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Geometric optimization of hybrid ion trap
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Abstract. In this study we determined the effect of geometry of ring electrode on the
operation of a new ion trap with cylindrical ring electrode and hyperbolical end cap
electrode. This model indicated how adjusting the geometric cell parameters could
reduce the impact of presence of higher order fields. Our work also illustrated the
possibility of improving other desired properties of a trap. For example we found
how these adjustments could minimize the non-linear effects. We also noticed the
possibility of increasing the time of ion storage in a trap by the effect of one field in a
hybrid ion trap. In this study we have obtained all of the equations of motion in a trap
analytically.
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1 Introduction

An ion trap is a device which confines ions in a particular area of a space. Hybrid ion
trap is a combination of two ion traps, quadruple and cylindrical traps which both of
them are well known traps and also have numerous uses. In this study, we grounded the
end cap electrode and connected the ring electrode to the v0 potential as common for the
standard hyperbolic trap. And then in similar theoretical case, we have calculated the
equations of motion for a single ion too [1].

v0=vdc+vr f cosΩt (1)

Ions follow the different trajectories under the influence of the applied field. If ions os-
cillate on the x-y plane with limited amplitude, they will be revealed at end. Otherwise
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the amplitude of motion increases exponentially and thus ions will be destroyed due to
the collision with electrodes. We will study these conditions in our work. On the other
hand deviation of hyperbolic geometry leads to nonlinear effects that we will also dis-
cuss it later. We have replaced the standard hyperbolic ring electrode with a cylindrical
ring electrode in this study and also we have calculated the motion equations for a single
trapped ion as mentioned earlier.

2 Calculation of the electric field and potential inside the trap

The following equations govern in the Hybrid ion trap:

{

z2

z2
0
− r2

r2
0
=1

r= r1

(2)

Where r is radial displacement and z is axial displacement. r1 is inner radius of the ring
electrode and z0 is vertex of the end cap electrode. Also θ is the asymptotic angle.

In the Eq. (1) Vdc is direct current component of the applied potential, Vr f is amplitude
of the oscillating component of the applied potential, the parameter Ω is frequency of the
oscillating potential and t is time. We assumed that electrodes have been extended to
infinity. Also the trap is free from any background ion gas.

∇2φ=0 (3)

The separating method of variables and riddance from azimuthal dependency leads to
following equation:

φ(r,z)=φ(r)φ(z) (4)

Boundary conditions says that potential of trap is v0 where r= r1 and potential is Zero
where points belong to hyperbolic electrode. The separating technique of variables leads
to the following equation eventually:

φ(r,z)=
∞

∑
n=0

An I0(pnr)cos(pnz) (5)

Where I0 is modified Bessel function in the zero order which is also a first kind function.
The potential value is being obtained by applying the Boundary conditions:

φ(r,z)=4v0

∞

∑
n=0

(−1)n

(2n+1)

I0(pnr)

I0(pnr1)
cos(pn

z

ρ
) (6)

ρ=

√

1+
r2

z2
0tg2θ

(7)
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3 Equation of motion in the HIT (Hybrid Ion Trap)

For a charged ion which its mass is m and its charge is e, we can write the following
equation

d2−→r
dt2

=− e

m

−→
∇φ (8)

With converting t (time) to the dimensionless parameter, we will have
{

d2z
dτ2 +(αz−2ξz cos(2ξ))Z(r,z)=0
d2r
dt2 +(αr−2ξr cos(2ξ))R(r,z)=0

(9)

where

τ=
Ωt

2
(10)

αz=
−16evdc

mz2
0Ω2

, ξz =
8evr f

mz2
0Ω2

(11)

αr =
8evdc

mz2
0Ω2

, ξr =
−4evr f

mz2
0Ω2

(12)

R(r,z)= z0

∞

∑
n=0

(−1)n

I0(pnr1)
[I1(pnr)cos(

pnz

ρ
)− 2r

ρ3z2
0tg2θ

I0(pnr)sin(
pnz

ρ
)] (13)

Z(r,z)=
z0

2ρ

∞

∑
n=0

(−1)n I0(pnr)

I0(pnr1)
sin(

pnz

ρ
) (14)

Where I1(x) is the modified Bessel function in first order which is also a first kind func-
tion.

4 Calculation method

To solve the motion equations analytically we must expand the R(r,z) and Z(r,z) series
at first. Using MATLAB software and Runge Kutta Method of Order 4, we continue to
calculate with expanding the above series until 6 terms. If we assume the ions are more
likely to be trapped into the center of trap and if z<< z0, we can write the Taylor series
of trigonometric functions. When we expanded the terms of Z(r,z) and after expanding
sinus in Eq. (14) until two terms, We will have:

d2Z

dτ2
+(αzη−2ηξz cos(2ξ))z=0 (15)

where

η=
π

4ρ
A− π3z2

96ρ3z2
0

(16)
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and

A=
5

∑
n=0

(−1)n(2n+1)I0(pnr)

I0(pnr1)
(17)

These equations are similar to Mathieu equation for quadrupole ion trap.

d2Z

dτ2
+(αz−2qz cos(2ξ))z=0 (18)

We can change the Eq. (15) to the canonic form (18) by defining the parameters of hybrid
ion trap like below:

αzHIB =αzη, qzHIB = ξzη (19)

These equations is just confirmed in z<< z0 conditions. If an ion is not located in center
of the trap, we must consider higher order terms in the expansion. Now in center of the
trap where z ≈ 0 and r ≈ 0 besides the conditions mentioned above, we can obtain the
equations below immediately

ρ=1, I0(0)=1, (20)

and
η=

π

4
, A= const (21)

This value is constant. First this means that qzhit and azhit are just dependent to the DC
voltages and RF radio frequencies. Second this means that η also gives the unique geom-
etry of the quadrupole ion trap corresponding with the hybrid ion trap. It is evident if
ions are not located in the center of HIT, value of η would not be constant anymore rather
it will be varied based on the ion position in the trap. But in our current situation η is
approved in the condition of z < z0

10 which is a good physical approximation. For each
a,q (or each α, ξ) one specific trajectory is being predicted for a single trapped ion . Some
of trajectories are stable and others are unstable. The relation between QIT and HIT is
interesting too. By these calculations in the center of a trap along with usage of the Eqs.
(20) and (21) we obtain:

r1= z0

√

2

π4
(22)

Where z0 and r1 are coordinates for HIT and QIT respectively. Considering previous
mentioned assumptions this equation is signifying the relation between geometries of
QIT and HIT, stability in QIT (Paul Trap) with parameter of r1 is equivalent to stability in
HIT with parameter of z0.

Now we can simulate the ion trajectories by computer software (MATLAB). Our
boundary conditions are r = z = 10−6m, r = z = 0 and dimensionless parameter of τ is
in the range of zero to 1000. After solving the system of coupled differential equations (9)
we can plot the trajectory of an ion in the HIT in the coordinates of z−t and r−t.

Now we can obtain the trajectory of the ion in the coordinate of r−z by eliminating
the parameter of τ in coordinates of r−τ and z−τ. We used MATLAB software to do
these calculations.
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5 Coefficients of field and geometric optimization

Now we expand the potential to the terms based on extent of the poles. We can express a
distribution with cylindrical symmetry by the following equation:

φ(r,z)=
∞

∑
n=0

An(r
2+z2)n/2Pn(

z√
r2+z2

) (23)

Where An is the coefficient to specify orders of the Poles (e.g. n=0-4 corresponds to the
monopole, dipole, quadrupole, hexapole and octopole, respectively).

Pn(x) is the Legendre polynomial zeros. The z axis of the electric field with mirrored
symmetry is being represented by below equation:

(
∂φ

∂z
)z=0=

∞

∑
n=1

(−1)n(2n)A2nz2n−1 (24)

In a perfect quadrupole hyperbolic ion trap (Paul Trap), the only terms which would
be nonzero are monopolar (A0) and quadrupolar (A2). However practically it would be
inevitable that some higher orders fields are present in a real ion trap. One reason for this
presence of higher orders fields is the electrodes which are being truncated. In fact the
cylindrical ring electrode and the hyperbolic end cap electrode do not extend to infinity.
This factor as well as the impact of machining and manufacturing processes leads to
presence of the higher order fields too. Now we optimize the ratio of (r1/z0) so that for
(n>2) An terms tend to zero. In Eq. (24) we see an independency from asymptotic angle
(advantage of trap).

We use Eq. (7) to calculate the ratio of ( ∂φ
∂z )z=0 and then put it equal to Eq. (24).

As a result, terms include of odd coefficients of fields (e.g. A0,A1,A3,A5) tend to zero
and terms include of even coefficients (e.g. A2,A4,A6) will be obtained. In the following
equations we calculate the hexapole, octopole and dodecapole respectively.

A2=
πv0

2z2
0

∞

∑
k=0

(−1)k(2k+1)

I0(
(2k+1)π
2(z0/r1)

)
(25)

A4=
π3v0

96z4
0

∞

∑
k=0

(−1)k(2k+1)3

I0(
(2k+1)π
2(z0/r1)

)
(26)

A6=
π5v0

96×5!z6
0

∞

∑
k=0

(−1)k(2k+1)3

I0(
(2k+1)π
2(z0/r1)

)
(27)

Precise calculations indicate the expansion of terms of (A4,A6) is not extending to infinity.
By expanding the above equations so that n is been in range of zero to maximum 300, we
can find the numerical values of coefficients of field.
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Figure 1: This figure shows the stable trajectory of an ion motion with selecting the boundary conditions so
that (r= z=10−6m), ( dz

dt =
dr
dt =0) and τ is in the range of 0 to 1000 and θ is also asymptotic angle (θ=50◦)

thus we gain (z0=0.956 cm) and (r1= 1 cm).

In our typical calculations the term of order (220) is zero .We can test it typically by
selecting the potential magnitude equal to 10 units and by using definite aspect ratio of
( z0

r1
).

This is very important because the field coefficients in Eqs. (24-26) are independence
from the asymptotic angle which leads to geometric optimization. Here we evaluate the
superposition of higher orders coefficients (A4, A6) on the quadrupole term (A2). This
means that plotted curves variations of (A4/A2), (A6/A2) could be evaluated based on
aspect ratio of (z0/r1). For this purpose we consider r1 as a constant value (e.g. 1.661
cm) and also we assume z0 is a variable. Thus, different diagrams would be plotted
by choosing the trap geometric parameters of r1, z0 and experimental parameter of v0.
Not only all diagrams of (A4/A2), follow the certain gradient, but also the diagrams of
(A6/A2) follow the same gradient.

As the calculations confirm the octapole term of (A4) is stranger than others and do-
decapole term of (A6) should be weaker than it logically, which is so. Intuitive values
were obtained practically confirm this claim too. Coefficients of even terms with n>6 are
unimportant. But the interesting point is that in HIT the obtained term signs of octapole
and dodecapole fields are negative.

We know the hyperbolic ion trap with pulled cap and optimized asymptotic angle has
stronger octapole field with the same sign with quadrupole field. But when we apply QIT
which have electrodes with finite length, the sign of octapole field would be opposite of
the sign of basic quadrupole field [6]. Negative octapole field is a response to negligible
separation of Paul Trap mass with truncated electrodes. On the other hand octapole field
with negative sign can delay the ejection of ion from the trap which is very important
matter for experimentalists.
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Figure 2: This diagram shows the superposition of fractional octapolar component on the basic quadrupole field
(A4/A2) based on aspect ratio of (z0/r1); where r1 is equal to 1.4 cm and z0 is a variable for this interval.
Expansion of the terms of A4, A2has been done to 300 terms. X-axis and y-axis represent the aspect ratio and
octapolar component respectively.

Figure 3: This diagram shows the superposition of fractional dodecapolar component on the basic quadrupole
field (A6/A2) based on aspect ratio of (z0/r1); where r1 is equal to 1.4 cm and z0 is a variable for this interval.
Expansion of the terms of A6, A2 has been done to 300 terms. X-axis and y-axis represent the aspect ratio and
dodecapolar component respectively.

Now we can exactly plot the trajectory of an ion in the HIT. Also we can plot fractional
dodecapolar components as well as fractional octapolar components per aspect ratio for
the parameters of HIT.
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6 Conclusion

Although electrodes in the studied HIT extended to infinity but negative sign is obtained
for octapolar field. This occurred due to the deviation from hyperbolic standard geome-
try (however in practice, the actual ion traps are non-linear). In fact this is how cylindrical
ring electrode shows its effect on the coefficients of field. In this trap (HIT) octapolar field
of (A4) is stranger than other resonance fields and also the dodecapolar field is obtained
with negative sign and it takes smaller values than the octapolar field. Our goal was
to optimize the parameters of the HIT such that coefficients of the field tend to zero for
higher order fields (n > 2) and also we wanted to bring the non-linear effects down to
the possible minimum. We reached these purposes at end. However, finally it must be
mentioned that the octapolar field of a HIT increases the time of ion storage in the trap
so that it can have many practical applications in the branches of physics and chemistry
such as mass spectrometry, nuclear physics, spectroscopy and vacuum technology.
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