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Abstract. The main aim of this paper is to discuss the electrodynamics of relativis-
tic dynamics of particles bases on the notion of the non-standard Lagrangians which
have gained increasing importance in the theory of nonlinear differential equations,
dissipative dynamical systems and theoretical physics. The mathematical settings are
constructed starting from the modified Euler-Lagrange equation and modified Hamil-
tons equations. Some illustrative examples are considered and discussed.
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1 Introduction

The notion of non-standard Lagrangians (NSL) is not new and it as in fact introduced
by Arnold in 1978 [1]. In reality, NSL were not considered seriously in the past for two
major reasons. First of all, the physical meaning of NSL is still obscure and besides their
Hamiltonian formalism was problematic in particular when it is related to quantization
process. However, in the progress of years, it was observed that NSL plays an important
role in the theory of nonlinear differential equations [2-4], dissipative dynamical systems
[5-15] and in many problems related to theoretical physics [16-18]. Their applications
seem wide yet lots of works are required for a better understanding of their physical
significances. Some advances to understand the root of NSL based on the theories of
inverse variational problem were discussed in [15] yet the problem is still open. It should
be emphasized that recent works prove that a number of dynamical systems may be
described by two different Lagrangians: one is standard and another non-standard one.
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In other words, the resulting differential equations of motion may be obtained from two
different Lagrangians [9-11]. Accordingly, one may argue that a complete description of
physical systems require the knowledge of both types of Lagrangians. In this work, we
would like to explore the implications of NSL in relativistic electrodynamics. It should
be noted that NSL may came in different mathematical forms as discussed in [11], yet
through this paper we pick the power-law form. It should be stressed that both the kinetic
terms and the potential function in the NSL are non-standard yet physically interesting
nonlinear dynamics were obtained. There is one more simple elucidation to add is that
in our approach NSL refers to ”standard Lagrangian function that modifies the Euler-
Lagrange equations and accordingly the Hamilton’s equations of motion”.

The paper is organized as follows: in Sec. 2, we introduce basic settings mainly the
power-law NSL and its corresponding Euler-Lagrange and Hamilton’s equations of mo-
tions in the presence of electromagnetic forces (EM). In Sec. 3, we discuss the modified
dynamics of relativistic particles in the absence and in the presence of the electromag-
netic field for different values of ξ. The paper concludes in Sec. 4 with a brief summary
of main results and perspectives.

2 Electrodynamics with non-standard Lagrangians and the mod-

ified Euler-Lagrange and Hamilton’s equations

Through this work we define the power-law NSL by LNSL=L1+ξ(q̇,q,t) where L(q̇,q,t)ǫC2

([a,b]×R
n×R

n;R) is the standard Lagrangian of the theory (q̇,q,t)→ L(q̇,q,t) assumed
to be a C2 function with respect to all its arguments and ξ is a free parameter which is
different from -1. Here q̇=dq/dt is the time-derivative of the generalized coordinate. The
action functional of the theory is defined by:

S=
∫ b

a
ΛL1+ξ(q̇(t),q(t),t)dt, (1)

and the basic problem is to define the extremum of the functional S= D →R where D
is the subset of D which is the set of all functions q : [a+b]→R

n such that the temporal
derivative of q̇ exists and is continuous on [a+b]. In Eq. (1), the parameter Λ is a free
parameter that is introduced for physical arguments (this parameter guarantees the
correct physical dimensionalities for all terms). It is an easy exercise to prove that if q(t) is
a local minimizer to the action (1) then the following modified Euler-Lagrange equation
(MELE) holds [11]:

∂L

∂q
− d

dt

(
∂L

∂q̇

)

= ξ
1

L

∂L

∂q̇

(
∂L

∂t
+ q̇

∂L

∂q
+ q̈

∂L

∂q̇

)

. (2)

Two main features of Eq. (2) concern first its RHS which depends on the total derivative
of L(q̇,q,t) and the form of the momentum conjugate and its time derivative which take
respectively the forms p = Λ∂L1+ξ/∂q̇ and ṗ = Λ∂L1+ξ/∂q . We will prove that these
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modified features may have interesting consequences on the relativistic electrodynamics
of particles. In order to derive Hamilton’s equations, we consider a dynamical system
with N -degrees of freedom for which we correlate the following modified Hamiltonian
function:

H=
N

∑
k=1

(1+ξ)Λq̇k Lξ ∂L

∂q̇k
−ΛL1+ξ . (3)

Let us first look at the change in the Hamiltonian along the actual motion with time. In
fact, we can write:

dH

dt
=Λ

N

∑
k=1

(

(1+ξ)

(

q̈kLξ ∂L

∂q̇k
+ q̇kLξ d

dt

∂L

∂q̇k
−ξ

dL

dt
q̇kLξ−1 ∂L

∂q̇k

)

−(1+ξ)Lξ dL

dt

)

,

=Λ(1+ξ)
N

∑
k+1

(

q̈kLξ ∂L

∂q̇k
+ q̇kLξ d

dt

∂L

∂q̇k
−ξ

(
∂L

∂t
+ q̇k

∂L

∂q
+ q̈

∂L

∂q̇k

)

q̇kLξ−1 ∂L

∂q̇k
−Lξ

(
∂L

∂t
+ q̇+k

∂L

∂q
+ q̈k

∂L

∂q̇k

))

(4)

If, for instance, the Lagrangian does not depend explicitly on time, Eq. (4) is simplified
to:

dH

dt
=Λ(1+ξ)

N

∑
k=1

Lξ q̇k

(
d

dt

∂L

∂q̇k
−ξ

1

L

(

q̇k
∂L

∂q̇
+ q̈k

∂L

∂q̇k

)
∂L

∂q̇k
− ∂L

∂qk

)

=0, (5)

and the Hamiltonian is a constant of motion. In order to derive the corresponding Hamil-
ton’s equations of motion, we write:

(1+ξ)ΛLξ dL=Λ
N

∑
k=1

(
∂L1+ξ

∂qk
dqk+

∂L1+ξ

∂q̇k
dqk

)

−(1+ξ)ΛLξ ∂L

∂t

=
N

∑
k=1

( ṗdqk+pdq̇k)−(1+ξ)ΛLξ ∂L

∂t
dt, (6)

which gives

dL=
1

(1+ξ)ΛLξ

N

∑
k=1

(
∂L1+ξ

∂qk
dqk+

∂L1+ξ

∂q̇k
dqk

)

− ∂L

∂t
dt

=
N

∑
k=1

( ṗdqk+pdq̇k)−
∂L

∂t
dt, (7)

and hence

dH=
N

∑
k=1

(q̇kdpk− ṗkdqk)−
∂L

∂t
dt. (8)

One hence conclude that

q̇k =
∂H

∂pk
, (9)
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and

ṗk =− ∂H

∂qk
. (10)

In that way, the Hamilton’s equations of motion are not modified and take a standard
forms. It is noteworthy that the modified Hamiltonian of the system may be also defined
by H/ΛLξ =H=ΣN

k=1(1+ξ)q̇k(∂L/∂q̇k)−L which is deduced from Eq. (3). This is closely
related to the standard Hamiltonian form which is given by H=ΣN

k=1q̇k(∂L/∂q̇k)−L.

3 Modified electrodynamics of relativistic particles

To incorporate the relativistic theory, we assume that Eq. (2) is valid in every inertial
frame, i.e. the action (1) is a Lorentz scalar. Usually for a free particle of rest mass m and
moving at a velocity ν, the standard Lagrangian given by L=−mc2

√

1−β2 where β=ν/c
and is the celerity of light [19]. It is easy to check that the corresponding MELE is derived
from Eq. (2) and takes the form (q= x,q̇=ν= ẋ):

d

dt
(γmν)= ξγ2m2ν2a, (11)

where a = ẍ is the corresponding acceleration of the particles and γ = 1/
√

1−β2. The
equation of motion is modified accordingly. In order now to incorporate the EM forces,
we need to take into account the EM interaction and hence we add to the standard La-
grangian the well-known Lagrangian lint = q(−φ+ ν̄· Ā/c) where Ā is a vector potential
and φ = A◦ is a scalar potential. The total Lagrangian of the theory is then given by
Ltotal =−mc2

√

1−β2+q(−φ+ ν̄· Ā/c) and hence we can write Eq. (2) as:

∂L

∂x
+

∂Lint

∂x
− d

dt

(
∂L

∂~ν

)

− d

dt

(
∂Lint

∂~ν

)

=−ξ
1

Ltotal

(
∂L

∂~ν
+

∂Lint

∂~ν

)(

~ν

(
∂L

∂x
+

∂Lint

∂x

)

+~̇ν

(
∂L

∂~ν
+

∂Lint

∂~ν

))

. (12)

After simple algebraic arrangement, we find:

(

−q∇φ+
q

c
∇(~ν· ~A)− d

dt
(γm~ν)− q

c

d~A

dt

)(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

=−ξ
(

γm~ν+
q

c
~A
)(

~ν
(

−q∇φ+
q

c
∇(~ν· ~A)

)

+~̇ν
(

γm~ν+
q

c
~A
))

(13)

Using the fact that:

d~A

dt
=

∂~A

∂t
+(~ν·∇)~A=

∂~A

∂t
+
(

∇(~ν· ~A)−~ν×~B
)

, (14)
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where ~B is the magnetic field, we can rewrite Eq. (13) as:

(

−q∇φ− q

c

(

∂~A

∂t
+
(

∇(~ν· ~A)−~ν×~B
)
)

+
q

c
∇(~ν· ~A)− d

dt
(γm~ν)

)

(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

=−ξ
(

γm~ν+
q

c
~A
)(

~ν
(

−q∇φ+
q

c
∇(~ν· ~A)

)

+
d~ν

dt

(

γm~ν+
q

c
~A
))

. (15)

Now using the fact that ~E=−∇φ− 1
c

∂t
∂t , ∇(~ν· ~A)=(~ν·∇)~A+~ν×~B and ~B=∇× ~A we find:

(

q

(

~E+
1

c
~ν×~B

)

− d

dt
(γm~ν)

)(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

=−ξ
(

γm~ν+
q

c
~A
)
(

q~ν

(

~E+
1

c

(

∂~A

∂t
+∇(~ν· ~A)

))

+γmν
d~ν

dt
+

q

c
~A

d~ν

dt

)

, (16)

and from Eq. (14), we can rewrite Eq. (16) as:

(

q

(

~E+
1

c
~ν×~B

)

− d

dt
(γm~ν)

)(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

=−ξ
(

γm~ν+
q

c
~A
)
(

q~ν

(

~E+
1

c
~ν×~B

)

+q
ν

c

d~A

dt
+
(

γm~ν+
q

c
~A
) d~ν

dt

)

. (17)

We can arrange terms in Eq. (17) and write the final form as:

q

(

~E+
1

c
~ν×~B

)(

1+ξν
(

γm~ν+
q

c
~A
))
(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

ξ
(

γm~ν+
q

c
~A
)
(

γm~ν
d~ν

dt
+

q

c

d(~ν· ~A)

dt

)

=m
d(γ~ν)

dt
. (18)

Eq. (18) is the modified relativistic EM equation of motion. By defining ~P=γm~ν+q~A/c,
it is easy to check that we can write Eq. (19) as:

q

(

~E+
1

c
~ν×~B

)(

1+ξ~ν ·~P
)
(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

+ξ~P

(

d(~νκ ·~P)
dt

−mν2 dγ

dt
−γν2 dm

dt

)

=m
d(γν)

dt
. (19)
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In the case of a uniform magnetic field and uniform vector potential (~B and ~A are as-
sumed constants), we can simplify Eq. (19) to:

d~P

dt
=
( q

c
~ν×~B

)(

1+ξν·~P
)
(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

+ξ~P

(

d(~νκ ·~P)
dt

−mν2 dγ

dt
−γν2 dm

dt

)

+γν
dm

dt
, (20)

where ~P=mγ~ν. However, once can evaluate the time-variation of the energy E:

DE

dt
=~ν· d~P

dt
=

q

c
~ν·(~ν×~B)
︸ ︷︷ ︸

=0

(

1+ξν·~P
)
(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))

+ξ~ν ·~P
(

d(~νκ ·~P)
dt

−mν2 dγ

dt
−γν2 dm

dt

)

+γν2 dm

dt
,

=ξ
(

γmν2+
q

c
~ν· ~A

)( d

dt

(

γmν2+
q

c
~ν· ~A

)

−mν2 dγ

dt
−γν2 dm

dt

)

+γν2 dm

dt
,

=ξ~ν ·
(

γmν+
q

c
~A
)(

2γmν+
q

c
~A
) d~ν

dt
+γν2 dm

dt
, (21)

and hence the energy is not conserved unless the speed of particles and their masses
remain constants. The modified Hamiltonian is derived from Eq. (3):

H=(1+ξ)Λ

(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))ξ

~ν·
(

γmν+
q

c
~A
)

−Λ

(

−mc2
√

1−β2+q

(

−φ+
~ν· ~A
c

))1+ξ

. (22)

It is easy to check that when ξ = 0, i.e. , Eq. (22) is reduced to the standard Hamilto-

nian form: H=Λν·(γM~ν+q~A)/c−∧(−mc2
√

1−β2+q(−φ+~ν· ~A/c))=mc2
√

1−β2+qφ.
However, the canonical formalism supplies us with the canonically modified conjugate
momenta which gives:

γ~ν=− q

mc
~A+

1

(1+ξ)Λm
~pL−ξ , (23)

and hence

γ2ν2=

(

− q

mc
~A+

1

(1+ξ)Λm
~pL−ξ

)2

=
1

1
ν2

1
c2

, (24)
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from which one deduces:

γ=
1

mc

√

m2c2+

(

− q

mc
~A+

1

(1+ξ)Λ
~pL−ξ

)2

. (25)

Then we get:

H=(1+ξ)Λ






− m2c2

√

m2c2+
(

− q
c
~A+ 1

(1+ξ)Λ
~pL−ξ

)2
+q

(

−φ+
~ν· ~A

c

)







ξ

~ν
(

γmν+
q

c
~A
)

−Λ






− m2c2

√

m2c2+
(

− q
c
~A+ 1

(1+ξ)Λ~pL−ξ
)2

+q

(

−φ+
~ν· ~A

c

)







1+ξ

, (26)

which can be written as:

H=(1+ξ)Λ

(

−mc2

√

1− ν2

c2
+q

(

−φ+
~ν· ~A

c

))ξ



mν2

√

1− ν2

c2

+q
~ν· ~A

c





−Λ

(

−mc2

√

1− ν2

c2
+q

(

−φ+
~ν· ~A

c

))1+ξ

, (27)

Once more, when ξ=0, Eq. (26) is reduced to the standard form:

H=

√

m2c4+c2

(
~

p− q

c
~A

)2

+qφ≡ c

√

m2c2+

(
~

p− q

c
~A

)2

+qφ. (28)

We discuss the following two independent cases:

A-Absence of the EM field: In that case, Eq. (27) is reduced to the following Hamil-
tonian form H = (1+ξ)Λ(−γ−1mc2)ξν2γΛ(−γ−1mc2)1+ξ . From Eq. (25) we find the
velocity in terms of the relativistic momenta as

ν2=
c2
(
~p(−γ−1mc2)−ξ

)2

m2c2(1+ξ)2Λ2+(~p(−γ−1mc2)−ξ)
2

, (29)

which gives

m2c2(1+ξ)2Λ2γ2+
(

~p(−mc2)−ξ
)2

γ2ξ−2=−m2c2(1+ξ)2Λ2. (30)
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To illustrate we choose ξ =1, i.e. S=
∫ b

a ΛL2dt. It is notable that for ξ =1, the dimension
of Λ is [Energie]−2. Hence, we may set Λ=1/2mc2 and accordingly Eq. (30) gives:

ν2= c2 2m2c2+p2

m2c2+p2
. (31)

We can write the Hamiltonian entirely in terms of the (relativistic) momentum which
takes after simple algebra:

H=
m3c4−2m3ν2c2−2mν2 p2

2(m2c2+p2)
. (32)

We note that when p=0,ν2=2c2 and the Hamiltonian is reduced to H=−3mc2/2 whereas
in the standard approach we find H=mc2. This case corresponds for superluminal par-
ticles. It is notable that available experimental results neither exclude subluminal nor
superluminal propagation [20,21] and several superluminal phenomena are known in

literature [22-26]. However, if we choose ξ=1/2, i.e. S=
∫ b

a
ΛL3/2dt. the dimension of Λ

is [Enerige]−1/2. Hence, we may set Λ=4/3
√

mc2 and consequently Eq. (30) gives

γ−1=
1

2

(

p2

m2c2
±
√

p4

m4c4
−4

)

. (33)

After replacing into the Hamiltonian function, we find

H=2imν2γ1/2+
4imc2

3
γ−3/2

=
2
√

2imν2

√

p2

m2c2 ±
√

p4

m4c4 −4

+
4mc2i

3

(

p2

2m2c2
± 1

2

√

p4

m4c4
−4

) 3
2

. (34)

In this case, the Hamiltonian is complexified and this special case is not new and was
discussed largely in theoretical physics within different aspects [27-33]. Despite the fact
that complex energies cannot be produced in the physical world, we expect that they may
have some applications in non-local quantum mechanics [34] as stated in [35]. We argue
that power-law NSL may be useful to investigate some hidden properties in relativistic
quantum mechanics [36]. This problem stimulated in fact a lot of work in the future.
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B-Presence of the EM field: For mathematical simplicity, we discuss the case of rela-
tivistic particles moving with a relativistic speed, we can approximate Eq. (27) as to:

H≈ (1+ξ)Λ

(

q

(

−φ+
~ν· ~A

c

))ξ




mν2

√

1− ν2

c2

+q
~ν· ~A

c



−Λ

(

q

(

−φ+
~ν· ~A

c

))1+ξ

. (35)

If, for instance, we set ξ=1, Eq. (35) is reduced to:

H≈2Λq
mν2

√

1− ν2

c2

(

~ν· ~A
c

−φ

)

+Λq2





(

~ν· ~A
c

)2

−φ2





=Λq

(

~ν· ~A
c

−φ

)


2mν2

√

1− ν2

c2

+q

(

~ν· ~A
c

+φ

)

. (36)

Eq. (30) is the relativistic single-particle Hamiltonian in the EM field for ξ = 1. In that

case, we have γ≫ 1, the momentum is approximated by ~p≈ 2γm~νΛq(−φ+~ν· ~A/c) and
then we can simplify Eq. (36) to be:

(H+2γmν2Λqφ)2−(~p−ν2φ)2=Λ2q4φ4. (37)

We may set Λ=1/2mc2 and reduce Eq. (37) with ν≈ c:

(H+γqφ)2−(~p−c2φ)2=
q4φ4

4m2c2
. (38)

In that case the time-like component is H+γqφ, the space-like component is ~p−c2φ, the
modified scalar potential is Θ=−γφ and the modified relativistic mass is m=q2φ2/2mc.
This relation is interesting as it shows that mm=q2φ2/2c4=M2. The mass |M|∝ qφ/c2 is
too small for relativistic velocities and the associated modified energy is given by E≈±qφ.

Eq. (38) is different from the standard relation (H−qφ)2−(~p−q~A/c)2c2 = m2c4 which

corresponds for ξ=0. If we choose ξ=−2, i.e. S=
∫ b

a
ΛL−2dt, then~p=−Λ(γm~ν+q~A/c)L−2

and one may check that the following relation holds:

H≈
m2c4

(

γmν2+q~ν·~Ac

)

q2
(

−φν2+ν2~ν·~A
c

)2
≈ γm3c6

q2φ2
≡Mc2, (39)

where M = γm3c4/q2φ2 ≡ m3/m∗2 and |m∗|= qφ/γc2. This mass occurs in the previ-
ous case yet in the present case it depends on γ and is hence too small. From what is
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discussed above we can predict that there are electrified particles accompanied by the
modified energy relation Mc2≈qφ. It is notable that the results presented in both cases A
and B are inconclusive with respect to their physical consequences and several analysis
are in progress in order to support phenomenologically the presented ideas of NSL in
relativistic EM theory.

4 Concluding remarks

In this work, we envisaged to study the relevance of NSL in relativistic electrodynamics
theory. We have picked the power-law NSL by LNSL = L1+ξ(q̇,q,t) and we have derived
the corresponding modified Euler-Lagrange equation and the modified Hamilton’s equa-
tions where we have discussed their implications in relativistic electrodynamics theory.
We have observed that for the equations of motion depend on the value of the parameter
ξ and which are reduced to their standard forms for ξ = 0. We have discussed two dif-
ferent cases: absence and presence of the EM field for different values of . In the absence
of the EM field, the theory predicts superluminal particles for ξ = 1 and complexified
Hamiltonian for ξ = 1/2. In the presence of the EM field, it was observed that for ξ = 1,
the Hamiltonian energy of relativistic moving particles is modified and that the energy is
equal to a modified relativistic kinetic energy plus an additional modified energy due to

a modified scalar potential where the vector potential ~A plays no role. The modified rel-
ativistic mass in the theory is m= q2φ2/2mc4 which indicates that the term |qφ/c2| plays
the role of a mass. For the case ξ =−2, the Hamiltonian energy is modified as well yet
the relativistic electromagnetic mass that occurs in that case is |m∗|= qφ/γc2. Modified
expressions for energies are obtained accordingly for different values for ξ and a modi-
fied Lorentz force law emerges. More values of ξ may be discussed as well and we expect
that more nice properties may be obtained accordingly.

We do not claim that the models as they stand in this paper describe a well-known
physical system. In fact, our main aim is to show readers that some concrete uninvesti-
gated possibilities unseen in the mathematics of NSL may be obtained. The good feature
of such NSL models is the simplicity of consideration they provide. We conclude that a
good number of equations that are expected to have important applications in modern
physics can be derived from NSL functions. Specifying the NSL is equivalent to spec-
ifying some hidden properties not found in the standard approach where new Lorentz
invariance and gauge invariance are obtained. These modifications lead also to derive
the modified equations of motion satisfied by the EM field and by particles traveling in
them. Using ideas presented in this paper it would be interesting to investigate a fully
relativistic system where interactions are taken into account. Some applications of the
results obtained here in quantum field theory are under progress.
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