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Abstract. The present work concerns the numerical approximation of the M1
model for radiative transfer. The main purpose is to introduce an accurate finite
volume method according to the nonlinear system of conservation laws that gov-
erns this model. We propose to derive an HLLC method which preserves the sta-
tionary contact waves. To supplement this essential property, the method is proved
to be robust and to preserve the physical admissible states. Next, a relevant asymp-
totic preserving correction is proposed in order to obtain a method which is able
to deal with all the physical regimes. The relevance of the numerical procedure is
exhibited thanks to numerical simulations of physical interest.
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1 Introduction

The radiative transfer is involved in many applications where its relevant numerical
simulation turns out to be essential. However, in several cases where it is coupled
with other physics such as hypersonic atmospheric reentry, solving the full radiative
transfer equation has a numerical cost beyond the range of the actual computational
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ressources and alternative models must be considered. In recent years, several models
have been introduced and the present work is devoted to one of them; namely the M1
model introduced by Dubroca-Feugeas [12].

The M1 model is known to satisfy several fundamental physical properties (the list
is given below). The purpose of this paper is to derive a numerical method which is
able to preserve all of these physical properties. Let us emphasize that the numerical
experiments of interest involve all the physical regimes and therefore it is essential to
have a numerical scheme that can handle all of them.

The system of equations governing the M1 model comes from the first two mo-
ments of the radiative transfer equation (see Dubroca-Feugeas [12] for further details).
The considered model reads as follows

∂tE +∇ · F = cσ
(
aT4 − E

)
, (1.1)

∂tF + c2∇ · P = −cσ F, (1.2)

∂t(ρ CvT) = −cσ
(
aT4 − E

)
. (1.3)

Here, E denotes the radiative energy and F ∈ R2 the radiative flux vector. The positive
constant a is prescribed by physics, while c and σ respectively denote the speed of the
light and the opacity. It is to note that the opacity, which will be considered to be
constant here for the sake of simplicity, is in general given by non-linear functions of
T, E and F (see [26]). Concerning the radiative pressure P, it is given by

P =
1
2

((
1− χ( f )

)
I +

(
3χ( f )− 1

)F⊗ F
‖F‖2

)
E, (1.4)

with χ( f ) =
3 + 4 f 2

5 + 2
√

4− 3 f 2
, (1.5)

where we have introduced the normalized flux vector f = F/cE, and we have set
f = ‖f‖.

Let us emphasize that the radiative equations (1.1) and (1.2), issued from the first
two moments of the radiative transfer equation, are coupled to the material tempera-
ture T governed by Eq. (1.3). We have set ρ the material specific density and Cv the
specific heat capacity.

For the sake of simplicity in the notations, we note U=(E, F)∈R3 the radiative state
vector in the following admissible space

A =
{
(E, F)T ∈ R3; E ≥ 0, f ≤ 1

}
.

In the following, W=(E, F, T)T denotes the state vector defined in the admissible space

Ω =
{
(E, F, T)T ∈ R4; (E, F) ∈ A, T ≥ 0

}
.

There are two main regimes of interest governed by the parameter σ. The first one as-
sociated with σ = 0 coincides with the free streaming regime given by the hyperbolic
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system of conservation laws

∂tE +∇ · F = 0, (1.6a)

∂tF + c2∇ · P = 0, (1.6b)
∂t(ρ CvT) = 0. (1.6c)

In computational regions which correspond to such a regime, it is crucial to precisely
capture the natural waves of the system. From a numerical point of view, the external
waves (rarefactions and shocks) are accurately approximated by any Riemann-type
solver. The contact wave, however, requires a specific numerical attention. Therefore,
one of our objectives is to derive a numerical scheme that is able to capture it.

On the other hand, whenever σ becomes very large, the system (1.1)-(1.2)-(1.3)
degenerates into a nonlinear parabolic equation called the equilibrium diffusion equation
(see [21, 22]). It is obtained by introducing a rescaling factor ε which can be seen as
a Knudsen-like number. Considering long-time behaviors, the rescaled M1 system
becomes





ε∂tE + ∇ · F =
cσ

ε
(aT4 − E),

ε∂tF + c2∇ · P = − cσ

ε
F,

ε∂t(ρCvT) = − cσ

ε
(aT4 − E).

(1.7)

When ε tends to zero, a Chapman-Enskog expansion of this system allows to recover
the so-called equilibrium diffusion equation, which is the asymptotic limit of the ra-
diative transfer equation. This equilibrium diffusion equation is given by

∂t(ρCvT + aT4)−∇ ·
( c

3σ
∇T4

)
= 0. (1.8)

In computational regions where σ is very large, we want the numerical scheme to
be able to restore a discrete form of the diffusive equation (1.8). This last point is
generally very difficult to achieve since the numerical scheme hence has to deal with
both an hyperbolic and a parabolic regimes.

The main objective of the present work therefore concerns the derivation of a nu-
merical scheme that admits the following properties:

1. Robustness i.e., conserving the invariance of Ω,

2. Accurate capturing of the waves associated to (1.6) when σ = 0, in particular to exactly
predict the contact waves,

3. Asymptotic preserving i.e., to be consistent with the equilibrium diffusion equation (1.8)
whenever σ is large.

Several approaches have been suggested during the last decade to approximate
the solutions of the M1 model. The first one was developed by Dubroca-Feugeas [12]
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where an HLL scheme was proposed. This scheme is robust since it preserves the
admissible states. Unfortunately such a numerical approach fails to approximate the
asymptotic diffusion behavior. To correct such an issue, several techniques were pro-
posed in the literature and the reader is referred to Gosse-Toscani [15], Buet-Cordier
[8], Buet-Després [10], Berthon et al. [3–5] for a description of the main numerical
methods (see also [1] for another context). In fact, all these techniques are the same
strategy. The first step is devoted to the hyperbolic system (1.6), where a standard HLL
scheme (see Harten-Lax-Van Leer [17] for the details) is considered. The main benefit
of this numerical approximation is an easy preservation of the admissible states for
a viscous discretization. Actually, the difference between all the above mentionned
works concerns the numerical process used to approximate the source term. For in-
stance in the work of Buet-Cordier [8] (see also [3]), the authors modify the HLL Rie-
mann solver associated with (1.6) to introduce the source term. To access such an
issue, a suitable relaxation model is involved to derive a twostep relaxation method.
The main comment about this very brief overview concerns the approximation of the
transport part of the M1 model, given by (1.6), which is systematically approximated
by the well-known HLL numerical procedure. Indeed, as soon as σ is set equal to zero,
all the above cited numerical methods (see also [4, 9, 11, 16]) turn out to coincide with
the explicit or implicit HLL scheme for (1.6). Unfortunately, the HLL scheme cannot
adequately approximate the contact waves. The goal of the present work is to derive
an HLLC type [24, 25] contact preserving scheme for (1.6).

The paper is organized as follows. In the next section, basic properties of the sys-
tem (1.6) are exhibited and a contact preserving scheme is derived. Section 3 is devoted
to establish the robustness of the numerical procedure. We prove that the updated ra-
diation state vector remains admissible with a positive radiative energy and a relevant
flux limitation. Section 4 deals with the source terms, where a recent procedure de-
veloped by Berthon and Turpault [6] is adopted. The obtained numerical scheme is
shown to satisfy an asymptotic preserving property and then to restore the diffusive
limit equation. In Section 5 , we highlight the interest of the scheme by performing
several numerical experiments. A conclusion completes the present work.

2 A contact preserving scheme

According to the pioneer work by Toro [24, 25], we here propose to develop a numer-
ical scheme able to capture the stationary contact waves. For the sake of simplicity in
the scheme derivation, the following numerical developments are performed involv-
ing the model in the x-direction. Let us note from now on that such an assumption is
not restrictive since the numerical experiments will be performed on Cartesian grids.
As a consequence, the system under consideration reads as follows





∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,
∂tFy + c2∂xPxy = 0,

(2.1)
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where Pxx and Pxy are defined from the radiative pressure (1.4) by

Pxx =
(1− χ( f )

2
+

3χ( f )− 1
2

F2
x

‖F‖2

)
E, (2.2)

Pxy =
(3χ( f )− 1

2
FxFy

‖F‖2

)
E. (2.3)

It turns out to be convenient to introduce several notations. We set

Π =
1− χ( f )

2
E, (2.4)

βx =
3χ( f )− 1

2
Fx

‖F‖2 cE, (2.5)

to rewrite (2.1) in the following form




∂tE + ∂xFx = 0,
∂tFx + ∂x(cβxFx + c2Π) = 0,
∂tFy + ∂x(cβxFy) = 0.

(2.6)

In the sequel and for the sake of simplicity in the notations, we set U=(E, Fx, Fy)T and
we define the flux function as follows

F =
(

Fx, c2Pxx, c2Pxy
)T =

(
Fx, cβxFx + c2Π, cβxFy

)T
.

Before we start considering the development of the required scheme, with benefit, we
use the formulation (2.6) of the M1 model to characterize the contact wave solutions.

Lemma 2.1. The system of conservation laws (2.6) is hyperbolic over the open set Å. It admits
three ordered eigenvalues noted λ± and λ0 with

−c < λ− < λ0 < λ+ < c. (2.7)

The fields associated with λ± are genuinely nonlinear, while the field associated with λ0 = cβx
is linearly degenerate. The two Riemann invariants coming from the linearly degenerate field
are Π and βx, respectively defined by (2.4) and (2.5).

Proof. We refer to [12] where the author establish the hyperbolic property of (2.6)
and give the nature of the fields. Now we have to show that Π and βx remain continu-
ous across a constant wave. To address such an issue, let us consider a discontinuous
solution, which discontinuity propagates at velocity s, made of two constant states UL
and UR in A. From the Rankine-Hugoniot relations, the triplet (s; UL, UR) satisfies

− s[E] + [Fx] = 0, (2.8)

− s[Fx] + [cβxFx + c2Π] = 0, (2.9)
− s[Fy] + [cβxFy] = 0, (2.10)
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where [X]=XR − XL denotes the jump across the discontinuity. We immediately sat-
isfy the jump relation (2.9) and (2.10) as soon as we have

s = (βx)L = (βx)R, and ΠL = ΠR. (2.11)

Next, involving (2.4)-(2.5) let us note that the following relation holds

Fx = cβxE + cβxΠ,

to deduce that the first jump relation (2.8) is also satisfied. The proof is completed. ¤

UL

FL

UR

FR

U?
LF̃L

U?
RF̃R

c‖fi?‖
−c c

Figure 1: Approximate Riemann solver of HLLC-type.

We now approximate the Riemann solution of (2.6). We propose to consider an
approximate Riemann solver in the following form (see [2, 17, 24, 25] to further details
and Fig. 1):

UR(x/t; UL, UR) =





UL, if x/t < −c,
U?

L, if − c < x/t < cβ?
x,

U?
R, if cβ?

x < x/t < c,
UR, if x/t > c,

(2.12)

where the wave speed cβ? will be proved to be in (−c, c) later on.
We have to evaluate the intermediate states U?

L and U?
R, and the associated ap-

proximate flux functions F̃L and F̃R. To access such an issue, after Harten-Lax-Van
Leer [17], Rankine-Hugoniot like conditions are considered across each wave with
speed c to write { −c(U?

L −UL) = F̃L −F (UL),
c(U?

R −UR) = F̃R −F (UR).
(2.13)

Several supplementary conditions have to be considered. After Toro [24, 25] (see also
[4,7]), we enforce the continuity of the Riemann invariant across the middle wave with
velocity cβ?

x. Hence, we have
{

(βx)?
L = (βx)?

R = β?
x,

Π?
L = Π?

R = Π?.
(2.14)

We complete the system to be solved by several linearizations, which retranscribe the
relations linking the Riemann invariants (βx, Π) and the radiative state vector U. Then
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we set




F?
x,L = F̃x,L = cβ?

x(E?
L + Π?),

F?
y,L = F̃y,L,

P̃xx,L =
β?

x F̃x,L

c
+ Π?,

P̃xy,L =
β?

x F̃y,L

c
,





F?
x,R = F̃x,R = cβ?

x(E?
R + Π?),

F?
y,R = F̃y,R,

P̃xx,R =
β?

x F̃x,R

c
+ Π?,

P̃xy,R =
β?

x F̃y,R

c
.

(2.15)

Now, the unknowns U?
L,R, F̃L,R and (β?

x, Π?) are solution of the system made of (2.13)
and (2.15). As a consequence, the approximate Riemann solver (2.12) is fully charac-
terized as soon as the system (2.13)-(2.15) is solved. To simplify the formulas in the
following, we introduce convenient notations

E?,HLL =
cER + cEL − (Fx,R − Fx,L)

2c
, (2.16a)

F?,HLL
x =

Fx,R + Fx,L − c(Pxx,R − Pxx,L)
2

, (2.16b)

F̃HLL
x =

Fx,L + Fx,R − c(ER − EL)
2

, (2.16c)

P̃HLL
xx =

cPxx,L + cPxx,R − (Fx,R − Fx,L)
2c

. (2.16d)

We note that these notations coincide with the single intermediate state vector and its
associated approximate flux function involved in the HLL Riemann solver [17]. The
detail of this remark is out of our purpose and the reader is referred to [4, 7, 9, 19, 24]
(and references therein) for complementary features.

We now detail the solution of (2.13)-(2.15). In the next statement we evaluate the
unknowns which determine the considered approximate Riemann solver.

Theorem 2.1. Assume UL and UR to be given in A. The unknown β?
x is the single solution

in (−1, 1) of the following quadratic equation

β?
x

2F̃HLL
x − c(P̃HLL

xx + E?,HLL)β?
x + F?,HLL

x = 0. (2.17)

Next, Π? is given by

Π? = P̃HLL
xx − β?

x
c

F?,HLL
x . (2.18)

The intermediate radiative energies are defined as follows

E?
L =

1
1 + β?

x

(
EL − β?

xΠ? +
Fx,L

c

)
, (2.19a)

E?
R =

1
1− β?

x

(
ER + β?

xΠ? − Fx,R

c

)
. (2.19b)
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The unknowns F?
x,L,R, F̃x,L,R, P̃xx,L,R and P̃xy,L,R are defined by (2.15), while F?

y,L,R is given by

F?
y,L = Fy,L − c(P̃xy,L − Pxy,L), and F?

y,R = Fy,R + c(P̃xy,R − Pxy,R). (2.20)

The proof of this theorem is detailed in the appendix.

After the work of Harten-Lax-Van Leer [17], we use the obtained approximate Rie-
mann solver (2.12) to derive a Godunov-type scheme. We consider a uniform mesh
defined by the cell [xi−1/2, xi+1/2), where xi+1/2 = xi + ∆x/2, for all i in Z with a con-
stant increment ∆x. The time discretization is given by tn+1 = tn + ∆t, where ∆t is
restricted according to a CFL like condition given by (according to (2.7))

c
∆t
∆x

≤ 1
2

. (2.21)

As usual, at the time tn, we assume to be known a piecewise constant approximation
of U(x, tn) defined as follows

Uh(x, tn) = Un
i , if x ∈ [

xi− 1
2
, xi+ 1

2

)
.

At each cell interface xi+1/2, we set the approximate Riemann solver defined by (2.12)
with UL = Un

i , and UR = Un
i+1. Under the CFL restriction (2.21), we thus consider a

juxtaposition of non-interacting Riemann solvers (see Fig. 2), denoted Uh(x, tn + t) for
t ∈ [0, ∆t).

Un
i−1 Un

i Un
i+1

U?,L
i− 1

2
U?,R

i− 1
2

U?,L
i+ 1

2
U?,R

i+ 1
2

cβ?
i− 1

2
cβ?

i+ 1
2−c c −c c

x
i− 1

2
x

i+ 1
2

Figure 2: Successive Riemann problems.

The updated state vector is obtained as follows

Un
i+1 =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Uh(x, tn + ∆t)dx

=
1

∆x

∫ xi

x
i− 1

2

UR
( x− xi− 1

2

∆t
; Un

i−1, Un
i

)
dx

+
1

∆x

∫ x
i+ 1

2

xi

UR
( x− xi+ 1

2

∆t
; Un

i , Un
i+1

)
dx. (2.22)
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A standard computation gives the following detailed scheme

En+1
i = En

i −
∆t
∆x

(F E
i+ 1

2
−F E

i− 1
2

)
, (2.23a)

(Fx)n+1
i = (Fx)n

i −
∆t
∆x

(F Fx
i+ 1

2
−F Fx

i− 1
2

)
, (2.23b)

(Fy)n+1
i = (Fy)n

i −
∆t
∆x

(F Fy

i+ 1
2
−F Fy

i− 1
2

)
, (2.23c)

where we have set the notations as

F E
i+ 1

2
=





c(β?
x)i+ 1

2
(E?,L

i+ 1
2
+ Π?

i+ 1
2
), if (β?

x)i+ 1
2

> 0,

c(β?
x)i+ 1

2
(E?,R

i+ 1
2
+ Π?

i+ 1
2
), otherwise,

(2.24a)

F Fx
i+ 1

2
= Π?

i+ 1
2
+

(β?
x)i+ 1

2

c
F E

i+ 1
2
, (2.24b)

F Fy

i+ 1
2

=





(β?
x)i+ 1

2
1+(β?

x)i+ 1
2

(
(Pxy)n

i + (Fy)n
i

c

)
, if (β?

x)i+ 1
2

> 0,

−(β?
x)i+ 1

2
1−(β?

x)i+ 1
2

(
(Pxy)n

i+1 + (Fy)n
i+1

c

)
, otherwise.

(2.24c)

For the sake of completeness, let us recall that (β?
x)i+1/2 is the unique solution in

(−1, 1) of the following equation

X2(F̃HLL
x )i+ 1

2
− c

(
(P̃HLL

xx )i+ 1
2
+ (E?,HLL)i+ 1

2

)
X + (F?,HLL

x )i+ 1
2

= 0,

where we have set

Π?
i+ 1

2
= (P̃HLL

xx )i+ 1
2
−

(β?
x)i+ 1

2

c
(F̃HLL

x )i+ 1
2
, (2.25a)

E?,L
i+ 1

2
=

1
1 + (β?

x)i+ 1
2

(
En

i − (β?
x)i+ 1

2
Π?

i+ 1
2
+

(Fx)n
i

c

)
, (2.25b)

E?,R
i+ 1

2
=

1
1− (β?

x)i+ 1
2

(
En

i+1 + (β?
x)i+ 1

2
Π?

i+ 1
2
+

(Fx)n
i+1

c

)
, (2.25c)

with the notations

E?,HLL
i+ 1

2
=

cEn
i+1 + cEn

i −
(
(Fx)n

i+1 − (Fx)n
i
)

2c
, (2.26a)

(F?,HLL
x )i+ 1

2
=

(Fx)n
i+1 + (Fx)n

i − c
(
(Pxx)n

i+1 − (Pxx)n
i
)

2
, (2.26b)

(F̃HLL
x )i+ 1

2
=

(Fx)n
i + (Fx)n

i+1 − c(En
i+1 − En

i )
2

, (2.26c)

(P̃HLL
xx )i+ 1

2
=

c(Pxx)n
i + c(Pxx)n

i+1 −
(
(Fx)n

i+1 − (Fx)n
i
)

2c
. (2.26d)

The derivation of the contact preserving scheme to approximate the weak solution of
(2.1) is thus completed.
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3 Properties of the scheme

In the present section, we exhibit the main properties satisfied by the scheme. We
establish that the scheme preserves the admissible states. In addition, we show the
accuracy of the method when evaluating contact discontinuities.

First we prove that the considered numerical procedure, defined by (2.23)-(2.26),
ensures the positiveness of the radiative energy and the radiative flux limitation.

Theorem 3.1. Consider an admissible sequence (Un
i )i∈Z in A. Assume that the CFL con-

dition (2.21) holds, and define the updated sequence (Un+1
i )i∈Z by the scheme (2.23)-(2.26).

Then we have (Un+1
i ) ∈ A, for all i ∈ Z.

The proof of this statement easily comes from the following property concerning
the approximate Riemann solver.

Lemma 3.1. Let UL and UR be given in A. Consider the approximate Riemann solver UR
defined by (2.12) and Theorem 2.1. Then UR remains in A, for all t > 0 and x ∈ R.

The proof of the robustness of the approximate Riemann solver will be given at the
end of this section.

Proof of Theorem 3.1. Arguing Lemma 3.1, the juxtaposition of the non-interacting
Riemann solvers Uh(x, t) remains in A, for all t ∈ [tn, tn + ∆t]. The definition of the
updated states Un+1

i , given by (2.22), completes the proof. ¤
Now, let us carry on considering the accuracy of the scheme. Indeed, in the follow-

ing result, the scheme (2.23)-(2.26) is proved to preserve the stationary contact waves.

Theorem 3.2. Consider an admissible sequence (Un
i )i∈Z inA. For all i in Z, assume (βx)n

i =
0, where (βx)n

i =βx(Un
i ) is defined by (2.5). Let us set Π a positive constant. Assume Πn

i =
Π, for all i ∈ Z, where Πn

i =Π(Un
i ) is given by (2.4). Then we have Un+1

i = Un
i , for all

i ∈ Z.

This result is a direct consequence of the property of the approximate Riemann
solver to exactly capture the stationary contact discontinuity.

Lemma 3.2. Let UL and UR be given in A, and assume that UL and UR define a stationary
contact wave; namely (βx)L=(βx)R= 0 and ΠL=ΠR. Then the approximate Riemann solver,
defined by (2.12) and Theorem 2.1, coincides with the exact stationary contact wave solution

UR(x/t; UL, UR) =
{

UL, if x/t < 0,
UR, if x/t > 0.

Proof. Arguing the definition of βx, given by (2.5), as soon as βx=0 ,we have Fx=0.
As a consequence (Fx)L=(Fx)R= 0. In addition, the radiative pressure reads

(Pxx)L = (Pxx)R = Π,
(Pxy)L = (Pxy)R = 0.
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From these values and the relation (2.16a), we deduce that F?,HLL
x =0 and P̃HLL

xx =Π.
We now evaluate the intermediate states of UR. First, β?

x is the unique solution in
(−1, 1) of the following equation

X2F̃HLL
x − cX

(
P̃HLL

xx + E?,HLL)
= 0.

Hence, we have β?
x=0. Next, from (2.18), we have Π?=Π. Concerning the radiative

energy, from (2.19a) and (2.19b), we obtain E?
L=EL and E?

R=ER. From (2.15), we get
F?

x,L=F?
x,R=0, while (2.20) gives F?

y,L=Fy,L and F?
y,R=Fy,R. The proof is completed. ¤

Proof of Theorem 3.2. Using Lemma 3.2, the expected result is an immediate conse-
quence of the updated state vector definition (2.22). ¤

The present section is now concluded by establishing the robustness property sat-
isfied by the approximate Riemann solver.

Proof of Lemma 3.1. We first establish that U?
L ∈ A. To address such an issue, we

need a suitable formulation of E?
L and F?

L as a function of β?
x given by

E?
L = EL

(1 + fL)(β?
x)2 + (1− Dxx,L)β?

x + 1 + fx,L

(1 + β?
x)2 , (3.1)

F?
x,L = cβ?

xEL
(1 + fx,L)(1 + 2 fx,L + Dxx,L)

(1 + β?
x)2 , (3.2)

where, according to the definition (2.2), we have set

Pxx,L = Dxx,LEL, and Fx,L = c fx,LEL,

with fx,L ∈ [−1, 1], and Dxx,L ∈ [0, 1].
To establish these two above relations, from (2.13) and (2.15), let us first recall that

the Rankine-Hugoniot conditions across the left discontinuity rewrite as follows

F?
x,L − Fx,L = −c(E?

L − EL), (3.3)

c2(P̃xx,L − Pxx,L) = −c(F?
x,L − Fx,L), (3.4)

c2(P̃xy,L − Pxy,L) = bL(F?
y,L − Fy,L). (3.5)

Since from (2.15), we have
F?

x,L = cβ?
x(E?

L + Π), (3.6)

from (3.3) we deduce

E?
L =

Fx,L + cEL − cβ?
xΠ?

c(β?
x + 1)

. (3.7)

Plugging this formulation of E?
L in (3.6), we obtain

F?
x,L = β?

x
Fx,L + cEL + cΠ?

β?
x + 1

. (3.8)
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Using P̃xx,L = β?
xF?

x,L/c + Π? in (3.4), we can deduce from (3.8) that

Π? =
Fx,L + cPxx,L − β?

x(Fx,L + cEL)
c(β?

x + 1)
, (3.9)

and by replacing the value of Π? in (3.7) and (3.8), we obtain the required relations
(3.1) and (3.2).

We now prove the non negativity of E?
L. Since |β?

x| < 1, we can deduce from (3.1)
that E?

L ≥ 0 if and only if the second order polynomial in β?
x, given by

ϕ(β?
x) = (1 + fx,L)(β?

x)
2 + (1− Dxx,L)β?

x + 1 + fx,L,

is non negative. First, let us note that fx,L=−1, implies fy,L=0. Since we have

f 2
x,L + f 2

y,L ≤ 1.

Then we deduce ϕ(β?
x)

∣∣
{ fx,L=−1}=0 to write E?

L|{ fx,L=−1}=0. Now, we assume fx,L ∈
(−1, 1] to note that the highest order coefficient is positive. As a consequence, it will
be sufficient to show that the discriminant of ϕ is non positive. This discriminant can
be factorized as follows

(1− Dxx,L)2 − 4(1 + fx,L)2 = −(1 + 2 fx,L + Dxx,L)(3 + 2 fx,L − Dxx,L).

Since we have (1± 2 fx,L + Dxx,L)≥0 from Lemma A.3, and (3 + 2 fx,L −Dxx,L)≥0 from
−1≤ fx,L≤1 and 0≤Dxx,L≤1, we obtain

(1− Dxx,L)2 − 4(1 + fx,L)2 ≤ 0,

and thus we have
ϕ(β?

x) ≥ 0.

Hence the left intermediate energy E?
L is non negative.

To prove the flux limitation of left state, i.e., −cE?
L≤F?

L≤cE?
L, we introduce the vari-

able δ?
L defined by

δ?
L = c(E?

L)
2 − (F?

x,L)
2 − (F?

y,L)
2,

to write the flux limitation property in the equivalent form δ?
L ≥ 0. Now, we establish

that δ?
L ≥ 0.

Since P̃xy,L = β?
xF?

y,L/c, we can deduce from (3.5) that

F?
y,L = c

Fy,L + Pxy,L

1 + β?
x

= cEL
fy,L + Dxy,L

1 + β?
x

, (3.10)

where Pxy,L=Dxy,LEL, and Fy,L=c fy,LEL with fy,L∈[−1, 1], and Dxy,L∈[−1, 1]. Using
(3.7), (3.8) and (3.10), the quantity δ?

L can be written as

δ?
L = c2E2

L
φ(β?

x)
(1 + β?

x)2 ,
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where

φ(β?
x) = (1 + fx,L)2(β?

x)
2 − 2(1 + fx,L)( fx,L + Dxx,L)β?

x

+ (1 + fx,L)2 − ( fy,L + Dxy,L)2.

Therefore, the sign of δ?
L is given by the sign of the second order polynomial φ. First,

let us note that φ(β?
x)=0 as soon as fx,L=−1, and then we have

δ?
L
∣∣
{ fx,L=−1}= 0.

Next, we assume fx,L=−1 to have the highest order coefficient (1 + fx,L)2 positive. As
a consequence, the expected flux limitation will be established as soon as the reduced
discriminant associated with φ is non positive. This reduced discriminant ∆′ can be
written as

∆′ = (1 + fx,L)2δ,

δ = ( fx,L + Dxx,L)2 + ( fy,L + Dxy,L)2 − (1 + fx,L)2.

Hence, the left state is flux limited if δ is non positive. Using the expression of Dxx,L
and Dxy,L, we get

Dxx,L =
(1− χL)

2
+

(3χL − 1)
2

f 2
x,L

f 2
L

, Dxy,L =
(3χL − 1)

2
fx,L fy,L

f 2
L

,

where we have set χL=χ( fL) with χ defined by (1.5), and fL=( f 2
x,L + f 2

y,L)
1/2. For all

θ ∈ (−π, π), let us set

fx,L = fL cos(θ), and fy,L = fL sin(θ),

to write δ in the following form

δ =
1
4

(
(3χ2

L + 2χL − 1− 4 f 2
L) cos(θ)2 + 8 fL(χL − 1) cos(θ)

+ (4 f 2
L + χ2

L − 2χL − 3)
)

,

which is a second order polynomial in cos(θ). From a basic function analysis, the
highest coefficient of this polynomial is negative for fL∈(0, 1), and it vanishes for fL=0
and fL=1. From an easy calculation, we have

δ
∣∣
{ fL=0}= −32

9
, and δ

∣∣
{ fL=1}= 0.

Now, let us consider fL∈(0, 1) to write the associated reduced discriminant of this
polynomial as follows

∆
′′

= −(χL + 2 fL + 1)(χL − 2 fL + 1)(3χ2
L − 10χL + 4 f 2

L + 3).

By the definition of χ, given by (1.5), the third coefficient is equal to zero, hence we
have ∆

′′=0. As a consequence, δ ≤ 0 and we have proved that the left state U?
L is flux

limited. The proof concerning the right state U?
R is similar and is omitted here. ¤
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4 The source terms discretization

We have proposed a finite volume scheme to approximate the solutions of (2.1). This
scheme is easily extended to take into account the material temperature which is gov-
erned by the stationary equation (omitting the source term)

∂t(ρCvT) = 0.

To shorten the notations, we set

W = (E, Fx, Fy, ρCvT)T, and F̄ (W) = (Fx, c2Pxx, c2Pxy, 0)T,

to denote the state and flux function vectors. Hence, to approximate the free streaming
region associated to the M1 model, governed by the following system





∂tE + ∂xFx = 0,
∂tFx + ∂xc2Pxx = 0,
∂tFy + ∂xc2Pxy = 0,
∂t(ρCvT) = 0,

we have derived the following contact discontinuity preserving scheme given by

Wn+1
i = Wn

i −
∆t
∆x

(
F̄i+ 1

2
− F̄i− 1

2

)
, (4.1a)

F̄i+ 1
2

=
(
F E

i+ 1
2
,F Fx

i+ 1
2
,F Fy

i+ 1
2
, 0

)T
, (4.1b)

where the formulas (2.24)-(2.26) are used.
Now, we propose to modify this method to introduce a suitable discretization of

the source term in order to approximate the system





∂tE + ∂xFx = cσ(aT4 − E),
∂tFx + ∂xc2Pxx = −cσFx,
∂tFy + ∂xc2Pxy = −cσFy,
∂t(ρCvT) = −cσ(aT4 − E),

(4.2)

For the sake of simplicity in the forthcoming developments, we set

F (W) = (Fx, c2Pxx, c2Pxy, 0)T.

To take into account the source term, we introduce it inside the Riemann solver using
a technique derived in [6]. Such a modification yields to a consistant scheme which
degenerates into a diffusion equation when σ is large. However, this limit diffusion
equation is not the expected equilibrium diffusion equation (1.8). To recover (1.8), we
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introduce a suitable correction parameter σ̄≥0 and rewrite the system in the equiva-
lent following form





cσ(aT4 − E) = c(σ + σ̄)
(

σ
σ+σ̄ aT4 + σ̄

σ+σ̄ E− E
)

,
−cσFx = c(σ + σ̄)

(
σ̄

σ+σ̄ Fx − Fx
)

,
−cσFy = c(σ + σ̄)

(
σ̄

σ+σ̄ Fy − Fy
)

,
−cσ(aT4 − E) = c(σ + σ̄)

(
σ

σ+σ̄ (E + ρCvT − aT4 + σ̄
σ+σ̄ ρCvT − ρCvT

)
.

From a numerical point of view, σ̄ can participate to control the numerical viscosity
(see [6] for further details).
To simplify the notations let us set

R(W) = (aT4, 0, 0, E + ρCvT − aT4)T,

R̄(W) =
σ̄

σ + σ̄
R(W) +

σ̄

σ + σ̄
W,

to write (4.2) in the following condensed form

∂tW + ∂xF̄ (W) = c(σ + σ̄)
(

R̄(W)−W
)
.

Next, we correct the approximate Riemann solver UR, defined by (2.12) and Theorem
2.1, by introducing the function R̄ as follows

W̃R(x, t) =





WL, if x/t < −c,
αW?

L + (1− α)R̄−(WL), if − c < x/t < cβ?
x,

αW?
R + (1− α)R̄+(WR), if cβ?

x < x/t < c,
WR, if x/t > c,

where we have set

WL,R = (UL,R, TL,R)T, W?
L,R = (U?

L,R, TL,R)T,

α =
2

2 + (σ + σ̄)∆x
, R̄±(WL,R) =

σ

σ + σ̄±
R(WL,R) +

σ̄±

σ + σ̄±
WL,R.

We adopt this new approximate Riemann solver to define a Godunov type scheme.
We then consider the juxtaposition, denoted Wh(x, tn + t) for t∈[0, ∆t], of the Riemann
solver stated at each interface xi+1/2.

The updated state vector is therefore defined as follows

Wn+1
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Wh(x, tn + ∆t)dx.

We skip the details of the computation (see [6]), and the resulting scheme reads

Wn+1
i =Wn

i −
∆t
∆x

(
αi+ 1

2
F̄i+ 1

2
− αi− 1

2
F̄i− 1

2

)

+ ∆t
( σ + σ̄i− 1

2

2 + (σ + σ̄i− 1
2
)

S+
i− 1

2
+

σ + σ̄i+ 1
2

2 + (σ + σ̄i+ 1
2
)

S−
i+ 1

2

)
,
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where

S−
i+ 1

2
= c

(
R̄−(Wn

i )−Wn
i
)− F̄ (Wn

i ),

S+
i+ 1

2
= c

(
R̄+(Wn

i+1)−Wn
i+1

)
+ F̄ (Wn

i+1),

R̄−(Wn
i ) =

σ

σ + σ̄i− 1
2

R(Wn
i ) +

σ̄i− 1
2

σ + σ̄i− 1
2

Wn
i ,

R̄+(Wn
i ) =

σ

σ + σ̄i+ 1
2

R(Wn
i ) +

σ̄i+ 1
2

σ + σ̄i+ 1
2

Wn
i ,

and

αi+ 1
2

=
2

2 + (σ + σ̄i+ 1
2
)∆x

.

Now we introduce the rescaling parameter ε, which is also involved in (1.7), in order
to obtain the limit equation of the scheme. To do so, we substitute ∆t, σ and σ̄i+1/2 by
∆t/ε, σ/ε and σ̄i+1/2/ε. The rescaled scheme thus reads as follows

Wn+1
i =Wn

i −
∆t
∆x

(
αε

i+ 1
2
F̄i+ 1

2
− αε

i− 1
2
F̄i− 1

2

)

+
∆t
ε

( σ + σ̄i− 1
2

2ε + (σ + σ̄i− 1
2
)

S+
i− 1

2
+

σ + σ̄i+ 1
2

2ε + (σ + σ̄i+ 1
2
)

S−
i+ 1

2

)
, (4.3)

where
αε

i+ 1
2

=
2

2ε +
(
σ + σ̄i+ 1

2

)
∆x

.

Next, we study the behavior of this rescaled scheme (4.3), as ε tends to zero. In this
limit, we have

S+
i− 1

2
+ S−

i+ 1
2

= 0,

which leads to
R̄−(Wn

i ) + R̄+(Wn
i )− 2Wn

i = 0,

and hence we have
R(Wn

i )−Wn
i = 0.

As a consequence, the limit state vector satisfies

En
i = a(Tn

i )4, (Fx)n
i = 0, (Fy)n

i = 0.

Finally, the following discrete diffusion equation is obtained

(ρCvT + aT4)n+1
i = (ρCvT + aT4)n

i + c
∆t

∆x2

[ (ρCvT + aT4)n
i+1 − (ρCvT + aT4)n

i

σ + σ̄i+ 1
2

+
(ρCvT + aT4)n

i−1 − (ρCvT + aT4)n
i

σ + σ̄i− 1
2

]
.
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Remark 4.1. Let us emphasize that the scheme without correction (i.e., σ̄ = 0) is clearly
not consistant with the required equilibrium diffusion equation (1.8). Indeed, in this
case, the scheme degenerates into a parabolic equation which diffusion coefficient is
c/σ instead of c/3σ as prescribed in (1.8).

Hopefully, the expected limit equation (1.8) may be recovered involving a suitable
choice of the free parameter σ̄i+1/2. One possibility is to choose

σ̄i+ 1
2

=





2σ + 3σρCv
Tn

i+1 − Tn
i

a(Tn
i+1)4 − a(Tn

i )4 , if Tn
i 6= Tn

i+1,

2σ + 3σρCv
1

4a(Tn
i )3 , otherwise,

to obtain the expected limit diffusion equation in the following discrete form

(ρCvT + aT4)n+1
i = (ρCvT + aT4)n

i +
∆t

∆x2
c

3σ

(
a(Tn

i+1)
4 − 2a(Tn

i )4 + a(Tn
i−1)

4
)

.

5 Numerical experiments

5.1 Marshak wave

The Marshak wave is a one-dimensional test case that focuses on the chronometric be-
havior of the scheme. The considered slab of material is initially cold and at radiative
equilibrium. A heat wave enters the domain and its evolution is observed.

In [27], this test case is used to compare the M1 model with various diffusion and
flux-limited diffusion models. All of these diffusion models predict wrong diffusion
speeds, even with the Levermore-Lorentz’s [20] flux-limiter which is also based on a
minimum entropy assumption, whereas the M1 model is quite well behaving time-
wise.

This test case is composed of a slab of material with x∈[0, 0.1]m. The mesh is only
made of 10 cells in order to have a challenging benchmark. The initial temperature is
equal to 300 K and the source on the left side of the domain has a temperature of 1000
K. This source generates a thermal wave propagating into the initially cold medium.

The opacity is assumed to be constant equal to σ=100m−1 and ρCv=10−4Jm−3K−1.
Note that in the present slab, the mean free path is equal to λ=1/σ=0.01m, which is
actually equal to the spatial resolution ∆x=0.01m. The time step ∆t is set according
to the CFL condition (2.21).The results are compared to a reference solution obtained
by computing the solution of the full radiative transfer equation, which is the kinetic
equation associated to the M1 model (see [22]).

The radiative temperature profiles, observed at t=1.33× 10−7s, are shown in Fig. 3.
It compares computations carried with both HLL and HLLC schemes, with or without
the asymptotic correction denoted ”AP”.

We clearly see that the HLLC and HLL schemes both give similar results from a
chronometric point of view. It is also to note that results without the asymptotic pre-
serving scheme are too fast compared to the reference solution, whereas the use of the
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Figure 3: Marshak wave at t = 1.33× 10−7s.

asymptotic preserving correction allows a much better agreement with the reference
solution.

5.2 Shadow cone

Let us now consider a 2D academic test case. It has very stiff initial conditions and
intends to demonstrate the quality of the solution provided by the solver. Tests have
been performed in [4], and we show here some improvements from the results ob-
tained therein.

We consider the domain (x, y)∈[0, 2]× [0, 1]m as shown on Fig. 4. Computations
made here are run on a 80× 40 cartesian grid, with a time step ∆t fixed by the CFL
restriction (2.21). The domain is composed of a dense material (ρCv=8.6× 104Jm−3

K−1 and σ=2× 105m−1) and a transparent region. A free streaming beam adjacent
to the dense material enters the domain through the top left boundary. The other
boundaries of the domain are supposed to be transparent. The initial temperature is 1
K in the dense material and 300K elsewhere. A radiative temperature of T=5.8× 106K

E = aT4 Fx = aT4 Fy = 0

T = 5802000K

E = 0 Fx = 0 Fy = 0
E = aT4

Tm = 1K

F = 0

Figure 4: Geometry (left) and exact solution (right) for the 2D case.
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HLL

HLLC

Figure 5: Comparison of the radiative temperature predicted by the HLL scheme (top) with the HLLC
(buttom). HLL

HLLC

Figure 6: Comparison of the material temperature computed by the HLL scheme (top) with the HLLC
(buttom).
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Figure 7: Radiative temperature along the y coordinate (see Fig. 4 for the exact solution).

is applied on the left side of the transparent region (from y=0.5m to y=1m).
The exact solution is drawn on Fig. 4. Indeed, in the upper part the photons are

simply translated from the left boundary to the right of the domain. In the lower
part, the solution remains constant against time since no photon enters this area. The
line y=0.5m is then a stationary contact discontinuity for the M1-system. The dense
material does not get any photon either and its temperature remains constant.

Simulations are stopped at time t=5× 10−8s. Figs. 5 and 6 respectively show the
radiative and material temperature distributions obtained from the HLL and HLLC
schemes. It is obvious that the HLL scheme induces an important numerical diffusion
which affects the lower part of the domain. On the other hand, the HLLC scheme is
able to deal properly with the discontinuity.

It appears in Table 1 that solution of the HLLC scheme with the asymptotic pre-
serving correction and a second order MUSCL extension has a behavior very close to
the exact solution.

Fig. 7 is a slice made at x=1m so that we can focus on the behavior of the radiative
temperature across the contact discontinuity. We clearly see the effect of the numerical
diffusion of the HLL scheme whereas the HLLC approximates quite closely the exact
solution.

Table 1: Material temperature with HLL and HLLC schemes to compare with the exact solution given by
‖T‖∞ = 1 and ‖T‖1 = 1 (see Fig. 4).

‖T‖∞ ‖T‖1Scheme
HLL HLLC HLL HLLC

without AP 4300000 17000 350000 840
AP scheme 3600000 9000 43000 40

Minmod without AP 3600000 16000 240000 340
Minmod + AP 2700000 6400 34000 26
Superbee + AP 1600000 2400 11000 6.1
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5.3 Venusian atmospheric entry

This last numerical application is devoted to the use of the HLLC scheme for radiative
transfer in the framework of a full coupling between radiation and hydrodynamics.
Indeed, in this numerical experiment, we look at the Venusian atmospheric entry of
an object with the dimensions of the Pioneer Venus bus portion of the spacecraft that
reached Venus in December 1978. The trajectory point considered in this simulation
is located at an altitude of about 80km. At this point, the temperature is 142K and the
pressure is 300Pa. Venusian atmospheric entries are known to be difficult because of
the thickness of the atmosphere (about 90 times thicker than the Earth atmosphere). It
has already been pointed out in [27] that the flow is modified by the radiative effects.
Since a large amount of energy is dissipated thanks to radiative processes, a fully
coupled model is required to predict the correct temperature profile.

The reader is referred to [11, 27] for details on the coupling between radiation and
hydrodynamics. Here, we focus on the numerical accuracy improvements realized
with use of the HLLC solver described earlier. Then for our study, we reduce the com-
parison to the HLL and HLLC approximate Riemann solvers at our disposal for the
solution approximation of the radiative transfer equation. The calculation domain is
regularly divided into 40 cells in the x direction and 15 cells in the y direction. The
associated time step ∆t is given by (2.21). The temperatures obtained with such flow
conditions are plotted in Fig. 8. We can notice that the shock layer thickness is even
more reduced through the use of the HLLC scheme than with the HLL scheme (com-
pared to a non coupled simulation as shown in [27]).

Additionally, we refine the mesh in the boundary layer close to the body. This sec-
ond mesh is still divided into 40 cells in the x direction and 15 cells in the y direction,
as the original mesh, but is refined on the boundary of the probe. Fig. 9 shows the
temperature predicted on the two different meshes by both HLL and HLLC schemes.

We can see that the HLLC scheme predicts similar results on both grids while the
solution of the HLL scheme contains much more numerical diffusion on the first grid.
We thus confirm the gain in accuracy we have made when developing an HLLC like
Riemann solver. Moreover, from a computation cost point of view, performing these
tests on one processor (type: Itanium II - 1.6 GHz), we outline that it is approximately
two times longer to obtain a converged solution with the refined mesh than with the
regular mesh. It is therefore cheaper to realize the needed calculations over a regular
mesh, and it is accurate enough when using the HLLC approximate Riemann solver.

6 Conclusions

The present work concerns the derivation of an accurate scheme for the free streaming
regime involved by the M1 model for radiative transfer. During the last ten years,
several numerical schemes have been proposed in the literature (for instance see [3, 5,
8,9,12,15,16]). These works essentially concern the difficult problem coming from the
asymptotic preserving property. Indeed, one of the main property satisfied by the M1
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Figure 8: Temperatures obtained by the HLL (left) and HLLC (right) schemes.

model is its ability to restore the relevant diffusive limit.
Such a property turns out to be very difficult to be properly approximated by any

numerical scheme. As a consequence, most of the suggested strategies consider an
HLL (explicit or implicit) scheme for the transport part to obtain, with the suitable
corrections, the required asymptotic preserving property.

We have here derived an HLLC-like scheme that is able to capture the stationary
contact wave. Of course, such an accuracy property never holds involving a standard
HLL method. In addition, this accurate method have been proved to be robust since
it preserves the positiveness of the radiative energy and the required limitation of
the radiative flux. Concerning the asymptotic diffusion regime of the scheme, we
have adopted a recent Godunov-type scheme to include source terms as proposed
in [6]. This approach is nothing but a suitable correction of the associated HLLC-like

Figure 9: Gas temperature (left) and radiative temperature (right) - Mesh convergence.
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Riemann solver. The use of this numerical technique ensures a judicious discretization
of the source term and preserves a discrete limit diffusion equation. Several numerical
experiments attest the relevance of the method and its ability to perform simulations
of physical interest.

Appendix

The proof of the Theorem 2.1 easily comes from the next two statements. The first one
is devoted to the equations satisfied by β?

x and Π?.

Lemma A.1. Assume UL and UR to be given in A. The unknowns β?
x and Π? satisfy the

relation (2.17) and (2.18).

The second result concerns the existence of β?
x. Indeed, we have

Lemma A.2. Assume UL and UR to be given in A. The equation

X2F̃HLL
x − c

(
P̃HLL

xx + E?,HLL)
X + F?,HLL

x = 0,

admits two roots. One root remains in (−1, 1), while the second one is in R\(−1, 1).

Equipped with these two lemmas, we establish Theorem 2.1.

Proof. The existence and definition of β?
x and Π? easily come from Lemma A.1 and

Lemma A.2.
Concerning the intermediate radiative energy E?

L and E?
R, from (2.13), we have

F̃x,L − Fx,L = −c(E?
L − EL),

F̃x,R − Fx,R = −c(E?
R − ER).

Arguing about the linearization (2.15) associated with F̃x,L,R, we immediately deduce
the expected formulas (2.19a) and (2.19b). Since at this point β?

x and Π? are known,
the radiative energies E?

L and E?
R are then fully defined.

The characterization of the other unknowns is a direct consequence of the lin-
earization formulas (2.15) and the Rankine-Hugoniot relation (2.13) associated with
Fy. The proof is thus completed. ¤

To conclude the definition of the approximate Riemann solver, we prove the two
technical lemmas.

Proof of Lemma A.1. From relation (2.13), we write

c(P̃xx,L − Pxx,L) = −(F?
x,L − Fx,L), (A.1)

c(P̃xx,R − Pxx,R) = (F?
x,R − Fx,R). (A.2)

The sum of these two relations gives

c(P̃xx,L + P̃xx,R) + (F?
x,L − F?

x,R) = 2cP̃HLL
xx ,
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where we substitute P̃xx,L,R and F?
x,L,R with their associated linearization given by

(2.15). We then obtain

β?
x(F̃x,L + F̃x,R) + 2cΠ? + cβ?

x(E?
L − E?

R) = 2cP̃xx,L. (A.3)

Once again, we use (2.13) to write

F̃x,L + cE?
L = Fx,L + cEL, and F̃x,R − cE?

R = Fx,R − cER.

We plug these two relations into (A.3) to get

β?
x
(
(Fx,L + cEL) + (Fx,R − cER)

)
+ 2cΠ? = 2cP̃HLL

xx ,

which rewrites in the expected form (2.18). Next, to establish (2.17), we first exhibit
the following relation

F?,HLL
x = cβ?

x(Π? + E?,HLL). (A.4)

To access such an issue, we consider (A.1) and (A.2), where F?
x,L,R and P̃xx,L,R are sub-

stituted with their corresponding linearization (2.15). We easily obtain

(β?
x)

2(E?
L + Π?) + Π? − Pxx,L = −

(
β?

x(E?
L + Π?)− Fx,L

c

)
, (A.5)

(β?
x)

2(E?
R + Π?) + Π? − Pxx,R = −

(
β?

x(E?
R + Π?)− Fx,R

c

)
. (A.6)

We introduce the relations (2.19a) and (2.19b) of E?
L,R into (A.5) and (A.6) to write

(1 + β?
x)Π? + β?

xEL − Pxx,L − (1− β?
x)

Fx,L

c
= 0,

− (1− β?
x)Π? + β?

xER − Pxx,R − (1 + β?
x)

Fx,R

c
= 0.

From the sum of these two above relations, we easily obtain the required relation
(A.4). Next, the expected quadratic equation (2.17) satisfied by β?

x is straightforwardly
deduced from (2.18) and (A.4). The proof is achieved. ¤

In order to prove Lemma A.2, we need the following technical result

Lemma A.3. Assume U to be given in A, then we have

E + Pxx ± 2Fx/c > 0.

Proof. After the work by Dubroca-Feugeas [12], the radiative energy E and the
radiative flux Fx are the first two moments in the x-direction of a positive radiative
intensity I. As a consequence, E and Fx rewrite as follows

E =< 1, I >, and Fx/c =< µx, I >,
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where µx is the projection on the x-axis of the angular variable, and < ., . > denotes
a positive average operator. In addition, involving such notations, the radiative pres-
sure is nothing but the following closure [12, 26]

Pxx =< µ2
x, I > .

Arguing such a reformulation, we have

E + Pxx ± 2Fx/c =< (1± µx)2, I >,

where by definition, < (1± µx)2, I > is positive. The proof is thus achieved. ¤
Proof of Lemma A.2. Let us introduce the following auxiliary function

Φ(X) = X2F̃HLL
x − c(P̃HLL

xx + E?,HLL)X + F?,HLL
x ,

to study its roots. From (2.17), we know that β?
x is one of these roots. Since Φ is

a quadratic function, the result is established as soon as the product Φ(1)Φ(−1) is
proved to be negative. First, we write

Φ(1) = F̃HLL
x − c(P̃HLL

xx + E?,HLL) + F?,HLL
x .

Involving the definition of (F̃HLL, P̃HLL
xx ) and (E?,HLL, F?,HLL

x ) given by (2.16a), we ob-
tain after a straightforward computation

Φ(1) = −c(ER − 2Fx,R/c + Pxx,R).

Similarly, we have

Φ(−1) = F̃HLL
x + c(P̃HLL

xx + E?,HLL) + F?,HLL
x ,

to obtain the following relation

Φ(−1) = c(EL − 2Fx,L/c + Pxx,L).

From Lemma A.3, we immediately obtain

Φ(−1) > 0, and Φ(1) < 0,

and the proof is achieved. ¤
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[14] M. GONZALEZ, Contribution à l’étude numérique de l’hydrodynamique radiative: des
expériences de chocs radiatifs aux jets astrophysiques, PhD Thesis, Université Paris-Sud XI,
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