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Abstract. A semi-relativistic total energy of the hydrogen-like ions is presented. The es-

tablished expression taking only into account the dependence of the mass electron on the

speed could be considered as a first correction of the Bohr’s semi-classical formula. Com-

parison with relativistic total energy expression obtained from the Dirac’s relativistic wave

equation is made. In addition, the present relativistic theory of the hydrogen- like ions is

extended to the helium isoelectronic series. It is shown that, for the ground state of two

electron systems, the relativistic screening constant σrel decreases when increasing the nu-

clear charge up to Z=5. Beyond, σrel increases when increasing Z and, the plot σrel= f (Z)
is like a valley of stability where the bottom is occupied by the B3+-helium-like ion. As a

result, only He, Li+, Be2+ and B3+ exist in the natural matter in low temperature. All the

other helium-like positive-ions, such as C4+, N5+, O6+, F7+, Ne8+, ···, can only exist in hot

laboratory and astrophysical plasmas.

PACS: 31.15.bu, 31.15.vj
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1 Introduction

In the year 1913, Bohr managed to explain the spectrum of the hydrogen atom by an ex-

tension of Rutherford’s planetary atomic model (1911). In the Bohr’s model, the negatively

charged electron revolves about the positively charged atomic nucleus because of the attrac-

tive electrostatic force according to Coulomb’s law. On the basis of this classical atomic model,

Bohr expresses total energy of the hydrogen atom considering the mass electron as constant,

independent then with his velocity. But, since 1905, Einstein develops the theory of relativity

and shows that mass of rapid elementary particles varies with their speed. As classical theory

is not the framework for interpreting atoms, relativistic corrections of Bohr’s formula may be
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done just after 1913. But, these relativistic corrections have been done only in the year 1916

by Sommerfeld (in the framework of the elliptical orbits model) and after in the year 1926

by use of the relativistic wave equation established by Dirac after the discovery of the spin

electron (1925) by Uhlenberg and Goudsmith. However, it would be very interesting to make

relativistic correction of the Bohr’s semi-classical formula before 1916, considering only the

dependence of the mass electron on the electron’s speed as explained by Einstein. This would

permit to interpret theoretically experimental studies who indicate that [1], due to the vari-

ation of the mass electron with the speed, the relativistic total energy levels of the hydrogen

atom are lowest than the non perturbated total energy levels. Taking after into account the

spin electron, one may explain clearly the contribution of the spin in the relativistic effects on

the hydrogen-like ions energy-levels. This paper is prepared in the intention to show that, the

relativistic effects due to the variation of the electron mass with the speed on the hydrogen

isoelectronic sequence energy levels can be put into evidence separately with that due to the

spin. In the Dirac’s theory, this separation is not possible, as his relativistic wave equation

is constructed by considering simultaneously the spin electron and the variation of the mass

electron with the speed. In addition, the presented relativistic theory of the hydrogen-like

ions is extended to the helium isoelectronic series. It is shown that, for the ground state of

two electron systems, the relativistic screening constant σrel decreases when increasing the

nuclear charge up to Z=5.

Beyond, σrel increases when increasing Z , and the plot σrel = f (Z) is like a valley of

stability where the bottom is occupied by the B3+-helium-like ion. As a result, only He, Li+,

Be2+ and B3+ exist in the natural matter in low temperature (LiO, Be(OH)2, and B2O3 for

example). All the other helium-like positive-ions, such as C4+, N5+, O6+, F7+, Ne8+, ···, can

only exist in hot laboratory and astrophysical plasmas.

2 Theory

2.1 Bohr’s semi-classical expression of hydrogen-like ions total energy

In the view point of the Bohr’s model, the quantized energy of the hydrogen-like ions is

En=−
Z2α2mc2

2n2
(1)

where α denotes the fine structure constant and mc2 the rest energy of the electron.

On the other hand in the framework of the Bohr’s theory, the total energy En and the

kinetic energy Ec satisfy the relation

En=−Ec.

That is to say using Eq. (1)

En=−
Z2α2mc2

2n2
=−

1

2
mv2

n .
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This equation shows that, in the view point of the Bohr’s semi-classical theory, the electron

velocity is quantized and is in the form

vn=
Zαc

n
. (2)

Besides, as well known, the Bohr’s model neglects the dependence of the mass electron

on the speed and considers also the atomic nucleus as infinitely heavy (this permits to assume

it immobile). This model takes not also into account the spin electron discovered 22 years

ago (1925) after the Bohr’s theory. If the effects of the spin electron on the energy-level of

the hydrogen-like ions couldn’t be taken into account during the elaboration of the Bohr’s

theory in 1913 (remembering that the spin were not discovered at this date), at least two

corrections to the semi-classical formula given by Eq. (1) may be made. These two corrections

are connected to experimental observations and concern

i) Isotopic shift of the spectral lines due to the dependence of energies on the mass nucleus

[2].

ii) Shift of the relativistic energy-levels of the hydrogen isoelectronic series with respect to

the Bohr’s semi-classical energy-levels due to the dependence of the mass electron on

velocity [1].

For the first correction, the mass nucleus is certainly much bigger than that of the electron,

but not infinite. Thus, both electron and nucleus revolve about their common center of gravity

which is not exactly identical with the center of the atom. As far as the second correction is

concerned, it may be consist of taking into consideration the dependence of the mass electron

upon the velocity in the early day of the Bohr’s theory (as the Einstein’s relativity theory has

been performed since 1905). The following study is in this direction turning into account the

fact that the hydrogen atom is a weak relativistic atomic system.

2.2 Dirac’s relativistic expression of the hydrogen-like ions total energy

The Bohr’s model successfully predicted the total energies for the hydrogen-like ions in the

framework of a semi-classical theory. But, one can put into evidence significant failures of

the Bohr’s model by solving the Schrödinger’s equation for the hydrogen atom as this model

ignores relativistic effects due to the motion of the electron and to its properties (the spin for

example). The theory of Dirac attempts to unify the quantum mechanics and the relativity

theory. For the hydrogen like- ions, the Hamiltonian operator is in the form

H=H0+W ,

where H0 represents the Hamiltonian of the atomic system in a the Coulomb field with the

potential U(R)=−Ze2/R and W denotes all the effects neglected in the Bohr’s theory.

In the viewpoint of the Dirac’s theory, W can be expanded as follows [1]

W =mc2−
P4

8m3c2
+

1

2m2c2

1

R

dV (R)

dR
L.S.+

h̄2

8m2c2
ÏV (R)+··· .
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Using this development, one can give a correct interpretation of some of the relativistic effects

in the hydrogen-like ions

1) the dependence of the mass electron on the speed

Wmv=−
P4

8m3c2
;

2) the spin-orbit interaction

WSO=
1

2m2c2

1

R

dV (R)

dR
L.S.;

3) the fact that the nucleus is not a punctual charge (the Darwin term)

WD=
h̄2

8m2c2
ÏV (R).

Then, the fine structure Hamiltonian W can be written as follows

W =Wmv+WSO+WD+··· .

In this development, the electronic spin- nuclear spin interaction is not taken into account.

The effects of the different terms of W are the following

1) Wmv and WD permit to put into evidence the global shift of the hydrogen-like ions energy

levels;

2) WSO permits to lift up the degeneracy of all the energetical levels characterized by the

same value of the orbital quantum number ℓ but with a different value of the inner

quantum number j=ℓ±s, s the spin of the electron.

By solving exactly the Dirac relativistic wave equation, we get [3]

Enj=mc2











1+









Zα

n−
�

j+ 1

2

�

+

q

�

j+ 1

2

�2
−(Zα)2









2










. (3)

Expanding this equation in powers of Zα, we find

Enj=mc2

(

1−
1

2

(Zα)2

n2



1+
1

2

(Zα)2

n

 

1

j+ 1

2

−
3

4n

!

+···

)

. (4)

The first term on the right hand side of Eq. (4) represents the rest energy of the electron,

the second term corresponds to the hydrogen-like ions total energy as given in the Bohr’s

theory and the last term gives the relativistic correction due to the fine structure Hamiltonian



I. Sakho / J. At. Mol. Sci. 3 (2012) 23-40 27

to order (Zα)4. Besides, even the exact solution of Dirac given by Eq. (3) is not a complete

description of the hydrogen isoelectronic series (for example it takes not into account the

hyperfine coupling due to the electronic spin-nuclear spin interaction, the Lamb shift phe-

nomenon due the quantum properties of the electromagnetic field, ect.), the Dirac’s theory

permits to put into evidence a lot of phenomena like the spin electron and the fine structure

of the hydrogen-like ions, ect. In this paper, we suggest a simple semi-relativistic theory ap-

plicable to the hydrogen-like ions and to the helium isoelectronic series where the spin of the

electron is ignored. This will permit to put into evidence the global shift of the hydrogen-like

ions energy levels without having to invoke the Darwin term WD or the Dirac’s relativistic

theory. In addition, the extension of the present theory to the helium like-ions, permit also to

put into evidence a kind of valley of stability in the ground state of two electron systems.

2.3 Semi-relativistic total energy of the hydrogen-like ions

In the viewpoint of the Einstein’s relativity theory, the momenta p and the kinetic energy Ec

of a particle of rest mass m with the speed v are given by the well knowing formulas [4]

p=
mv

q

1− v2

c2

, (5)

Ec =mc2









1
q

1− v2

c2

−1









. (6)

Introducing the β -parameter defined by β= v/c, Eq. (5) gives for the relativistic (prel) and

classical (pcl) momenta

prel=
mcβ
p

1−β2
, (7)

pcl=mcβ . (8)

In Fig. 1, we show the plots p = f (β) in mc units. One can see then, when β < 0.4, the

relativistic and classical curves overlap each other. Then, in this area, we can write prel≈ pcl.

This involves the equality between the relativistic and classical kinetic energy. So Erel
c ≈Ecl

c . On

the other hand, taking into account the fact that, for the hydrogen-like ions, the total energy

and the kinetic energy are linked by the relation E=−Ec, we can put then E=−Ecl
c ≈−Erel

c .

So, using Eq. (6), we get

E=mc2









1−
1

q

1− v2

c2









. (9)
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As in the viewpoint of the Bohr’s semi-classical theory, the electron velocity is quantized [see

Eq. (3)], the semi-relativistic energy (9) is then quantized, so

En=mc2









1−
1

q

1−
v2

n

c2









.

Using Eq. (3), we obtain finely for H-like ions

En=mc2









1−
1

q

1− Z2α2

n2









. (10)

In this expression,

• mc2 denotes the rest energy of the electron;

• α is the fine structure constant;

• Z and n are respectively the charge number and the principal quantum number.

For chronological aspect, it should be underlined that Eq. (10) has been established in 1993,

exactly 80 years ago after the establishment of the Bohr’s semi-classical formula (1913) given

by Eq. (1).
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2.4 Valley of stability in He-like ions

In this section, we extend the present semi-relativistic theory to the helium like-ions using the

Screening Constant by Unit Nuclear Charge (SCUNC) method [10–14] which is one of the

existing semi-empirical techniques of calculations [15–18]. In the framework of the SCUNC-

method, total energy of (Nℓ,nℓ′)2S+1 Lπ state is given by

E(Nℓnℓ′;2S+1 Lπ)=−Z2

�

1

N2
+

1

n2

�

1−β
�

Nℓnℓ′;Z
��2
�

(in Ryd). (11)

In this equation, the principal quantum numbers N and n are respectively for the inner and

the outer electron of the helium-isoelectronic series. The β -parameters are screening constant

by unit nuclear charge expanded in inverse powers of Z as follows

β
�

Nℓnℓ′;2S+1 Lπ;Z
�

=
p
∑

k=1

fk

�

1

Z

�k

, (12)

where fk= fk(Nℓnℓ
′;2S+1 Lπ) are screening constants to be evaluated.

For the ground state which interests our study, Eq. (11) is in the form

E(1s2;1Se)=−Z2
�

1+
�

1−β(1s2;1Se;Z)
�2
�

(in Ryd). (13)

As far as the β -parameter is concerned, it is given by (for k=1)

β(1s2;1Se;Z)=
f1

Z
.

Let’s us do the change f1=σ. We obtain

β(1s2;1Se;Z)=
σ

Z
.

Taking into account this expression, the total energy given by Eq. (13) is written in the form

E(1s2;1Se)=−Z2

�

1+
�

1−
σ

Z

�2
�

(in Ryd). (14)

Since 1Ryd=α2mc2/2, Eq. (14) can be rewritten in the form

E(1s2;1Se)=−
Z2α2mc2

2

�

1+
�

1−
σ

Z

�2
�

. (15)

This expression is then a classical one, we can then write

Ecl(1s2;1Se)=−
Z2α2mc2

2

 

1+

�

1−
σcl

Z

�2
!

. (16)
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As far as the semi-relativistic expression is concerned, we obtain using Eq. (10)

Erel(1s2;1Se)=mc2



1−
1

p

1−Z2α2





 

1+

�

1−
σrel

Z

�2
!

. (17)

Neglecting the relativistic effects due to the dependence of the mass electron upon the speed,

Eq. (17) leads to the classical Eq. (16).

3 Results and discussion

3.1 Effect of the dependence of the mass electron on the speed on the energy

levels of the hydrogen-like ions.

To put into evidence the effects of the dependence of the mass electron upon the speed on the

energy levels of the hydrogen-like ions, let’s us consider the energetical diagrams as shown

in Fig. 2. In this diagram, Esrel
n and Escl

n represent the total energy of the hydrogen atom

given respectively by our semi-relativistic formula (1) and by the semi-classical formula of

Bohr (1) where one must put Z = 1. Here we have considered a few levels for n= 1–3.

The energy values are obtained in the basis of [5]: velocity of light c=299792.9 km sec−1;

electron rest mass: m= 9.1085×10−28 g; fine structure constant: α= 1/137.04; 1 eV =
1.60207×10−19 J. Taking into account these values, we obtained: mc2=0.51098 MeV; α2=
5.3248×10−5. Fig. 2 indicates clearly that, due to the dependence of the mass electron on the

speed, the relativistic energy levels are shifted down with respect to the semi-classical energy
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levels in good agreement with experiment [1]. But, one can see that, when the principal

quantum number increases, the distance between the relativistic and the semi-classical levels

decreases. For example, in the particular case of n=3 level, the energetical difference Escl−
Esrel=−1.511592+1.511596=0.000004. This points out that, the hydrogen atom is a very

weak relativistic system and in high excited states, it can be considered as a classical atomic

system.

3.2 Limit of validity of the present semi-relativistic expression

Our formula (10) is valid in the area 0≤β<0.4. As β= v/c, Eq. (10) can be used for all the

hydrogen-like ions with the condition

0≤ vn/c<0.4.

By use of Eq. (3), this condition becomes

Zα/n<0.4. (18)

• For the ground state n=1, we get from Eq. (18) Z=0.4/α. That means using the value of

the fine structure constant α=1/137.04

Z<54.816. (19)
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As for the xenon atom Z = 54, this result indicates that, in the ground state, all the

hydrogen-like ions from H to Xe53+ can be considered as weak relativistic atomic system.

Then, the effects of the dependence of the mass electron upon the speed on the energy levels

of these atomic systems can be put into evidence by use of Eq. (10). In Fig. 3, we have indi-

cated the shift of the relativistic energy levels with respect to the semi-classical energy levels

for the Xe53+ ion. For excited states n>1, we get again from Eq. (18) Z<0.4n/a. For the

lowest state n=2, we find using a=1/137.04

Z<109.632. (20)

This result shows that, in the excited states, all the natural hydrogen-like ions can be consid-

ered as weak relativistic atomic systems. Then, our formula (10) could be applied for such

systems.

3.3 Calculations of the energetical shifts

3.3.1 According to the Dirac’s theory

Developing the Dirac’s truncated solution (4), we obtain after arrangement

Enj =−
Z2α2mc2

2n2
−

Z4α4mc2

2n3

 

1

j+ 1

2

−
3

4n

!

. (21)

The Hamiltonian of the hydrogen-like ions can be written in the form

H=H0+W mv
j . (22)

In this expression, W mv
j denotes the eigenvalue of the fine structure Hamiltonian W mv

j . Then

we can state

〈W mv
n, j 〉=−

Z4α4mc2

2n3

 

1

j+ 1

2

−
3

4n

!

. (23)

By use of this equation, we find respectively for the levels 1s1/2, 2s1/2, 2p1/2, 2p3/2, 3s1/2,

3p1/2, 3p3/2, 3d3/2 and 3d5/2, the following results

• For 1s1/2 level,
­

W mv

1, 1

2

·

=−
1

8
Z4α4mc2. (24a)

• For 2s1/2 and 2p1/2 levels,

­

W mv

2, 1

2

·

=−
5

128
Z4α4mc2. (24b)

• For 2p3/2 level,
­

W mv

2, 3

2

·

=−
1

128
Z4α4mc2. (24c)
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• For 3s1/2 and 3p1/2 levels,
­

W mv

3, 1

2

·

=−
1

72
Z4α4mc2. (24d)

• For 3p3/2 and 3d3/2 levels,

­

W mv

3, 3

2

·

=−
1

216
Z4α4mc2. (24e)

• For 3d5/2 level,
­

W mv

3, 5

2

·

=−
1

648
Z4α4mc2. (24f)

These results indicate the degeneracy of all the levels with the same value of the j-inner

quantum number but with a different value of the ℓ-orbital quantum number.

3.3.2 According to the integral calculation

The three terms of the fine structure Hamiltonian in the viewpoint of the Dirac’s theory, can

be calculated directly. If Φ(r) represents the wave function associated to a stationary state of

the hydrogen-like ions, the average value of W is given by

〈W 〉=
〈Φ|W |Φ〉

〈Φ|Φ〉
,

with 〈W 〉=〈Wmv〉+〈WSO〉+〈WD〉.
These average values are easily calculated for the hydrogen atom [1]. Generalisation of

the results obtained in the case of the hydrogen-like ions gives

• For 1s1/2,

〈Wmv〉=−
5

8
Z4α4mc2; 〈WD〉=

1

2
Z4α4mc2; 〈WSO〉=0.

Then

〈W 〉1s1/2=−
1

8
Z4α4mc2. (25a)

• For 2s1/2 level,

〈Wmv〉=−
13

128
Z4α4mc2; 〈WD〉=

1

16
Z4α4mc2; 〈WSO〉=0.

Then

〈W 〉1s1/2=−
5

8
Z4α4mc2. (25b)

• For 2s1/2 level,

〈Wmv〉=−
13

128
Z4α4mc2; 〈WD〉=

1

16
Z4α4mc2; 〈WSO〉=0.
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Then

〈W 〉2s1/2=−
5

8
Z4α4mc2. (25c)

• For 2p1/2 level,

〈Wmv=−
7

384
Z4α4mc2; 〈WD〉=0; 〈WSO〉=−

1

48
Z4α4mc2.

Then

〈W 〉2p1/2=−
5

128
Z4α4mc2. (25d)

• For 2p3/2 level,

〈Wmv〉=−
7

384
Z4α4mc2; 〈WD〉=0; 〈WSO〉=

1

96
Z4α4mc2.

 Figure 4: Fine stru
ture of the n=2�3 levels of the hydrogen atom. Due to the e�e
t of the �ne stru
tureHamiltonian W , the n=2�3 levels are split up into three �ne stru
ture levels: three 
onfounded levels (2s1/2,
2p1/2), (3s1/2, 3p1/2) and (3p3/2, 3d3/2) and two simple levels 3p3/2 and 3d5/2. The energeti
al shifts arethe same for (2s1/2, 2p1/2), (3s1/2, 3p1/2) and (3p3/2, 3d3/2) levels.
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Then

〈W 〉2p3/2=−
1

128
Z4α4mc2. (25e)

The above results give the positions of the 2s1/2, 2p1/2 and 2p3/2 levels with respect to the

non perturbated energy of the n=2–3 levels for the hydrogen atom as shown in Fig. 4. Due to

the effects of the W -fine structure Hamiltonian, the n=2–3 levels are split up into three fine

structure levels: three confounded levels (2s1/2, 2p1/2), (3s1/2, 3p1/2) and (3p3/2, 3d3/2)

and two individual levels 3p3/2 and 3d5/2. In the particular case of 2s1/2 and 2p1/2 levels,

the radio spectroscopy experiments of Lamb and Retherford in 1947 as described in Ref. [2],

have shown that these two levels are separated as indicated in Fig. 5. For the hydrogen atom,

the difference frequency is equal to 1057.845±0.09 Hz. This difference (and generally all

difference between the fine structure levels with the same value of the principal quantum

number n and the inner quantum number j but with a different value of the orbital quantum

number ℓ) is called the Lamb shift. On the theoretical sides, the quantum electrodynamics

theory gives this difference at 1057.864±0.014 Hz [2], which is in very good agreement with

the radio spectroscopy experiments of Lamb and Retherford.

                                                                                             
                                                                                                      2p3/2 

                                                                 9910 MHz 

                                                                                                      2p1/2 

                                                                  
                                                                                 2s1/2 

1057.90 MHz Figure 5: Three �ne stru
ture levels labelled 2s1/2, 2p1/2, 2p3/2. Taking into a

ount the quantumproperties of the ele
tromagneti
 �eld, the degenera
y of the 2s1/2 and 2p1/2 is elevated (this 
orrespondsto the Lamb shift phenomenon). Here, we indi
ate the di�eren
e frequen
y between 2s1/2 and 2p1/2equals to 1057.845±0.09 Hz a

ording to the radiospe
tros
opy experiments of Lamb and Retherford forthe hydrogen atom.
3.3.3 According to the present semi-relativistic theory

Let’s us expand our semi-relativistic formula (10) in powers of Zα. We obtain

En=mc2

�

1−

�

1+
Z2α2

2n2
+

3

8

Z4α4

n4
+···+θ

�

Zα

n

�n
��

. (26)

To 2-order approximation, Eq. (26) yields

En=−
Z2α2mc2

2n2
−

3

8

Z4α4mc2

n4
−···. (27)
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According to Eq. (22), we can write again

H=H0+Wmv. (28)

Comparing Eqs. (27) and (28), one can see that, the second term in the right hand side of

Eq. (27) corresponds to the eigenvalue of the fine structure Hamiltonian Wmv. Then we can

get

­

W mv
n

·

=−
3

8

Z4α4mc2

n4
. (29)

Let’s us now move on invoking the equipartition theorem that constitutes an important

result in thermodynamics, statistical mechanics and kinetic theory [6,7]. As developed above,

the present theory is based on the condition that the relativistic and classical kinetic energies

satisfy the relation E=−Ecl
c ≈−Erel

c , where E represents the total energy of the hydrogen-like

ions. As the spin electron is ignored, the motion of the electron corresponds to 3 degrees

of freedom (as defined by the three coordinates of the speed vx , vy , vz). Then according to

the equipartition theorem, the average kinetic energy is divided up equally between all the

degrees of freedom. So, on the side of the present semi-relativistic theory, to each x -degree of

freedom, corresponds the average energetical shift

〈Wmv〉n=
1

3

­

W mv
n

·

.

From Eq. (29), we get finally

〈Wmv〉n=−
1

8

Z4α4mc2

n4
. (30)

Then, due to the dependence of the mass electron on speed, the n-levels of the hydrogen-like

ions are shifted down with the quantities

• For n=1,

〈Wmv〉1=−
1

8
Z4α4mc2. (31a)

• For n=2,

〈Wmv〉2=−
1

128
Z4α4mc2. (31b)

• For n=3,

〈Wmv〉3=−
1

648
Z4α4mc2. (31c)
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3.4 Comparison with the theoretical calculations

If we consider the results given by Eqs. (24) and (25), one can remark that

〈Wmv〉
PC =〈W 〉I C1s 1

2
=
­

W mv

1, 1

2

·DC

=−
1

8
Z4α4mc2, (32a)

〈Wmv〉
PC
2 =〈W 〉I C2p 3

2
=
­

W mv

2, 3

2

·DC

=−
1

128
Z4α4mc2, (32b)

〈Wmv〉
PC
3 =

­

W mv

3, 5

2

·DC

=−
1

648
Z4α4mc2. (32c)

In Eq. (32), the subscripts signification are the following: PC represents the Present Calcula-

tions, IC represents the Integral Calculations, and DC represents the Dirac’s Calculations.

These results point out that, our semi-relativistic shift (30) in connection with the equipar-

tition theorem coincides with the non degenerated energy levels of the spectroscopic terms

1s1/2, 2p3/2 and 3d5/2. Henceforth, we can generalize this result. For a non degenerated level

corresponding to the maximum value of the inner quantum number j=ℓ±s, the energetical

shift due to the fine structure Hamiltonian W is given by the formula from Eq. (30)

〈Wmv〉 j=n− 1

2
=−

1

8

Z4α4mc2

n4
. (33)

In the particular case of the n=4 level, Eq. (33) gives for to the 4 f7/2 term

〈Wmv〉 7

2
=

1

2048
Z4α4mc2. (34)

Using Eq. (33) obtained from the Dirac’s relativistic theory, we find

­

W mv

4, 7

2

·

=
Z4α4mc2

2×43

 

1

7

2
+ 1

2

−
3

4×4

!

=−
Z4α4mc2

2048
.

We get then the same result (34). This agreement indicates the exactitude of Eq. (33). Sub-

sequently, Eq. (33) permits to calculate directly the energetical shift of any non-degenerated

level of the hydrogen -like ions without needing to invoke the Dirac’s theory or the integral cal-

culations. On the other hand, it is interesting to underline that, our semi-relativistic formula

(10) contains the semi-classical theory of Bohr (1). In the same way, the Dirac’s relativistic

formula (3) contains that of the present work. This is clearly indicated below. If we consider

Eq. (1) and the expansions (4) and (27), we get after arrangement

En=−
Z2α2mc2

2n2
( Bohr’s semi-classical results)

En=−
Z2α2mc2

2n2
−

3

8

Z4α4mc2

n4
( Present semi-relativistic results)

En=−
Z2α2mc2

2n2
−



−
3

8

Z4α4mc2

n4
+

1

2

Z4α4mc2

n3
�

j+ 1

2

�



 ( Dirac’s relativistic results)



38 I. Sakho / J. At. Mol. Sci. 3 (2012) 23-40

3.5 Valley of stability in the helium-like ions

Let’s us evaluate empirically the values of the classical and relativistic screening constants

using Eqs. (16) and (17). In this purpose, we use the experimental total energies [8, 9] of

some helium-like ions (Z =2–10). From Eqs. (16) and (17), we obtain the results quoted

in Table 1. In order to enlighten the differences between the values of the classical (σcl)

and the relativistic (σrel) screening constants, let’s us draw the plot σ= f (Z) in terms of the

nuclear charge Z of the helium-like ions. The results obtained are shown in Figs. 6 and 7.

From these figures, it is seen that the classical screening constant σcl decreases monotony

when increasing the nuclear charge. As far as the relativistic screening constant is concerned,

Fig. 7 indicates clearly that the σrel screening constant decreases up to Z=5 (B3+) and after,

increases when increasing the nuclear charge. The plot is like a valley where the bottom is oc-

cupied by the B3+-helium like ion. It is well know that atoms can be ionized by bombardment

using radiation sources. But, the more usual process of ionization is the transfer of electrons

between atoms with respect to their electronegativity properties. Such a transfer is generally

driven by the reach of stable “closed shell” electronic configurations (for most of the atoms,

the stable shell contains eight electrons). As a result, the oxygen atom for instance, gains two

electrons during the natural ionization process. So the natural ion obtain is O2−. Then, Li, Be

and B which are electropositive atoms, can only have positive electric charge after the natural

ionization process and become respectively Li+, Be2+ and B3+. But, all the non metallic atom,

like C, N, O, F, Cl, ect., cannot lose electrons during a natural ionization process as they are

not electropositive atomic systems. This is shown by the relativistic behavior of the screening

constant as indicated in Fig. 7. In summary, only the closed shell core of Li+, Be2+ and B3+ are

stable and that of C4+, N5+, O6+, F7+, Cl8+, ect, are instable and these ions can only exist in
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lassi
al (σcl) and relativisti
 (σrel) s
reening 
onstant for some helium-like ions (Z= 2�10). We have indi
ated in the se
ond 
olumn of the table, the experimental energy of theground state of ea
h 
onsidered helium-like ions (in eV).
Helium-like Ground state Classical screening Relativistic screening

ions energy (in eV) constant (σcl) constant (σrel)

He 79.01a 0.655 7 0.656 0

Li+ 198.09b 0.642 2 0.643 2

Be2+ 371.60b 0.636 6 0.639 2

B3+ 599.58b 0.633 3 0.638 2

C4+ 882.05b 0.630 7 0.639 2

N5+ 1219.07b 0.628 2 0.641 8

O6+ 1610.69b 0.625 5 0.645 8

F7+ 2057.68b 0.619 3 0.648 3

Ne8+ 2557.94b 0.618 9 0.705 9
a Ref. [8].
b Ref. [9].

hot laboratory or astrophysical plasmas. It is this important result that one can retain through

the behavior of the relativistic screening constant whose plot is like a valley of stability.

4 Conclusion

In this paper, we have presented a simple semi-relativistic theory for the hydrogen-like ions

that could be considered as a first correction of the Bohr’s semi-classical theory. The possibility

to interpret physically the relativistic effect due to the variation of the mass electron with
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velocity on the energy levels of the hydrogen isoelectronic series without invoking the Dirac’s

theory is demonstrated in this work. In addition, it is shown that, for the ground state of two

electron systems, the relativistic screening constantσrel decreases when increasing the nuclear

charge up to Z=5. Beyond, σrel increases when increasing Z and, the plot σrel= f (Z) is like

a valley of stability where the bottom is occupied by the B3+-helium-like ion. As a result, only

He, Li+, Be2+ and B3+ exist in the natural matter in low temperature. All the other helium-

like positive-ions, such as C4+, N5+, O6+, F7+, Ne8+, ···, can only exist in hot laboratory and

astrophysical plasmas.
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