containing x. One basic assumption on
the mesh is that

A.0. There exists ν ≥ 1 such that

hν
Ω

<
∼ h(x), x ∈ Ω,(2.1)

where h
Ω

= max
x∈Ω

h(x) is the (largest) mesh size of T h(Ω).

This is apparently a very mild assumption and most practical meshes should
satisfy this assumption. Sometimes, we will drop the subscript in h

Ω
to h for the

mesh size on a domain that is clear from the context.
Let T h(Ω) consist of shape-regular simplices and define Sh,r(Ω) to be a space

of continuous functions on Ω such that for v ∈ Sh,r(Ω), v restricted to each τ is a
polynomial of total degree ≤ r, namely

Sh,r(Ω) = {v ∈ C(Ω̄) : v |τ∈ P r
τ ∀τ ∈ T h(Ω)},(2.2)

where P r
τ is the space of polynomial of degree not greater than a positive integer

r. Set Sh,r
0 (Ω) = Sh,r(Ω) ∩ H1

0 (Ω). These are Lagrange finite element spaces and
we refer to [35] (see also [24, 25, 33]) for their basic properties that will be used in
our analysis.

Given G ⊂ Ω, we define Sh,r(G) and T h(G) to be the restriction of Sh,r(Ω) and
T h(Ω) to G, respectively, and

S0
h,r(G) = {v ∈ Sh,r(Ω) : supp v ⊂⊂ G}.
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For any G ⊂ Ω mentioned in this paper, we assume that it aligns with T h(Ω) when
it is necessary.

2.1. A linear elliptic boundary value problem. In this subsection, we shall
present some basic properties of a second order elliptic boundary value problem and
its finite element approximations, which will be used in this paper. We consider
the homogeneous boundary value problem

(2.3)

{

Lu = f in Ω,
u = 0 on ∂Ω.

Here L is a linear second order elliptic operator:

Lu = −
d

∑

i,j=1

∂

∂xj
(aij

∂u

∂xi
) + cu

that satisfies aij ∈ L∞(Ω), c ∈ L∞(Ω), and (aij) is uniformly positive definite on
Ω.

The weak form of (2.3) is as follows: Find u ≡ L−1f ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω),(2.4)

where (·, ·) is the standard inner-product of L2(Ω) and

a(u, v) =

∫

Ω

d
∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+ cuv.

For simplicity, we assume that

‖w‖2
1,Ω

<
∼ a(w, w) ∀w ∈ H1

0 (Ω).

Indeed, the results that will be obtained in this paper can be generalized to a more
general case that

‖w‖2
1,Ω − C−1‖w‖2

0,Ω
<
∼ a(w, w) ∀w ∈ H1

0 (Ω)

hold for some constant C. We have (c.f. [13]) the following estimate for the regu-
larity of the solution of (2.3) or (2.4): u ∈ H1

0 (Ω) ∩ H1+γ(Ω) and

(2.5) ‖u‖1+γ,Ω <
∼ ‖f‖−1+γ,Ω

for some γ ∈ (0, 1] depending on Ω and the coefficients of L.
For some subdomain G ⊂ Ω, we need the following assumption.
R(G). For any f ∈ L2(G), there exists a u ∈ H1

0 (G) ∩ H1+γ(G) satisfying

a(v, u) = (f, v) ∀v ∈ H1
0 (G)

and

‖u‖1+γ,G <
∼ ‖f‖−1+γ,G.

Define a Galerkin-projection Ph(≡ Ph,r) : H1
0 (Ω) 7→ Sh,r

0 (Ω) by

a(u − Phu, v) = 0 ∀v ∈ Sh,r
0 (Ω)(2.6)

and apparently

(2.7) ‖Phu‖1,Ω <
∼ ‖u‖1,Ω ∀u ∈ H1

0 (Ω).

From (2.7), various global a priori error estimates for finite element approxima-
tion Phu to u can be obtained from the approximate properties of the finite element
space Sh,r(Ω) (c.f. [10, 35]).
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Now we introduce the quantity:

ρ
Ω
(h) = sup

f∈L2(Ω),‖f‖0,Ω=1

inf
v∈Sh,r

0 (Ω)
‖L−1f − v‖1,Ω.

Then (see, e.g., [36]) ρ
Ω
(h) → 0 as h → 0 and

ρ
Ω
(h) <

∼ hγ
Ω
.(2.8)

Similarly, if Assumption R(G) holds, we can define ρ
G
(h) well, too.

The following results can be found in [35] (c.f. also [4, 36]).

Proposition 2.1.

‖(I − Ph)L−1f‖1,Ω <
∼ ρ

Ω
(h)‖f‖0,Ω ∀f ∈ L2(Ω)(2.9)

and

‖u − Phu‖0,Ω <
∼ ρ

Ω
(h)‖u − Phu‖1,Ω ∀u ∈ H1

0 (Ω).(2.10)

Local error estimates for finite element approximations can be also obtained (see,
e.g., [10, 24, 25, 33, 35]). For instance, we have the following a priori error estimate
(see [35] for details), which will be employed in our discussions.

Proposition 2.2. Suppose that D ⊂⊂ Ω0.
(i) If f ∈ H−1(Ω) and w ∈ Sh,r(Ω0) satisfy

(2.11) a(w, v) = f(v) ∀v ∈ S0
h,r(Ω0),

then

‖w‖1,D <
∼ ‖w‖0,Ω0

+ ‖f‖−1,Ω0
.(2.12)

(ii) If u ∈ H1
0 (Ω), then

‖u − Phu‖1,D <
∼ inf

v∈Sh,r
0 (Ω)

‖u − v‖1,Ω0
+ ρ

Ω
(h)‖u − Phu‖1,Ω.

2.2. A linear elliptic eigenvalue problem. A number λ is called an eigenvalue
of the form a(·, ·) relative to the form (·, ·) if there is a nonzero vector u ∈ H1

0 (Ω),
called an associated eigenvector, satisfying

a(u, v) = λ(u, v) ∀v ∈ H1
0 (Ω).(2.13)

Here and hereafter, we assume that (aij) is symmetric. It is known that (2.13)
has a countable sequence of real eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · ·

and corresponding eigenvectors

u1, u2, u3, · · · ,

which can be assumed to satisfy

(ui, uj) = δij , i, j = 1, 2, · · ·

In the sequence {λj}, the λj ’s are repeated according to geometric multiplicity.
A standard finite element scheme for (2.13) is: Find a pair of (λh, uh), where λh

is a number and 0 6= uh ∈ Sh,r
0 (Ω), satisfying

a(uh, v) = λh(uh, v) ∀v ∈ Sh,r
0 (Ω),(2.14)

and use λh and uh as approximation to λ and u (as h → 0), respectively. One sees
that (2.14) has a finite sequence of eigenvalues

λ1,h < λ2,h ≤ · · · ≤ λnh,h, nh = dim Sh,r
0 (Ω)
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and corresponding eigenvectors

u1,h, u2,h, · · · , unh,h,

which can be assumed to satisfy

(ui,h, uj,h) = δij , i, j = 1, 2, · · ·

Set

M(λi) = {w ∈ H1
0 (Ω) : w is an eigenvector of (2.13) corresponding to λi}

and

δh(λi)(≡ δh,r(λi)) = sup
w∈M(λi),‖w‖0,Ω=1

inf
v∈Sh,r

0 (Ω)
‖w − v‖1,Ω.

The following results, see [4, 5, 9] or [36], will be employed in the coming discus-
sions.

Proposition 2.3. (i) For any ui,h of (2.14) (i = 1, 2, · · · , nh), there is an eigen-
vector ui of (2.13) corresponding to λi satisfying ‖ui‖0,Ω = 1 and

‖ui − ui,h‖1,Ω ≤ Ciδh(λi).(2.15)

Moreover,

‖ui − ui,h‖0,Ω ≤ CiρΩ
(h)‖ui − ui,h‖1,Ω.(2.16)

(ii) For eigenvalue,

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi).(2.17)

Here and hereafter Ci is some constant depending on i but not depending on the
mesh parameter h.

Our analysis for eigenvalue approximations is based on the following crucial
(but straightforward) property of eigenvalue and eigenvector approximation (see,
e.g., [4, 5] or [36]).

Proposition 2.4. Let (λ, u) be an eigenvalue pair of (2.13). For any w ∈ H1
0 (Ω) \

{0},

a(w, w)

(w, w)
− λ =

a(w − u, w − u)

(w, w)
− λ

(w − u, w − u)

(w, w)
.(2.18)

3. Local computations based on coupled discretizations

In this section we shall present some local computational schemes for higher
order finite element eigenvector and eigenvalue approximations which are based on
coupled discretizations. These schemes are motivated by the observation that for a
solution of some elliptic problem, low frequency components can be approximated
well in a lower order finite element space and high frequency is more local and can
be computed in a higher order finite element space by some local procedure. The
theoretical tools for analyzing these methods are the local error estimates stated in
the previous section.

The local schemes we shall now present can be used to obtain approximate
solution mostly by local computation. The main idea is that the more global
component of a finite element solution may be obtained in a lower order finite
element space and, the rest of the computation can then be localized with using
a group of higher order finite element discretizations. Roughly speaking, our new
schemes (for higher order finite element approximations) will be based on one lower-
order finite element space on the whole domain and some higher order finite element
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spaces with the same mesh locally. In our analysis, we shall use an auxiliary higher
order finite element space associated with the grid T h(Ω), that is globally defined.
One basic assumption for this auxiliary higher order finite element space is that it
should coincide with the local higher order finite element space in the subdomain
of interest.

For simplicity, we shall focus our discussion on the discretization of combination

of a piecewise linear finite element space Sh,1
0 (Ω) and a quadratic finite element

space Sh,2
0 (Ω) associated with the same grid T h(Ω). The finite element spaces

satisfy Sh,1
0 (Ω) ⊂ Sh,2

0 (Ω) ⊂ H1
0 (Ω).

We consider the approximation of any eigenvalue λ of (2.13). Here and hereafter

we let λh,1 be the finite element eigenvalue of (2.14) corresponding to Sh,1
0 (Ω) and

satisfy

|λh,1 − λ| <
∼ δ2

h,1(λ).(3.19)

In our strategy, more precisely, to get an approximate solution of an eigenvalue

problem in the quadratic finite element space Sh,2
0 (Ω), we first solve the eigenvalue

problem in a given linear finite element space Sh,1
0 (Ω) and then solve a collec-

tion of linear boundary value problems in some quadratic finite element spaces

Sh,2
0 (Ωj)(j = 1, 2, · · · , m) locally.

3.1. Computation for eigenvectors. Let Ω0 ⊂⊂ Ω be a larger subdomain con-
taining a subdomain D ⊂ Ω (namely D ⊂⊂ Ω0). We are interested in obtaining
the approximate solution in the given subdomain D with an accuracy comparable

to that from Sh,2
0 (Ω).

A prototype of our new local computational scheme is as follows.
Algorithm A.

(1) Solve (2.13) in a linear finite element space: Find (λh,1, uh,1) ∈ R
1 ×

Sh,1
0 (Ω) satisfying ‖uh,1‖0,Ω = 1 and

a(uh,1, v) = λh,1(uh,1, v) ∀v ∈ Sh,1
0 (Ω).

(2) Solve a local linear boundary value problem in a local quadratic finite ele-

ment space: Find eh,2 ∈ Sh,2
0 (Ω0) satisfying

a(eh,2, v) = λh,1(uh,1, v) − a(uh,1, v) ∀v ∈ Sh,2
0 (Ω0).

(3) Set: uh,2 = uh,1 + eh,2 in Ω0.

It is seen from Proposition 2.3 that associated with the eigenvector uh,1 obtained
by Step 1 in Algorithm A, there exists an exact eigenvector u of (2.13) satisfying
‖u‖0,Ω = 1 and

‖u − uh,1‖1,Ω <
∼ δh,1(λ), ‖u − uh,1‖0,Ω <

∼ hγδh,1(λ).(3.20)

The following result, which will be used in our analysis, can be derived from
Riesz-Schauder theory (c.f. [11])

Proposition 3.1. Let G ⊂ Ω and r ∈ {1, 2}. If M(λ) ⊂ Hs(G)(s ≥ 1), then

sup
w∈M(λ),‖w‖0,Ω=1

inf
v∈Sh,r

0 (G)
‖w − v‖1,G <

∼ hmin(s−1,r).(3.21)

In particular, if M(λ) ⊂ Hs(Ω)(s ≥ 1)), then

|λ − λh,1| + hµ‖u − uh,1‖1,Ω <
∼ h2µ, ‖u − uh,1‖0,Ω <

∼ hγ+µ(3.22)
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and

‖u − Ph,ru‖1,Ω <
∼ hmin(s−1,r), ‖u − Ph,ru‖0,Ω <

∼ hγ+min(s−1,r),(3.23)

where µ = min(s − 1, 1).

Theorem 3.1. Assume that uh,2 ∈ Sh,2(Ω0) is obtained by Algorithm A and As-
sumption R(Ω0) holds. Then

‖Ph,2u−uh,2‖1,D <
∼ |λh,1−λ|+‖u−uh,1‖0,Ω +‖Ph,2u−uh,1‖0,Ω +hγ‖u−uh,1‖1,Ω.

Consequently, if u ∈ H1
0 (Ω)∩H1+θ(Ω)∩H2+α(Ω0) (γ ≤ θ ≤ 1+α and 0 ≤ α ≤ 1),

then

‖u − uh,2‖1,D <
∼ hmin(γ+min(θ,1),1+α).

Proof. It is seen from the definition of Algorithm A that

a(uh,2 − Ph,2u, v) = λh,1(uh,1, v) − λ(u, v) ∀v ∈ S0
h,2(Ω0).

Hence, Proposition 2.2 and the identity

λh,1(uh,1, v) − λ(u, v) = (λh,1 − λ)(u, v) + λh,1(uh,1 − u, v) ∀v ∈ H1
0 (Ω)

imply

‖Ph,2u − uh,2‖1,D <
∼ |λh,1 − λ| + ‖uh,1 − u‖0,Ω0

+ ‖uh,2 − Ph,2u‖0,Ω0
,

or

‖Ph,2u − uh,2‖1,D <
∼ |λh,1 − λ| + ‖u − uh,1‖0,Ω0

+ ‖uh,1 − Ph,2u‖0,Ω + ‖eh,2‖0,Ω0
.

Next we proceed to estimate ‖eh,2‖0,Ω0
by using the Aubin-Nitsche duality ar-

gument. Given any φ ∈ L2(Ω0), there exists w ∈ H1
0 (Ω0) such that

a(v, w) = (φ, v) ∀v ∈ H1
0 (Ω0).(3.24)

Let w0
h,2 ∈ Sh,2

0 (Ω0) and w0
h,1 ∈ Sh,1

0 (Ω0) satisfy

a(vh,2, w
0
h,2) = a(vh,2, w) ∀vh,2 ∈ Sh,2

0 (Ω0),(3.25)

a(vh,1, w
0
h,1) = a(vh,1, w) ∀vh,1 ∈ Sh,1

0 (Ω0).(3.26)

Then, Proposition 2.1 implies

‖w − w0
h,2‖1,Ω0

<
∼ hγ‖φ‖0,Ω0

, ‖w − w0
h,1‖1,Ω <

∼ hγ‖φ‖0,Ω0
.

It follows from the definitions of w, eh,2 and w0
h,2 that

(eh,2, φ) = a(eh,2, w) = a(eh,2, w
0
h,2) = a(uh,2 − uh,1, w

0
h,2)

= a(Ph,2u − uh,1, w
0
h,2) + a(uh,2, w0

h,2) − a(Ph,2u, w0
h,2)

= a(Ph,2u − uh,1, w
0
h,2) + λh,1(uh,1, w

0
h,2) − λ(u, w0

h,2)

= a(Ph,2u − uh,1, w
0
h,2 − w) + a(Ph,2u − uh,1, w)

+λh,1(uh,1, w
0
h,2) − λ(u, w0

h,2).
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Thus, we obtain

(eh,2, φ) = a(Ph,2 − uh,1, w
0
h,2 − w) + a(Ph,2u − uh,1, w − w0

h,1)

+a(Ph,2u − uh,1, w
0
h,1) + λh,1(uh,1, w

0
h,2) − λ(u, w0

h,2)

= a(Ph,2u − uh,1, w
0
h,2 − w) + a(Ph,2u − uh,1, w − w0

h,1) + λ(u, w0
h,1)

−λh,1(uh,1, w
0
h,1) + λh,1(uh,1, w

0
h,2) − λ(u, w0

h,2)

= a(Ph,2u − uh,1, w
0
h,2 − w) + a(Ph,2u − uh,1, w − w0

h,1)

+λ(u, w0
h,1 − w0

h,2) − λh,1(uh,1, w
0
h,1 − w0

h,2)

= a(Ph,2u − uh,1, w
0
h,2 − w) + a(Ph,2u − uh,1, w − w0

h,1)

+(λ − λh,1)(u, w0
h,1 − w0

h,2) + λh,1(u − uh,1, w
0
h,1 − w0

h,2),

where (3.25) and (3.26) are used. Consequently, we get the estimation for any
φ ∈ L2(Ω) that

|(eh,2, φ)| <
∼ (hγ‖Ph,2u − uh,1‖1,Ω + |λh,1 − λ| + ‖u − uh,1‖0,Ω)‖φ‖0,Ω0

,

which implies

‖eh,2‖0,Ω0
<
∼ |λh,1 − λ| + ‖Ph,2u − uh,1‖0,Ω + hγ‖u − uh,1‖1,Ω.

The desired result then follows from Proposition 3.1. �

Remark. From Proposition 3.1 and the analysis above, we may have

‖u − uh,2‖1,D <
∼ hs

Ω0
+ hθ+γ

Ω
, s ∈ (1, 2], θ ∈ (0, 1]

if u ∈ H1
0 (Ω) ∩ H1+θ(Ω) ∩ H1+s(Ω0), where D ⊂⊂ Ω0 ⊂ Ω. Namely, we may get

higher accuracy approximations wherever the exact solution is smooth and local
quadratic finite elements are used. In the subdomain where the exact solution is
not smooth, according to [38], we may use a so called two-grid discretization to
obtain higher accuracy approximation. For simplicity, in this paper, we focus our
attention only to the case of smooth exact eigenvectors.

Global highly accurate approximations to eigenvectors are naturally obtained
from the local computation that we studied above. Given an triangulation T h(Ω),
let us assume that D1, . . . , Dm are disjoint subdomains of Ω and then enlarge each
Dj to obtain Ωj that aligns with T h(Ω). Note that usually ∪m

j=1Dj ⊂ Ω. The basic
idea of our algorithms for global highly accurate approximations is very simple: we
just apply the local computations in all Ωj ’s in parallel when {D1, D2, · · · , Dm} is
a partition of Ω (see Figure 2 for 2 − d cases), which is stated as follows:

Algorithm B.

(1) Solve (2.13) in a global linear finite element space: Find (λh,1, uh,1) ∈

R
1 × Sh,1

0 (Ω) satisfying ‖uh,1‖0,Ω = 1 and

a(uh,1, v) = λh,1(uh,1, v) ∀v ∈ Sh,1
0 (Ω).

(2) Solve local linear boundary value problems in local quadratic finite element

spaces in parallel: Find ej
h,2 ∈ Sh,2

0 (Ωj)(j = 1, 2, · · · , m) satisfying

a(ej
h,2, v) = λh,1(uh,1, v) − a(uh,1, v) ∀v ∈ Sh,2

0 (Ωj).

(3) Set uh,2 = uh,1 + ej
h,2 in Dj(j = 1, 2, · · · , m).

By Theorem 3.1 and Proposition 3.1, for this algorithm, we apparently have the
following result.
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Figure 2

Domain decomposition: Dj ⊂⊂ Ωj

Theorem 3.2. Assume that uh,2 is the solution obtained by Algorithm B and As-
sumptions R(Ωj) (j = 1, 2, · · · , m) hold. Then





m
∑

j=1

‖Ph,2u − uh,2‖2
1,Dj





1/2

<
∼ |λh,1 − λ| + ‖u − uh,1‖0,Ω + ‖Ph,2u − uh,1‖0,Ω + hγ‖uh,2 − uh,1‖1,Ω.

If u ∈ H1
0 (Ω) ∩ H2+α(Ω)(α ∈ (0, 1]), then





m
∑

j=1

‖u − uh,2‖2
1,Dj





1/2

<
∼ h1+min(γ,α).

3.2. Computation for eigenvalues. We note that the approximation uh,2 ob-
tained by Algorithm B is piecewise defined and is in general discontinuous. In
this subsection, we shall propose some further modifications for this algorithm to
achieve the following two goals:

• smooth uh,2 to obtain a global H1(Ω) approximation;
• compute λh,2 in parallel.

The first goal will be achieved by solving some local quadratic finite element prob-
lems and the second goal will be achieved by carrying out the Rayleigh quotient.
We note that the second goal is realized after the first goal has been achieved.

We now proceed to present a modified algorithm that addresses both of the afore-
mentioned two issues. To do this, we assume that {Ω1, Ω2, · · · , Ωm} is a partition
of Ω (namely, Ωi ∩ Ωj = ∅(i 6= j) and ∪m

j=1Ω̄j = Ω̄) and set Dm+1 = Ω \ (∪m
j=1D̄j),

where Dj ⊂⊂ Ωj(j = 1, 2, · · · , m) (see Figure 3 for 2 − d cases).

Algorithm C.

(1) Solve (2.13) in a global linear finite element space: Find (λh,1, uh,1) ∈

R
1 × Sh,1

0 (Ω) satisfying ‖uh,1‖0,Ω = 1 and

a(uh,1, v) = λh,1(uh,1, v) ∀v ∈ Sh,1
0 (Ω).
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Figure 3

Domain decomposition: Dj ⊂⊂ Ωj and Dm+1

(2) Solve local linear boundary value problems in local quadratic finite element

spaces in parallel: Find ej
h,2 ∈ Sh,2

0 (Ωj)(j = 1, 2, · · · , m) satisfying

a(ej
h,2, v) = λh,1(uh,1, v) − a(uh,1, v) ∀v ∈ Sh,2

0 (Ωj).

(3) Set uh,2 = uh,1 + ej
h,2 in Dj(j = 1, 2, · · · , m) and uh,2 on D̄m+1 is defined

by: uh,2 |∂Dj∩∂Dm+1
= uh,1 + ej

h,2(j = 1, 2, · · · , m) and satisfying

a(uh,2, v) = λh,1(uh,1, v) ∀v ∈ Sh,2
0 (Dm+1).

(4) Compute the Rayleigh quotient

λh,2 =
a(uh,2, uh,2)

(uh,2, uh,2)
.

In the above algorithm, Step 3 is for obtaining a global H1 solution and Step 4
is for the approximation of eigenvalue.

Theorem 3.3. Assume that (λh,2, uh,2) is the pair obtained by Algorithm C and
Assumptions R(Ωj)(j = 1, 2, · · · , m) hold. Then

‖Ph,2u− uh,2‖1,Ω <
∼ |λ−λh,1|+ ‖u− uh,1‖0,Ω + |Ph,2u− uh,1‖0,Ω + hγ‖u− uh,1‖1,Ω.

Consequently, if u ∈ H1
0 (Ω) ∩ H2+α(Ω)(α ∈ (0, 1]), then

|λ − λh,2| + h1+min(γ,α)‖u − uh,2‖1,Ω <
∼ h2+2 min(γ,α).

Proof. From the definition of uh,2, we have

a(Ph,2u − uh,2, v) = (λ − λh,1)(u, v) + λh,1(u − uh,1, v) ∀v ∈ Sh,2
0 (Dm+1).

Obviously, the estimation

‖∇(Ph,2u − uh,2)‖2
0,Dm+1

<
∼ a0

Dm+1
(Ph,2u − uh,2, Ph,2u − uh,2)

is true for

a0
Dm+1

(w, v) =

∫

Dm+1

d
∑

i,j=1

aij
∂w

∂xi

∂v

∂xj
, w, v ∈ H1

0 (Ω).
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Hence, for any v ∈ Sh,2
0 (Dm+1), we obtain

‖∇(Ph,2u − uh,2)‖2
0,Dm+1

<
∼ a0

Dm+1
(Ph,2u − uh,2, Ph,2u − uh,2 − v) + (|λ − λh,1| + |λh,1|‖u − uh,1‖0,Ω)‖v‖1,Ω.

Consequently, there holds

‖∇(Ph,2u − uh,2)‖2
0,Dm+1

<
∼ ‖∇(Ph,2u − uh,2)‖0,Dm+1

inf
χ∈Sh,2

0 (Dm+1)
‖Ph,2u − uh,2 − χ‖1,Dm+1

+ξh inf
χ∈Sh,2

0 (Dm+1)
(‖Ph,2u − uh,2 − χ‖1,Dm+1

+ ‖Ph,2u − uh,2‖1,Dm+1
),

where

ξh = |λ − λh,1| + |λh,1|‖u − uh,1‖0,Ω.

Note that for any G ⊂ Ω, there holds [35]

inf
χ∈Sh,r

0 (G)
‖v − χ‖1,G <

∼ ‖v‖1/2,∂G ∀v ∈ Sh,r(G).(3.27)

Hence we have

‖∇(Ph,2u − uh,2)‖2
0,Dm+1

<
∼ ‖∇(Ph,2u − uh,2)‖0,Dm+1

‖Ph,2u − uh,2‖1/2,∂Dm+1

+ξh(‖Ph,2u − uh,2‖1/2,∂Dm+1
+ ‖Ph,2u − uh,2‖1,Dm+1

).

Using the estimation that

‖Ph,2u − uh,2‖1/2,∂Dm+1
<
∼

m
∑

j=1

‖Ph,2u − uh,2‖1/2,∂Dj
<
∼

m
∑

j=1

‖Ph,2u − uh,2‖1,Dj
,

or

‖Ph,2u − uh,2‖1/2,∂Dm+1
<
∼





m
∑

j=1

‖Ph,2u − uh,2‖2
1,Dj





1/2

,

we get

‖∇(Ph,2u − uh,2)‖2
0,Dm+1

<
∼ |||Ph,2u − uh,2|||21,Ω + ξh(|||Ph,2u − uh,2|||1,Ω + ‖Ph,2u − uh,2‖1,Dm+1

),

where

|||Ph,2u − uh,2|||1,Ω ≡





m
∑

j=1

‖Ph,2u − uh,2‖2
1,Dj





1/2

.

Thus

‖Ph,2u − uh,2‖2
1,Ω

<
∼ ‖∇(Ph,2u − uh,2)‖2

0,Ω

<
∼ |||Ph,2u − uh,2|||21,Ω + ξ2

h + ξh‖Ph,2u − uh,2‖1,Ω,

namely,

‖Ph,2u − uh,2‖1,Ω <
∼ |||Ph,2u − uh,2|||1,Ω + |λ − λh,1| + ‖u − uh,1‖0,Ω,(3.28)

which together with Proposition 2.3, Proposition 3.1, and Theorem 3.2 finishes the
proof. �
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4. Numerical experiments

In this section, we will report some numerical experiments in three dimensions,
which coincide with our theory. The numerical experiments were carried out by SGI
Origin 3800 in the State Key Laboratory of Scientific and Engineering Computing,
Chinese Academy of Sciences.

As we see, it is expensive to solve three dimensional problems by using uniform
meshes when accurate approximate solutions are required. Thus, in our computa-
tions, we will employ adaptive meshes instead of uniform meshes. The adaptive
finite element meshes are constructed from the bisection approaches [3] and the
error indicators

ητ = ητ,G = ‖A−1/2(Ghuh − A∇uh)‖2
0,τ , τ ∈ T h(Ω)

when the linear finite element method is taken into account, or

ητ = ητ,R = hτ‖[A∇uh · n]‖2
0,∂τ , τ ∈ T h(Ω)

when the quadratic finite elements are used. Here A = (aij)3×3 and the local

averaging operator Gh : Sh,1
0 (Ω) → Sh,1(Ω) × Sh,1(Ω) is defined by (see, e.g.,

[39, 40])

Ghv =
∑

z∈∂2T h

(A∇v)zφz , (A∇v)z =

Jz
∑

j=1

αj
z(A(z)∇v)τ j

z
∀v ∈ Sh,1

0 (Ω),

where

Jz
⋃

j=1

τ j
z = ωz,

Jz
∑

j=1

αj
z = 1, ωz =

⋃

z∈τ

τ, αj
z ≥ 0 (for instance, αj

z = 1
Jz

αj
z =

|τ j
z |

|ωz|
),

Jz is the number of elements containing z, and [g]l means the jump of g across the
surface l, l 6∈ ∂Ω (see, e.g., [20]). In the step of of correction, the fine mesh is
obtained by some tetrahedral bisection strategy, too.

We will use three types of algorithms. The first one, which is denoted by Al-
gorithm I-I, is the algorithm proposed in [38] for linear finite element eigenvalues:
solve an eigenvalue problem in the linear finite element space associated with a rel-
atively coarse mesh and then find the correction by solving some Poisson boundary
value problems in linear finite element spaces associated with local refined meshes in
parallel. The second one, which is named by Algorithm II-II, is a similar algorithm
to Algorithm I-I (see also [38]): solve an eigenvalue problem in the quadratic finite
element space associated with a relatively coarse mesh and then find the correc-
tion by solving some Poisson boundary value problems in quadratic finite element
spaces associated with local refined meshes in parallel. The third one, which is
called Algorithm I-II, is Algorithm C described in Section 3.2: solve an eigenvalue
problem in the linear finite element space and then find the correction by solving
some Poisson boundary value problems in quadratic finite element spaces associated
with the same finite element mesh in parallel.

For illustration, we choose to report some simple numerical experiments only for
applying two processors. Divide Ω ≡ (a1, a2)×(b1, b2)×(c1, c2) into two subdomains
(see Figure 4):

Ω1 = (a1, (a1 +a2)/2)× (b1, b2)× (c1, c2), Ω2 = ((a1 +a2)/2, a2)× (b1, b2)× (c1, c2).

Set

D1 = (a1, (3a1 + a2)/4) × (b1, b2) × (c1, c2),

D2 = ((a1 + 3a2)/4, a2) × (b1, b2) × (c1, c2),
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Figure 4

Domain decomposition: Dj ⊂⊂ Ωj(j = 1, 2) and D3 = Ω \ (D̄1 ∪ D̄2).

and

D3 = ((3a1 + a2)/4, (a1 + 3a2)/4) × (b1, b2) × (c1, c2).

Example 1 Consider the following model problem [20]:










−
3

∑

i=1

∂

∂xi
(x2

i

∂u

∂xi
) = λu in Ω,

u = 0 on ∂Ω,

(4.29)

where Ω = (1, 3) × (1, 2) × (1, 2). The first eigenvalue of (4.29) is λ = 3
4 + ( 2

ln2 2
+

1
ln2 3

)π2 ∼= 50.01212422 and its associated eigenfunction is u =

3
∏

i=1

(x
−1/2
i sin(

π lnxi

lnβi
)),

where β1 = 3, β2 = β3 = 2.
The numerical results obtained from the adaptive meshes are presented in Table

1, Table 2 and Table 3, respectively. In the tables, we have used the following
notations:

Nc : the number of degrees of freedom for solving the eigenvalue problem without
any correction.

Nf : the total number of degrees of freedom for solving the boundary value
problems for corrections.

λc: the numerical eigenvalue without any correction.
λh: the eigenvalue approximation obtained from the Rayleigh quotient.

Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
27 4977 6.646359e+01 3.289496e-01 5.207271e+01 4.120164e-02 5.779803e+00
78 8241 6.188943e+01 2.374885e-01 5.197303e+01 3.920860e-02 1.264343e+01
136 11013 5.633231e+01 1.263730e-01 5.105227e+01 2.079783e-02 2.008891e+01
245 20627 5.430275e+01 8.579178e-02 5.059793e+01 1.171320e-02 4.985364e+01
368 31803 5.352607e+01 7.026178e-02 5.044937e+01 8.742720e-03 9.494943e+01
769 60049 5.221756e+01 4.409808e-02 5.033467e+01 6.449292e-03 2.234454e+02
917 68901 5.180455e+01 3.583988e-02 5.028786e+01 5.513373e-03 2.715239e+02
1835 134055 5.125579e+01 2.486729e-02 5.018076e+01 3.371834e-03 7.225197e+02
2595 185979 5.098476e+01 1.944805e-02 5.013869e+01 2.530661e-03 1.256135e+03
4516 318983 5.068490e+01 1.345225e-02 5.009928e+01 1.742628e-03 3.002895e+03
6207 429559 5.053118e+01 1.037857e-02 5.008471e+01 1.451300e-03 4.532575e+03
10105 676663 5.039899e+01 7.735460e-03 5.007171e+01 1.191378e-03 8.255448e+03
17431 1135973 5.029343e+01 5.624848e-03 5.005024e+01 7.620505e-04 2.101582e+04

Table 1
Example 1, eigenvalue: linear finite elements, correction: linear finite elements

It is shown by Table 1, Table 2 and Table 3 that the correction approaches are
very efficient and that of Algorithm I-II is the most efficient one. It is noted from
the tables that the accuracy produced by Algorithm II-II is the best. However,
the approximate accuracy depends on the balance between mesh sizes H and h
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Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
27 761 6.646359e+01 3.289496e-01 5.139070e+01 2.756488e-02 3.007081e-01
78 1169 6.188943e+01 2.374885e-01 5.078482e+01 1.545008e-02 7.330670e-01
136 1547 5.633231e+01 1.263730e-01 5.027698e+01 5.295856e-03 1.493303e+00
245 2868 5.430275e+01 8.579178e-02 5.016379e+01 3.032587e-03 3.981693e+00
368 4340 5.352607e+01 7.026178e-02 5.009714e+01 1.699970e-03 7.666605e+00
769 8061 5.221756e+01 4.409808e-02 5.004258e+01 6.090130e-04 2.169316e+01
917 9235 5.180455e+01 3.583988e-02 5.003562e+01 4.698060e-04 2.914517e+01
1835 17962 5.125579e+01 2.486729e-02 5.002505e+01 2.584108e-04 8.288357e+01
2595 24668 5.098476e+01 1.944805e-02 5.002000e+01 1.575238e-04 1.554409e+02
4516 41734 5.068490e+01 1.345225e-02 5.001496e+01 5.661246e-05 3.789464e+02
6207 56102 5.053118e+01 1.037857e-02 5.001380e+01 3.354358e-05 5.863663e+02
10105 88554 5.039899e+01 7.735459e-03 5.001316e+01 2.067981e-05 1.078481e+03
17431 148195 5.029343e+01 5.624850e-03 5.001264e+01 1.023611e-05 2.694607e+03
24832 208932 5.023192e+01 4.394847e-03 5.001229e+01 3.344226e-06 4.751123e+03

Table 2
Example 1, eigenvalue: linear finite elements, correction: quadratic finite elements

Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
343 36065 5.063172e+01 1.238899e-02 5.002676e+01 2.927227e-04 2.448811e+02
439 42209 5.043270e+01 8.409555e-03 5.001993e+01 1.561764e-04 3.440008e+02
507 46481 5.038026e+01 7.360916e-03 5.001892e+01 1.358492e-04 4.000043e+02
693 58185 5.026263e+01 5.008938e-03 5.001575e+01 7.243368e-05 5.172422e+02
959 74449 5.017363e+01 3.229403e-03 5.001449e+01 4.725294e-05 8.242071e+02
1047 81041 5.015583e+01 2.873513e-03 5.001425e+01 4.254835e-05 8.495969e+02
1356 104957 5.011232e+01 2.003420e-03 5.001347e+01 2.686112e-05 1.414208e+03
1788 137565 5.008130e+01 1.383119e-03 5.001281e+01 1.365204e-05 1.953387e+03
1938 149525 5.007397e+01 1.236709e-03 5.001270e+01 1.155750e-05 2.287533e+03
2499 191937 5.006018e+01 9.609760e-04 5.001246e+01 6.628842e-06 3.565388e+03
3183 239793 5.004818e+01 7.210039e-04 5.001233e+01 4.021455e-06 5.066000e+03
3578 267205 5.004393e+01 6.359210e-04 5.001227e+01 2.884516e-06 6.016899e+03

Table 3
Example 1, eigenvalue: quadratic finite elements, correction: quadratic finite elements

(say, H2 = h) and the optimal choice of the two-scale meshes, which requires
the information of the exact eigenvectors, is not easy to take. Even though, the
matching of the two-scale meshes needs to employ much more degrees of freedom. It
is also noted that the band width of the stiff matrix resulting from quadratic finite
elements is bigger than that of linear finite elements even the number of degrees
of freedom is the same. Consequently, Algorithm I-II is the first recommendation
taking into account both the computational complexity and the accuracy.

It is seen from Figure 5 that the convergence curve and the line with slope − 4
3

are basically parallel, which coincide with our theory obtained in Section 3. The
efficiency of the three algorithms is compared in Figure 6. It is shown by the curves
of relative error of eigenvalue with respect to cpu-time of the three algorithms that
to reach the same accuracy, the cpu-time cost by our new algorithm is the least.
Taking into account both the computational complexity and the accuracy, our new
algorithm is recommended.

Example 2 Consider the following harmonic oscillator equation, which is a
simple model in quantum mechanics [12]:

−
1

2
∆u +

1

2
r2u = λu in R

3,(4.30)

where r = (x2
1 + x2

2 + x2
3)

1
2 . The first first eigenvalue of (4.30) is λ = 1.5 .

In our computation, we solve the following problem:
{

− 1
2∆u + 1

2r2u = λu in Ω,

u = 0 on ∂Ω,
(4.31)

where Ω = (−5.5, 5.5)3.
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the relation of relative error of eigen-
value and the cpu-time

Some numerical results are reported in Table 4, Table 5 and Table 6 (see also
Figure 7 and Figure 8). The similar conclusions to that of Example 1 are valid,
too.

Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
27 4977 2.252091e+00 5.013940e-01 1.738829e+00 1.592193e-01 5.712349e+00
35 5489 2.068006e+00 3.786706e-01 1.683745e+00 1.224967e-01 6.952679e+00
47 6017 1.690342e+00 1.268949e-01 1.556450e+00 3.763324e-02 8.403858e+00
53 6521 1.669702e+00 1.131344e-01 1.531315e+00 2.087672e-02 9.971491e+00
181 14233 1.645426e+00 9.695090e-02 1.525916e+00 1.727734e-02 2.975704e+01
241 16873 1.638893e+00 9.259522e-02 1.518491e+00 1.232724e-02 4.028834e+01
469 31225 1.611284e+00 7.418938e-02 1.512807e+00 8.537748e-03 1.022111e+02
721 47593 1.571037e+00 4.735784e-02 1.511080e+00 7.386638e-03 1.831879e+02
1303 76321 1.538089e+00 2.539292e-02 1.505014e+00 3.342593e-03 3.946985e+02
2329 144745 1.526544e+00 1.769601e-02 1.502957e+00 1.971279e-03 1.059755e+03
4207 264097 1.518915e+00 1.261028e-02 1.502770e+00 1.846696e-03 2.354661e+03
7717 437117 1.510613e+00 7.075032e-03 1.501398e+00 9.318475e-04 5.157929e+03
13743 829761 1.507146e+00 4.764000e-03 1.500791e+00 5.273330e-04 1.476376e+04

Table 4
Example 2, eigenvalue: linear finite elements, correction: linear finite elements

Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
27 761 2.252091e+00 5.013940e-01 1.782641e+00 1.884274e-01 3.041508e-01
35 825 2.068006e+00 3.786706e-01 1.672741e+00 1.151608e-01 4.074850e-01
47 897 1.690342e+00 1.268949e-01 1.561519e+00 4.101254e-02 5.608289e-01
53 957 1.669702e+00 1.131344e-01 1.538927e+00 2.595134e-02 7.200279e-01
181 1933 1.645426e+00 9.695090e-02 1.522251e+00 1.483402e-02 2.278068e+00
241 2293 1.638893e+00 9.259522e-02 1.511938e+00 7.958602e-03 3.367584e+00
469 4093 1.611284e+00 7.418938e-02 1.506965e+00 4.643357e-03 8.377332e+00
721 6133 1.571037e+00 4.735785e-02 1.503343e+00 2.228966e-03 1.871426e+01
1303 9937 1.538089e+00 2.539292e-02 1.500963e+00 6.417660e-04 5.555781e+01
2329 18421 1.526544e+00 1.769601e-02 1.500488e+00 3.251057e-04 1.746728e+02
4207 33361 1.518915e+00 1.261028e-02 1.500247e+00 1.649511e-04 2.667746e+02
7717 56269 1.510613e+00 7.075031e-03 1.500094e+00 6.249937e-05 6.320155e+02
13743 105185 1.507146e+00 4.764063e-03 1.500041e+00 2.758880e-05 1.809844e+03
22715 176889 1.505164e+00 3.442762e-03 1.500021e+00 1.429715e-05 3.792496e+03

Table 5
Example 2, eigenvalue: linear finite elements, correction: quadratic finite elements
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Nc Nf λc |λc − λ|/λ λh |λh − λ|/λ CPU time(s)
343 36065 1.659367e+00 1.062448e-01 1.522569e+00 1.504587e-02 2.308609e+02
487 45281 1.607261e+00 7.150705e-02 1.514952e+00 9.967992e-03 3.239362e+02
707 58641 1.586810e+00 5.787337e-02 1.510467e+00 6.977987e-03 4.844429e+02
1199 89409 1.542654e+00 2.843583e-02 1.502456e+00 1.637537e-03 1.443545e+03
1451 105777 1.526699e+00 1.779916e-02 1.500807e+00 5.382192e-04 1.901823e+03
2859 192049 1.512951e+00 8.634125e-03 1.500441e+00 2.937642e-04 4.319619e+03
3003 200305 1.511526e+00 7.684173e-03 1.500414e+00 2.762024e-04 5.100633e+03
3867 257521 1.504085e+00 2.723248e-03 1.500079e+00 5.237255e-05 8.825501e+03
4903 323105 1.503121e+00 2.080907e-03 1.500061e+00 4.077350e-05 1.203078e+04
8311 540257 1.501821e+00 1.213935e-03 1.500024e+00 1.584400e-05 3.006319e+04
9799 630689 1.501352e+00 9.015333e-04 1.500020e+00 1.324906e-05 3.373728e+04

Table 6
Example 2, eigenvalue: quadratic finite elements, correction: quadratic finite elements
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5. Concluding remarks

Although our results and analysis are provided only for the coupling of a linear
finite element space and a quadratic finite element space, the similar results for
coupling of general polynomials subspaces may be expected. For example, let Ω be

convex polytopic domain in R
d(d ≥ 1), D ⊂⊂ Ω0 ⊂⊂ Ω, Sh,1

0 (Ω) denote the lower
order finite element space which consists of piecewise polynomial of degree less or

equal to r and Sh,2
0 (Ω) denote the higher order finite element space which consists

of piecewise polynomials of degree less or equal to p (1 ≤ r < p). We may obtain
the following results: If u ∈ H1

0 (Ω)∩Hr+1+α(Ω), Assumption R(Ω) holds and uh,2

is obtained by Algorithm A, then

‖Ph,2u − uh,2‖1,D <
∼ |λh,1 − λ| + ‖Ph,2u − uh,1‖0,Ω + hγ‖u − uh,1‖1,Ω

<
∼ hr+γ

Ω
.

Moreover, if u ∈ H1
0 (Ω) ∩ Hr+1+α(Ω) ∩ Hp+1(Ω0), then

‖u − uh,2‖1,D <
∼ hp

Ω0
+ hr+γ

Ω
.
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If (λh,2, uh,2) is obtained by Algorithm C, we may also have

‖u − uh,2‖1,Ω <
∼ hr+min(γ,α)

and

|λ − λh,2| <
∼ h2(r+min(γ,α)).

It should be mentioned that it may not be so easy to obtain the above results if Ω is
a domain with curved boundary. The reason is that the standard high order finite
element approximations may be polluted near the boundary. In order to maintain
the high accuracy of higher order finite element discretizations, we need some other
strategies on the boundary (c.f. [8, 24, 25, 33]).

In this paper, we have used a simple second order elliptic model problem to
demonstrate how to use a lower order finite element space to capture the global
component of the higher order finite element eigenvalue approximation and then
carry out the major computation in the higher order finite element space locally. We
believe that this local computational approach is a powerful technique in obtaining
highly accurate approximations. Indeed, such a approach has been applied to quan-
tum chemistry computations successfully, in which highly accurate approximations
to Kohn-Sham equations can be achieved, and obtain very satisfying results. For
its applications to quantum chemistry, however, there are many practical issues, in-
cluding the implementation details for local density approximations, self-consistent
iterations and pseudopotentials, that need to be addressed. We will report these
results in our forthcoming papers.
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