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Abstract. The recently formulated entangled trajectory molecularadyics (ETMD) theory
is applied to the collinear hydrogen exchange reaction. réaetion probability is calculated
for one- and two-dimensional of collinearH, model. It is found that although the results of
ETMD are not in good agreement with quantum mechanics siiouks the numerical trend is
consistent with each other.
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1 Introduction

Quantum-mechanicalffects are essential in many chemical reactions, such agppérbenergy,
interference, tunneling and nonadiabatic behavior. Titependent quantum wavepacket methods
are widely used to study molecular dynamics. Traditionalhoés of solving the time-dependent
Schrodinger equation are based on basis sets of funcspasial grids or discrete variable rep-
resentation scale exponentially with the system size, lagigtfore these methods are not feasible
for systems beyond eight or so dimensions [1]. At the same,talassical molecular dynamics is
intensively used to study complex systems, but it is inckpabdescription quantum-mechanical
effects. Itis, as a long-standing goal in this area, the usefigtelop semiclassical methods which
can both favorable scaling with respect to system size atutaie description of the quantum phe-
nomena. And, considerable progress has been made ovestliewadecades in the development
of trajectory-based approaches [2—8]. The methodology@ingled trajectory molecular dynam-
ics (ETMD), where Wigner distribution function is repretshas a trajectory ensemble, is also
developed and is successfully applicable to several m¢6les 11-13].

The Wigner transform of the quantum Liouville equation gieguivalently representations of
quantum mechanical and serves as the basis for the ETMD thetlin@re the Wigner distribution
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function represents as an ensemble of trajectories. Thdaoahguantum character enters this
method through the interactions between the ensembletivajes, which involves as the distribu-
tion function exists in the equations of entangled trajeeto

Collinear hydrogen exchange reaction is one benchmark hodddemical reactions. This
system has been investigated bffelient approaches, and the reaction probability and ratgaoin
for the elementary reaction have been calculated usingici$14,15], semi-classical [16,17] and
guantum methods [18-20]. The application the entanglgddi@y molecular dynamics method
(ETMD) to the standard collinear chemical reaction, whararqum éects are especially signif-
icant, is encouraging . In this letter the collinear-H, exchange reaction is studied using the
ETMD method in Wigner phase space.

The Wigner function, corresponding to the wave functigiu;t), can be written as follows
[21]:

p(q,p;t)z(zﬂiﬁ) f dyw” (q+y/2;)w(g-y/2;t)etY, 1)

where all integrals are fromoo to 4-co unless otherwise noted.

ETMD method is based on solving the quantum Liouville equratising a trajectory ensemble
with non-classical terms in time evolution. The equatiohmotion for the entangled trajectories
can be defined as follows as [6,7,11,12]
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whereVg =V(qu, -, 0k+Yk/2,+,0n) andk=1,---,n—1.

In the following, we illustrated the ETMD method by calcitaf the reaction probability of
one-dimensional and two-dimensional model which mimidimear hydrogen exchange reaction.
There are few dierent sampling method, such as, normal sampling of a muédsional Gaus-
sian or simply use a density cditdn a uniform sampling, to sample initial values of Wigner
function. In our numerical calculation, we sample the aitralues of the trajectories from the
Gaussian distribution according to the same propertieesélinitial values are the “rectangle”
shape in the phase space. Actually, it is one of the methaalgoid the rectangle by evolving these
initial points under the Fokker-Planck equation. Many agphes to the problem of constructing
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Figure 1: Transmission probability for one-dimensional model of collinear hydrogen exchange reaction as a func-
tion of initial wave packet energy, ETMD and EQ results.

a smooth (positive) distribution function from a finite séth sampled points have been devel-
oped. In our simulations, we employ the adaptive kernelitieastimation method [7,8,11-13,22]
to construct a smooth functigr(qs,gp, p1, P2;t) from the the instantaneous trajectory ensemble at
each step in the time evolution.

We first compute the energy-resolved transmission prokiabilfor the Eckart barrier mim-
icking the collinear hydrogen exchanged reaction in onesdision. The potential can be written
as

V =Dcosh?(Zx). (5)

In mass-scaled units (scaled iy, / 2), the parameters of the barri&=16 andZ =1.3624 [23].
The initial Gaussian wavepacket,

1/4
¥ (0) 2(27&) exp(—a(x—0o)?+ipo(x—0p)), (6)
is located on the left of the Eckart barrier. The choice diahparameters agr=6.0,go=-2.0},
and the initial energy of wavepackBt=a/2+ p3/2. We calculate the transmission probability
of the wavepacket to the right of the barrier as the funtiothefwavepacket initial energy. The
exact quantum (EQ) transmission probability is defined asntegrally(q,t)[?> from g to +co.
While in the ETMD method the probability is defined as the fi@e of trajectories withg> gF,
whereq* is the barrier position. As shown in Fig. 1, the transmissioababilities using the
ETMD method are in good agreement with the exact quantumiqii@as. And increasing the
mean energy increases the probability transfer acrossattiel both in ETMD and EQ methods.

As an example of two dimensional case of this typical systemcalculate the transmission
probability of the two-dimensional model for collinear lmgden reaction. The dynamics is gov-
erned by the two-dimensional Hamiltonian, which in masdest Jacobi coordinates takes the
form
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Figure 2: The wave packet transmission probability for two-dimensional model of collinear hydrogen exchange
reaction as a function of initial wave packet energy, ETMD and EQ results.

and described the system in Jacobi coordinates can reducepoal and computationafferts.
We use the Wall-Porter potential surface [24] due to the Erapalytical form and compare the
exact quantum method work on this potential [25]. And theeptél surface symmetrics with
respect tapo =arctar(r /R) =x/6.

The initial wave packet can be written as

W(O) _ /; <ala,2)l/Ze—al(R—Ro)Z—az(r—ro)ZHpo(R—Ro)’ 8)

where R is the distance betwekin and the diatomic, and r is the distance betwkgnandHc.
Values of the parameters in atomic units (scaled by the emlutass of the diatomioy /2=1)
areRy=4.5,r0=1.3, a1 =4.0, a2 = 9,73, andpy = [-15,-1].The wave packet transmission
probability for two-dimensional model of collinear hydergexchange reaction are show in Fig. 2.
The numerical results show that the tendency of transnmiggiobability based on ETMD method
is consistent well with the exact quantum results, and tteeteguantum results are from Ref.
[25]. Itis found with the increase of wave packet initialabenergy, the reaction probabilities
increase to the max quantity and then decreases to smalkhfglitles. And we also know the
wave packet with high initial total energy can pass over §mrsetric of the potential to the
reactant domain at the beginning, but many members of tiextoay ensemble reflect back by
the potential barrier with time evolution, and the transiois probability is converged to a small
quantity finally. The dference between the quantum and entangled trajectory plitibalilue to
the positive approximated ETMD method cannot capture fudirqum dynamics.

In summary, we extend the entangled trajectory moleculaahics method to collinear hy-
drogen exchange reaction. We calculated the transmissidrabpilities versus initial wave packet
energy, and compared with exact quantum results. Numaesiicailations show that the ETMD re-
sult tendency is in good agreement with exact quantum reslifte entangled trajectories motion
equations are derived from the Wigner function, continpityciple and normalized conservation.
The Wigner representation can be faithfully describe tretum mechanics. This means that the
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entangled trajectories equation is valid in the framewdmhom-relativistic quantum mechanics. In
our simulations, we construct a smooth (positive) appratiom based on a Gaussian kernel to the
Wigner function from a finite set dfl sampled points using the adaptive kernel density estimatio
method. The entangled trajectories equation emphasieesatlocality of quantum mechanics
via Wigner function in the entangled trajectories equatioind the interactions between the en-
semble members make the motion of entangled trajectoriés djtferent from the corresponding
classical trajectories. However, this method cannot cephe full quantum dynamics due to the
exact Wigner function can become negative. Thereforegttsea big diference between ETMD
and EQ methods. In future work, we plan to construct entahghgectory functions which con-
tained the negative value of the Wigner function.
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