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Abstract. We present the distorted wave Born approximation (DWBA) for electron
impact excitation and a method to calibrate the DWBA. With the calibrated DWBA, the
differential cross sections (DCS) for excitation of H and He+ from 1s to 2s and 2p are
calculated and the results are compared with the absolute experimental measurements
for H at incident energies of 50 eV and 100 eV. It has been found that the theoretical
results are in very good agreement with the experiment, which confirms the validity
of the calibration procedure. This work prepares an efficient theoretical method for
numerical simulations of non-sequential double ionization of He in strong laser pulse
in which laser-induced electron impact excitation of He+ is involved.
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1 Introduction

The process of electron impact excitation of atoms and ions is one of the most basic and
important processes in atomic physics. Theoretical investigations of such problems are
of not only practical interest but also more fundamental interest. Numerous theoretical
methods have been proposed for calculations of differential cross sections (DCS) for elec-
tron impact excitation, including the distorted wave Born approximation (DWBA) [1,2],
the second-order distorted wave model [3], the convergent close-coupling (CCC) calcula-
tions [5], and the R-matrix method [4], among which the DWBA is the simplest. The so-
phisticated theoretical models, such as the CCC and the R-matrix method, are supposed
to be able to reproduce accurate DCS in angular distribution and absolute magnitude as
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well at low incident energies. On the other hand, for high energies, both the total cross
sections (TCS) and the DCS predicted by DWBA are in fairly good agreement with the
absolute measurements. However, it has been well recognized that, at low energies, the
TCS predicted by the DWBA substantially overestimates the experimental values. “Ide-
ally, one could use the R-matrix approach for low energies, the DWBA for high energies,
and the two theories would yield the same results for intermediate energies. Unfortu-
nately, we do not live in an ideal world [6].”

The purpose of this work is to calibrate the DWBA for electron impact excitation of
H and He+ at low energies by employing the empirical formula proposed by Tong et al.
[7]. This calibration procedure has been previously applied to correct the overestimate of
DWBA on the DCS for electron impact excitation of Ne and Ar [8].

Our ultimate objective is to apply the calibrated DWBA to simulate the correlated
momentum distributions in nonsequential double ionization (NSDI) of He in strong laser
fields [9,10].

The process of NSDI is one of the laser-induced rescattering processes, which still re-
mains one of the most interesting and challenging topics in strong field physics. Both
electron impact ionization and electron impact excitation of ions could be involved in
NSDI. In the last two decades a lot of experimental measurements have been performed,
particularly noteworthy are the correlated momentum distributions of the two outgo-
ing electrons which were measured at the turn of this century [11]. In the meantime, a
number of theoretical efforts have been devoted to this problem as well. In one of the the-
oretical models, which was developed by Chen et al. [12,13], the correlated two-electron
momentum spectra can be treated as a product of the wave packet for laser-induced
returning electrons and the differential cross sections for the laser-free electron impact
excitation and/or ionization of the parent ion. In the practical simulations of the cor-
related electron momentum distributions for NSDI, one needs to evaluate the DCS for
electron impact excitation of the parent ion to all possible excited states at all incident
energies from threshold to the maximum returning electron energy which is usually less
than 200 eV. Due to the heavy computational demand, relatively simple and efficient the-
oretical approaches are highly desired. Since the shape of the DCS predicted by DWBA is
typically in fairly good agreement with the experimental measurements, once the over-
estimate of DWBA on the DCS is corrected, the calibrated DWBA can serve as a good
candidate for such required theoretical tools.

The organization of this paper is as follows: In Section 2, the theory of DWBA for
electron impact excitation is presented in detail and the method to calibrate DWBA is
proposed. In Section 3, the normalization factors for DWBA at incident energies below
1000 eV are given for electron impact excitation of H and He+ from 1s to 2s and 2p,
and the calibrated DCS of DWBA for H at 50 eV and 100 eV are compared with the
experimental measurements. Furthermore, some calibrated DCS of DWBA for H and
He+ at four different incident energies below 100 eV are analyzed. And finally some
conclusions are drawn in Section 4.

Atomic units are used in this paper unless otherwise specified.
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2 Theory

In this section, we present the general form for DWBA theory in detail on electron impact
excitation of atoms which can be easily applied to electron impact excitation of ions. A
method used to calibrate the DWBA at energies below 1000 eV is also given.

2.1 Basic equations

The problem to be considered here is inelastic electron-atom (e-A) scattering. The Hamil-
tonian for such a process is given by

H=−1

2
∇2

r1
+VA+(r1)−

1

2
∇2

r2
+VA+(r2)+

1

r12
, (1)

where r1 and r2 are the position vectors for the projectile and the bound state electron
with respect to the nucleus, respectively. In Eq. (1), VA+ is the effective potential based on
single active electron approximation, which takes the form as

VA+(r)=−1+a1e−a2r+a3re−a4r+a5e−a6r

r
(2)

where the parameters ai, as given explicitly in table 1 in Tong and Lin [14], were obtained
by fitting the calculated binding energies of the ground state and the first few excited
states of the target atom using this potential to the experimental data. Both the exact ini-
tial state wavefunction Ψi(r1,r2) and the final state wavefunction Ψ f (r1,r2) of the system
satisfy the Schrödinger equation

HΨj(r1,r2)=EΨj(r1,r2) (j= i, f ), (3)

where E is the total energy.
Since Eq. (3) cannot be solved analytically, one has to employ approximate Hamilto-

nians, which can be expressed as

Hj =−1

2
∇2

1+Uj(r1)−
1

2
∇2

2+VA+(r2) (j= i, f ), (4)

where Ui (U f ) is the distorting potential used to calculate the wavefunction χki
(χk f

) for
the projectile in the incident (exit) channel with momentum ki (k f ). With this approxi-
mation, the initial (final) state wavefunction can be expressed as a product of the initial
(final) state wavefunction for the projectile and the wavefunction for the bound electron
in the ground (excited) state.

The initial and final state wavefunctions for the projectile satisfy the differential equa-
tion

[
−1

2
∇2

1+Uj(r1)

]
χkj

(r1)=
1

2
k2

j χkj
(r1) (j= i, f ), (5)
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and the bound state wave functions are eigenfunctions of the equation

[
−1

2
∇2

2+VA+(r2)

]
Φj(r2)=ǫjΦj(r2) (j= i, f ) (6)

where ǫj (j= i, f ) are the corresponding eigenenergies of the initial and final states. Due
to energy conservation,

1

2
k2

i +ǫi =
1

2
k2

f +ǫ f . (7)

In the distorted wave Born approximation, the direct transition amplitude for excita-
tion from an initial state Φi to a final state Φ f is given by

f = 〈χ−
k f
(r1)Φ f (r2)|Vi|Φi(r2)χ

+
ki
(r1)〉 (8)

where Vi is the perturbation interaction,

Vi=H−Hi=
1

r12
+VA+(r1)−Ui(r1). (9)

And the exchange scattering amplitude is given by

g= 〈Φ f (r1)χ
−
k f
(r2)|Vi|Φi(r2)χ

+
ki
(r1)〉. (10)

2.2 Partial wave expansions

To evaluate the scattering amplitude, we perform standard partial wave expansions.
The distorted wave for the incident electron with outgoing (+) boundary condition is
expanded as

χ+
ki
(r1)=

√
2

π

1

kir1
∑
liµi

ili χli
(ki,r1)Yliµi

(r̂1)Y
∗
liµi

(k̂i) (11)

where r̂1 and k̂i are the unit vectors denoting the directions of r1 and ki, and Ylm are the
spherical harmonics. Similarly, the partial wave expansions for the scattering electron
with incoming (−) boundary condition are

[χ−
k f
(r1)]

∗=

√
2

π

1

k f r1
∑
l f µ f

i−l f χl f
(k f ,r1)Yl f µ f

(r̂1)Y
∗
l f µ f

(k̂ f ). (12)

In this work, all continuum waves are normalized to δ(k−k′). For a plane wave, the
radial component χl(k,r)/kr in Eqs. (11) and (12) is a standard spherical Bessel function
jl(kr).
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The initial and final bound states can be expressed as

Φj(r2)=
1

r2
φNjLj

(r2)YLj Mj
(r̂2) (j= i, f ). (13)

In the scattering amplitude (8), the perturbation potential is the last remaining quantity
which needs to be expanded. The first term in the perturbation potential (9) can be ex-
panded as

1

r12
=4π ∑

lTµT

l̃−2
T

(r<)lT

(r>)lT+1
Y∗

lTµT
(r̂1)YlTµT

(r̂2) (14)

where l̃=
√

2l+1, and r< is the smaller and r> the larger of r1 and r2. Actually, the second
and third terms of the perturbation potential in Eq. (9) are spherically symmetric which
can be expressed as

VA+(r1)−Ui(r1)=4π ∑
lT µT

[VA+(r1)−Ui(r1)]Y
∗
lTµT

(r̂1)YlTµT
(r̂2)δlT0. (15)

The expansions (14) and (15) then yield

Vi(r1,r2)=4π ∑
lTµT

l̃−2
T AlT

(r1,r2)Y
∗
lTµT

(r̂1)YlTµT
(r̂2) (16)

where the radial factor AlT
(r1,r2) is given by

AlT
(r1,r2)=

(r<)lT

(r>)lT+1
+[VA+(r1)−Ui(r1)]δlT0. (17)

2.3 Calculation of the differential cross sections

The differential cross section for electron impact excitation of atoms is given by

dσ

dΩ
=N(2π)4

k f

ki

1

2Li+1

×
+Li

∑
Mi=−Li

+L f

∑
M f =−L f

(
3

4
| f −g|2+ 1

4
| f +g|2

)
(18)

where the prefactor N denotes the number of electrons in the subshell from which one
electron is excited.
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With the expansions given in the above subsection, the direct scattering amplitude is
given by

f =8 ∑
l f µ f

i−l f ∑
lTµT

l̃−2
T ∑

liµi

iliY∗
l f µ f

(k̂ f )Y
∗
liµi

(k̂i)

× 1

k f ki

∫
dr1dr2χl f

(k f ,r1)φ
∗
N f L f

(r2)

×AlT
(r1,r2)φNiLi

(r2)χli
(ki,r1)

×F1F2 (19)

where F1 and F2 are given by

F1≡
∫

dr̂1Yl f µ f
(r̂1)Yliµi

(r̂1)Y
∗
lTµT

(r̂1)

=
1√
4π

l̃ f l̃i

l̃T

C(l f lilT;µ f ,µi,µT)(l f lilT;000) (20)

and

F2≡
∫

dr̂2YlTµT
(r̂2)YLi Mi

(r̂2)Y
∗
L f M f

(r̂2)

=
1√
4π

l̃T L̃i

L̃ f

C(lTLiL f ;µT MiM f )(lT LiL f ;000) (21)

To perform the integrals over polar angles in Eqs. (20) and (21), we have used the relations

Yl,−m(r̂)=(−)mY∗
lm(r̂) (22)

and
∫

Yl1m1
(r̂)Yl2m2

(r̂)Yl3m3
(r̂)dr̂

=
1√
4π

l̃1 l̃2

l̃3
C(l1l2l3;m1,m2,−m3)(l1,l2,l3;000)(−)m3 (23)

where C(l1l2l3;m1m2m3) is a Clebsch-Gordan coefficient.
The product of F1 and F2 can be further simplified as

F1F2=
1

4π

l̃ f l̃i L̃i

L̃ f

C(l f lilT;000)C(lT LiL f ;000)

×∑
g

l̃T g̃W(l f liL f Li;lTg)

×C(liLig;µi Miµg)C(l f gL f ;µ f µgM f ) (24)
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where W(l1l2l3l4;l5l6) is a Racah coefficient, and we have used

C(l1l2l3;m1m2m3)C(l3l4l5;m3m4m5)

=∑
g

l̃3g̃W(l1l2l5l4;l3g)C(l2l4g;m2m4µg)C(l1gl5;m1µgm5). (25)

Furthermore, by using

C(l1l2l3;m1m2m3)=(−)l1−m1
l̃3

l̃2
C(l1l3l2;m1,−m3,−m2), (26)

we rewrite C(l f gL f ;µ f µg M f ) in Eq. (24) as

C(l f gL f ;µ f µg M f )=(−)l f −µ f
L̃ f

g̃
C(l f L f g;µ f ,−M f ,−µg). (27)

Consequently,

F1F2=
1

4π
(−)l f −µ f l̃ f l̃i L̃i l̃TC(l f lilT;000)C(lT LiL f ;000)

×∑
g

W(l f liL f Li;lTg)C(liLig;µi,Mi,µi+Mi)

×C(l f L f g;µ f ,−M f ,µ f −M f )δµi+Mi,M f−µ f
. (28)

Substituting Eq. (28) into Eq. (29), we finally obtain

f =
2

π ∑
liµi

∑
l f µ f

∑
lT

∑
g

ili+l f
l̃ f l̃i L̃i

l̃T

C(liLig;µi,Mi,µi+Mi)

×C(l f L f g;µ f ,−M f ,µ f −M f )C(l f lilT;000)C(lT LiL f ;000)

×W(l f liL f Li;lTg)Yl f ,−µ f
(k̂ f )Y

∗
liµi

(k̂i)δµi+Mi,M f−µ f

× 1

k f ki

∫
dr1dr2χl f

(k f ,r1)φ
∗
N f L f

(r2)AlT
(r1,r2)φNiLi

(r2)χli
(ki,r1). (29)

Similarly, the exchange scattering amplitude is given by

g=
2

π ∑
liµi

∑
l f µ f

∑
lT

∑
g

ili−l f (−)L f +M f
L̃ f l̃i L̃i

l̃T

C(liLig;µi,Mi,µi+Mi)

×C(L f l f g;−M f ,−µ f ,−M f −µ f )C(L f lilT;000)C(lT Lil f ;000)

×W(L f lil f Li;lTg)Y∗
l f µ f

(k̂ f )Y
∗
liµi

(k̂i)δµi+Mi,M f+µ f

× 1

k f ki

∫
dr1dr2φ∗

N f L f
(r1)χl f

(k f ,r2)AlT
(r1,r2)φNiLi

(r2)χli
(ki,r1). (30)
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2.4 Distorting potentials

In the DWBA model, the distorting potentials Ui and U f which are used in Eq. (5) to
evaluate the wavefunctions for the projectile in the initial and final states respectively
play important rule in the numerical calculations, since the calculated DCSs are sensitive
to the distorted wavefunctions describing the projectile. Unfortunately, neither Ui nor U f

is determined directly by the formalism. Here, we use static potentials which take the
form as

Uj(r1)=VA+(r1)+
∫

dr2
|Φj(r2)|2

r12
(j= i, f ). (31)

As shown previously, VA+(r) in Eq. (31) is the atomic potential used to evaluate eigen-
state wave functions Φi and Φ f for the bound electron in the initial and final states,
respectively. Obviously, the distorting potentials given by Eq. (31) for electron impact
excitation of atoms are neutral asymptotically.

2.5 Calibration of DWBA

To evaluate the total cross sections for electron impact excitation, Tong et al. [7] employed
an empirical formula

σTong(Ei)=
π

∆E2
e1.5(∆E−ǫ)/Ei f

(
Ei

∆E

)
, (32)

where

f (x)=
1

x

[
βlnx+γ

(
1− 1

x

)
+δ

lnx

x

]
, (33)

with ∆E is the excitation energy for a given transition and ǫ is the eigenenergy of the
corresponding excited state in atomic hydrogen. The parameters β, γ and δ in Eq. (33)
have been obtained initially by fitting the TCS to the convergent-close coupling (CCC)
results for hydrogen from 1s to 2p and further tested for e−+He+(1s) → e−+He+(2p).
However, it has been found that, with the parameters given in Ref. [7], the formula
Eq. (32) fails to predict the correct values of the TCS for excitation of other atoms and
ions. Even for H and He+, the TCS for excitation to other excited states reproduced by
Eq. (32) are much higher than the CCC data and the shape of the TCS as a function of
incident energy does not agree with the CCC very well, either.

To adjust the overall difference in magnitude, we introduce a prefactor α to modify
the empirical formula, which is given by

σM-Tong(Ei)=α
π

∆E2
e1.5(∆E−ǫ)/Ei f

(
Ei

∆E

)
. (34)
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It should be noted that, in Eq. (34), ǫ denotes the eigenenergy of the corresponding excited
state in target atoms or ions. In the present work, we apply the same fitting procedure
as in Ref. [7] to obtain the parameters. For excitations of H and He+ from 1s to 2s, the
parameters we obtained are β=0.7638, γ=1.1759, and δ=0.6706, which are different from
those in Ref. [7]. It has been found that with this set of parameters, the TCS reproduced
by Eq. (34) are in better agreement with CCC in shape. These parameters are further
tested by comparing the predicted excitation cross section with CCC for excitations of H
and He+ from 1s to 3s and 4s. For excitations of H and He+ from 1s to np (n=2, 3 and 4),
the parameters are β=1.32, γ=−1.08, and δ=−0.04. The prefactor α is then determined
by matching the TCS from Eq. (34) with the CCC data at high energies.

It should also be noted that the TCS of CCC are not available for most atoms or ions.
Hence, the applicability of the above fitting procedure to excitation of other atoms and
ions is quite limited. Fortunately, both the DCS and the TCS of DWBA are reliable at high
energies. Therefore, the prefactor α can be obtained by matching the TCS from Eq. (34)
with the DWBA results at high energies, say 1000 eV, provided that the parameters β, γ

and δ remain the same for all target atoms and ions.

The total cross section of DWBA at fixed incident energy Ei=k2
i /2 can be obtained by

integrating the DCS of Eq. (18) over scattering angles:

σDWBA(Ei)=
∫

dσ

dΩ
dk̂ f . (35)

To calibrate the DWBA at low energies, we define a normalization factor

C(Ei)=σM-Tong(Ei)/σDWBA(Ei). (36)

By multiplying the DCS of DWBA by the normalization factor at each incident energy,
one obtains the calibrated DWBA as

(
dσ

dΩ

)

C

=C(Ei)
dσ

dΩ
. (37)

3 Results and discussion

To obtain the normalization factors to calibrate the DCS of DWBA, we calculate the TCS
from the empirical formula of Eq. (34) and the TCS of DWBA. The results are shown
in Figs. 1 and 2 for excitations of H and He+, respectively. The corresponding CCC re-
sults [15] are also plotted for comparison. It can be seen that the CCC data for excitation
from 1s to 2s are reproduced very well for both H and He+ while for excitation from 1s
to 2p slight differences exist. Whereas, the agreement between the TCS of Tong and CCC
can be improved if the TCS of Tong at 1000 eV is fitted to CCC rather than DWBA. The
reason that we fit the TCS of Tong at 1000 eV to DWBA instead of CCC is that DWBA
results are always available.
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Figure 1: TCSs (left vertical axis) and normalization factors of DWBA (right vertical axis) for excitation of H
from (a) 1s to 2s and (b) 1s to 2p at incident energies from the excitation energy of 10.2 eV to 1000 eV. Dotted
curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula
Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data [15].
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from (a) 1s to 2s and (b) 1s to 2p at incident energy from the excitation energy of 40.8 eV to 1000 eV. Dotted
curve, total cross sections of DWBA; Solid curve, total cross sections calculated using the empirical formula of
Eq. (34); Chain curve, normalization factor given by Tong/DWBA; Solid circles, CCC data [16].
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The absolute experimental measurements of Khakoo et al [16] for electron impact ex-
citation of the 12S→ 22S+22P levels of H at incident energies of 50 and 100 eV provide
the excellent possibility of a stringent test for the present calibration procedure. It is illus-
trated in Fig. 3 that the calibrated DWBA DCSs follow the experimental data very well
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over the whole angular region for both incident energies. To see the contributions from
the excitations of 12S→22S and 12S→22P separately, the corresponding theoretical DCSs
of the calibrated DWBA are also plotted in Fig. 3 for comparison. One can see that the
excitation of 1s to 2p dominates the forward scattering for angular region from 0◦ to 45◦

at 50 eV and 0◦ to 30◦ at 100 eV. On the other hand, the excitation of 1s to 2s can not be
neglected in the region of larger scattering angles.

In Fig. 4 we show the differential cross sections of DWBA weighted by the normal-
ization factors for excitations of H from 1s to 2s and 1s to 2p at incident energies of 15,
25, 50 and 100 eV, respectively. The slope of DCSs for both excitations of 1s to 2s and 1s
to 2p changes more rapidly at larger scattering angles as incident energy decreases. In
addition to the slope change, extra minima are reproduced by the DWBA around 70◦ for
excitation of 1s to 2p and 100◦ for 1s to 2p at 15 eV.
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Figure 5: Calibrated DWBA DCSs for excitation of He+ from (a) 1s to 2s and (b) 1s to 2p at incident energies
of 45, 60, 80, and 100 eV, respectively.

Fig. 5 shows the similar results for excitations of He+ at energies below 100 eV. Com-
pared to the excitation of H, enhanced backward scattering DCSs are predicted by the
DWBA due to larger Coulomb attraction to the scattered electron since large angle scat-
tering takes place when the projectile approaches closer to the nuclear of He such that it
sees more charge than the nuclear charge of H. As a result, a minimum appears in the
DCSs for both excitation of 1s to 2p and 1s to 2p at 45 and 60 eV. Both of the depths and
positions of the minimum in DCSs have significant physical importance since they reflect
the structure information of the targets. In addition, with the increase of incident energy,
the angle at which the slope changes does not move as much as that for H, which even
almost remains fixed at 110◦ for the excitation of He+ from 1s to 2p, as shown in Fig. 5(b).
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4 Conclusions

We present a method to correct the overestimate of DWBA on the TCSs for electron im-
pact excitation of H and He+. The purpose of this work is to apply the calibrated DWBA
to simulate the correlated momentum distributions for laser-induced nonsequential dou-
ble ionization of He. The calibration method is based on two assumptions: (1) the relative
angular distributions of the DCSs predicted by the DWBA at low incident energies are
fairly accurate, and (2) the TCSs reproduced by the DWBA at high incident energies are
reliable. The validity of the calibration method is confirmed by the agreement between
the DCSs obtained by the calibrated DWBA and the absolute experimental measurements
for excitations of H from the ground state to n=2 state. The calculated DCSs with the cal-
ibrated DWBA for excitations of H and He+ from 1s to 2s and 1s to 2p below 100 eV are
also presented and the structure of the DCSs is analyzed.
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