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Abstract. In this paper, an energy-compatibility condition is used for stress opti-
mization in the derivation of new accurate 8-node hexahedral elements for three-
dimensional elasticity. Equivalence of the proposed hybrid method to an enhanced
strains method is established, which makes it easy to extend the method to general
nonlinear problems. Numerical tests show that the resultant elements possess high
accuracy at coarse meshes, are insensitive to mesh distortions and free from volume
locking in the analysis of beams, plates and shells.
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1 Introduction

Due to their computational efficiency and simple geometry, low-order hexahedral and
tetrahedral elements are the most exploited in the 3D analysis of general solid and
structural mechanics problems. However, conventional low-order elements yield poor
results at coarse meshes for problems with bending, and suffer from locking at the
nearly incompressible limit. To improve their performance, several kinds of enhanced
stress/ strain methods have been developed based on generalized variational prin-
ciples. The first kind is the assumed stress method based on the Hellinger-Reissner
principle, where the displacement and stress fields are the assumed independent vari-
ables. Representative of this approach for 2D and 3D analysis are the works [1–25].
The second is the enhanced strain method based on the Hu-Washizu principle, where
the displacement, stress and strain fields are the assumed independent variables. In
this direction, there are a number of works, e.g., [26–55]. The combined hybrid method
is the third kind of enhanced stress method which includes displacement and stress
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variables. It is based on weighted combination of the Hellinger-Reissner functional
and its dual, the primal hybrid functional. For the related work one can see [56–59].

Among these methods, the 3-field enhanced strain approach is more attractive in
non-linear analysis, since the Hu-Washizu functional is formulated in terms of the
strain energy function. But from a practical viewpoint, the 2-field assumed stress
approach is more computationally efficient, which makes it more popular. For this
method, the choice of stress mode is key to the construction of high performance el-
ements. To improve the performance of the 8-node isoparametric trilinear hexahe-
dron element H8 by the assumed stress approach, Spilker and Singh [11] derived an
isoparametric quadratic displacement element. However, as the chosen stress field
must satisfy equilibrium, then the interpolation must be given in terms of Cartesian
co-ordinates. Furthermore, it is necessary to perform inversion operations on a fairly
high-order matrix in computing the stiffness matrix. On the other hand, Pian and
Tong [2] used isoparametric interpolation and relaxed the equilibrium conditions by
introducing Wilson internal displacements parameters [60]. In this way, they con-
structed a 8-node hybrid stress hexahedral element PT18β in which the stress inter-
polation functions are similar to those given by Loikkanen and Irons [61]. By using
admissible matrix formulation, Sze [15–17] improved PT18β to obtain better perfor-
mance for thin plates and shells.

In [23, 25], Xie and Zhou showed that for 2D analysis, fulfillment of the following
energy-compatibility (or energy-orthogonality) condition

∫

K
τ · ε(vI)dΩ = 0, ∀τ, and ∀vI ,

can lead to optimal stress mode and robust hybrid stress element, where K denotes an
arbitrary quadrilateral, τ the assumed stresses, vI the Wilson internal displacements,
n the unit outer normal vector along ∂K. Following the same idea, in this contribu-
tion we will use the above stress optimization condition to derive new 8-node hybrid
stress hexahedral elements for the analysis of solid mechanical problems, including
beams, plates and shells. Following the idea of Piltner [33,34], we will also discuss the
equivalence of the new method to an enhanced strains method.

2 Mixed/ hybrid finite element formulations

Consider the linear elasticity problem



−divσ = f, σ = Dε(u), in Ω,

σ · n|Γ1 = T, u|Γ0 = 0, on ∂Ω = Γ1
⋃

Γ0,
(2.1)

where Ω ⊂ <3 is a bounded open set, u represent the displacements, σ the stress ten-
sor, ε(u) = (∇u +∇Tu)/2 the strains, D the elasticity module matrix, f the prescribed
body forces, T the prescribed surface traction on Neumman boundary Γ1.
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When incompatible displacements are used in the construction of hybrid stress
finite element method, the Hellinger-Reissner variational principle reads as

Π(σh, uh) = inf
v∈uh

sup
τ∈vh

Π(τ, v), (2.2)

where the energy functional

Π(τ, v) = ∑
K

[
− 1

2

∫

K
τ ·D−1τdΩ +

∫

K
τ · ε(v)dΩ−

∮

Γ1
⋂

∂K
T · vcds

−
∮

∂K
τn · vIds−

∫

K
f · vdΩ

]
,

displacements v = vc + vI with vc the compatible element displacements and vI the
incompatible internal displacements, τ are piecewise-independent stresses,

Uh = Uh
c

⊕
Uh

I , and Vh ⊂ V := ∏
K∈Th

H(div; K),

denote respectively the finite dimensional approximation subspaces for displacements
and stresses such that

Uh
c ⊂ Uc :=

{
v ∈ H1(Ω)3; v|Γ0 = 0

}
,

Uh
I
∣∣
K := span

{
incompatible internal bubble displacements

}
,

with Th =
⋃{K} a given hexahedral mesh subdivision, H1(Ω) the usual Sobolev

space, L2(Ω) the square-integrable function space,

H(div; K) =
{

τ = (τ11, τ22, τ33, ø12, τ13, τ23)T ∈ L2(Ω)6; divτ ∈ L2(Ω)3
}

,

where

divτ =
(∂τ11

∂x
+

∂τ12

∂y
+

∂τ13

∂z
,

∂τ12

∂x
+

∂τ22

∂y
+

∂τ23

∂z
,

∂τ13

∂x
+

∂τ23

∂y
+

∂τ33

∂z

)T
.

2.1 Element geometry and stress modes

Let K be an arbitrary hexahedron with eight vertices Pi(xi, yi, zi)(i = 1, ..., 8). The
isoparametric mapping

FK : K̂ = [−1, 1]3 → K,

is given by



x
y
z


 = FK(ξ, η, ζ) =

1
8

8

∑
i=1

Ni




xi
yi
zi


 ,
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where ξ, η and ζ are the isoparametric coordinates,

Ni = (1 + ξiξ)(1 + ηiη)(1 + ζiζ),


ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8
η1 η2 η3 η4 η5 η6 η7 η8
ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8


 =



−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1


 .

We denote the element geometric parameters as follows




a1 b1 c1
a2 b2 c2
a3 b3 c3
a4 b4 c4
a5 b5 c5
a6 b6 c6
a7 b7 c7




=
1
8




−1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1
−1 1 −1 1 1 −1 1 −1







x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5
x6 y6 z6
x7 y7 z7
x8 y8 z8




.

Then the Jacobian of the co-ordinate transformation FK is

[J] =




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




=




a1 + a4η + a5ζ + a7ηζ b1 + b4η + b5ζ + b7ηζ c1 + c4η + c5ζ + c7ηζ
a2 + a4ξ + a6ζ + a7ξζ b2 + b4ξ + b6ζ + b7ξζ c2 + c4ξ + c6ζ + c7ξζ
a3 + a5ξ + a6η + a7ξη b3 + b5ξ + b6η + b7ξη c3 + c5ξ + c6η + c7ξη


 .

Let

Uh
1 :=

{
vc ∈ Uc ∩ C0(Ω);

vc|K ∈ span{1, ξ, η, ζ, ξη, ηζ, ζξ, ξηζ}3 ◦ F−1
K , ∀K ∈ Th

}
,

be the compatible isoparametric trilinear displacement subspace, i.e., for vc ∈ Uh
1,

vc|K =
[

N1I3 N2I3 N3I3 N4I3 N5I3 N6I3 N7I3 N8I3

]
q(v)

c

:= NCq(v)
c , (2.3)

where I3 is the three order identical matrix, and

q(v)
c = (u1, v1, w1, · · · , u8, v8, w8)T ∈ R24,

are the nodal displacements. Let also

Uh
I :=

{
vI ; vI |K ∈ span{1− ξ2, 1− η2, 1− ζ2}3 ◦ F−1

K , ∀K ∈ Th

}
,
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be the Wilson’s internal displacement subspace, i.e., for vI ∈ Uh
I ,

vI |K =
[
(1− ξ2)I3 (1− η2)I3 (1− ζ2)I3

]
q(v)

I := NIq
(v)
I , (2.4)

where the internal displacements q(v)
I ∈ <9. Then the Wilson’s incompatible displace-

ment subspace can be denoted by

Uh
W := Uh

1

⊕
Uh

I ,

i.e., for ∀v ∈ Uh
W ,

v|K = (vc + vI)|K = [NC NI ]

{
q(v)

c

q(v)
I

}
. (2.5)

Let

Vh
1 :=

{
τ ∈ V; (τ11, τ22, τ33)|K ∈ span{1, ξ, η, ζ, ξηζ}3 ◦ F−1

K ,

(τ12, τ13, τ23)|K ∈ span{1, ξ, η, ζ}3 ◦ F−1
K , ∀K ∈ Th

}
,

be the piecewise stress subspace, i.e., stresses τ ∈ Vh
1 on K have the form

τ|K =





τ11
τ22
τ33
τ12
τ13
τ23





=




1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0 0 0
0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0 0
0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0
0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0
0 0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0
0 0 0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η

ζ 0 0 0 0 0 ξηζ 0 0
0 ζ 0 0 0 0 0 ξηζ 0
0 0 ζ 0 0 0 0 0 ξηζ
0 0 0 ζ 0 0 0 0 0

m0 0 0 0 ζ 0 0 0 0
0 0 0 0 0 ζ 0 0 0








β1
...
...
...

β27





=: Φββ(τ). (2.6)

Let

Vh
E :=

{
τ ∈ Vh

1;
∫

K
τ · ε(vI)dΩ = 0, ∀vI ∈ Uh

I , ∀K ∈ Th

}
,

be the energy-compatible stress subspace. Since the energy compatibility condition
∫

K
τ · ε(vI)dΩ = 0, ∀vI ∈ Uh

I , (2.7)

yields 9 linear constraints for the piecewise 27-parameter stresses τ in (2.6), the energy-
compatible stresses in Vh

E are of 27− 9 = 18 parameters on K. Due to the complexity of
three dimensional case, it’s not easy to get the explicit forms of the energy-compatible
stresses. But in actual computation we can use them in their implicit forms, as will be
discussed in Section 2.2.
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Remark 2.1. In fact, one can also give another assumed stress mode which is different
from (2.6), say

τ|K =





τ11
τ22
τ33
τ12
τ13
τ23





=




1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0 0 0
0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0 0
0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0 0
0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0 0
0 0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η 0
0 0 0 0 0 1 0 0 0 0 0 ξ 0 0 0 0 0 η

ζ 0 0 0 0 0 ηζ 0 0
0 ζ 0 0 0 0 0 ζξ 0
0 0 ζ 0 0 0 0 0 ξη
0 0 0 ζ 0 0 0 0 0
0 0 0 0 ζ 0 0 0 0
0 0 0 0 0 ζ 0 0 0








β1
...
...
...

β27





. (2.8)

2.2 Element ECH8: element formulations

By taking

Vh = Vh
E, and Uh = Uh

1,

in the variational problem (2.2), i.e., employing the compatible isoparametric trilinear
displacements (2.3) and the implicit 18-parameter energy-compatible stress mode, a
hybrid stress element named ECH8 is obtained. In other words, ECH8 is based on the
following variational principle

Π1(σh, uh
c ) = inf

vc∈Uh
1

sup
τ∈Vh

E

Π1(τ, vc) = inf
vc∈Uh

1

sup
τ ∈ Vh

1
satisfying (2.7)

Π1(τ, vc), (2.9)

where

Π1(τ, vc) = ∑
K

[
− 1

2

∫

K
τ ·D−1τdΩ +

∫

K
τ · ε(vc)dΩ

−
∮

Γ1
⋂

∂K
T · vcds−

∫

K
f · vcdΩ

]
.

From the second relation in (2.9) we know that the problem can be viewed as a saddle-
point problem on Vh

1 × Uh
1 under the stress constraint (2.7). By introducing the La-

grangian multiplier uh
I ∈ Uh

I we can easily change this problem into the following
constraint-free problem

Π2(σh, uh
c , uh

I ) = inf
v=vc+vI∈Uh

W

sup
τ∈Vh

1

Π2(τ, vc, vI), (2.10)
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where

Π2(τ, vc, vI) = ∑
K

[
− 1

2

∫

K
τ ·D−1τdΩ +

∫

K
τ · ε(vc + vI)dΩ

−
∮

Γ1
⋂

∂K
T · vcds−

∫

K
f · vcdΩ

]
.

The stationary conditions of (2.10) are known to be: Find

(σh, uh
c , uh

I ) ∈ Vh
1 ×Uh

1 ×Uh
I ,

such that

∑
K

{ ∫

K
σh ·D−1τ dΩ−

∫

K
τ · ε(uh

c + uh
I ) dΩ

}
= 0, ∀τ ∈ Vh

1, (2.11)

∑
K

∫

K
σh · ε(vc + vI) dΩ = ∑

K

{ ∫

K
f · vc dΩ +

∮

Γ1
⋂

∂K
T · vc ds

}
, ∀vc ∈ Uh

1. (2.12)

Remark 2.2. When using the stress mode (2.8) instead of (2.6), one can similarly get
another energy-compatible hybrid element, which is named ECH8′ for convenience.

Remark 2.3. Just like the original incompatible Wilson element(H11), the elements
ECH8 and ECH8′ do not pass the patch test for non-parallelepiped meshes. But as
shown in [66], the patch test is not necessary for the convergence of incompatible
approximation, and Wilson element gives a convergent solution, provided that the
finite meshes satisfied a particular condition, e.g., a bi-section mesh condition. The
situation for ECH8 and ECH8′ is similar.

The element stiffness matrix of ECH8 is derived as follows. From (2.3),(2.4) we have

(
ε(vc) + ε(vI)

)∣∣
K=




∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂

∂y
∂

∂x 0
∂
∂z 0 ∂

∂x
0 ∂

∂z
∂

∂y




[NC NI ]

{
q(v)

c

q(v)
I

}

=: [BC BI ]

{
q(v)

c

q(v)
I

}
. (2.13)

By (2.6) and (2.13), we denote
∫

K
σ · D−1τdΩ =

(
β(σ))T

∫ 1

−1

∫ 1

−1

∫ 1

−1
ΦT

β D−1Φβ|J|dξdηdζβ(τ) =:
(

β(σ))THβ(τ),

∫

K
τ · ε(vc + vI)dΩ =

(
β(τ))T

∫ 1

−1

∫ 1

−1

∫ 1

−1
ΦT

β [BC BI ]|J|dξdηdζ

{
q(v)

c

q(v)
I

}

=:
(

β(τ))T[GC GI ]

{
q(v)

c

q(v)
I

}
,
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∫

K
f · vcdΩ +

∮

Γ1
⋂

∂K
T · vcds =: [Qc 0]

{
q(v)

c

q(v)
I

}
.

Then it follows from (2.11) that the stress-displacement relation on K is:

β(σh) = H−1[GC GI ]

{
q(uh)

c

q(uh)
I

}
,

Together with Eq. (2.12), we can get the following local system:
[

GT
CH−1GC GT

CH−1GI

GT
I H−1GC GT

I H−1GI

] {
q(uh)

c

q(uh)
I

}
=

{
QT

c
0

}
. (2.14)

By following a static condensation process with respect to the internal displacement
parameters, the second matrix equation in (2.14) implies

q(uh)
I = −(GT

I H−1GI)−1GT
I H−1GC q(uh)

c ,

Substitute this relation into the first matrix equation (2.14), we then get the element

stiffness equation only with respect to the nodal parameters q(uh)
c :

(
GT

CH−1GC −GT
CH−1GI(GT

I H−1GI)−1GT
I H−1GC

)
q(uh)

c = QT
c . (2.15)

2.3 Equivalence to an enhanced strains method

Following the basic idea of [33, 34], in this subsection we will give an equivalent en-
hanced strains method to the new hybrid stress element ECH8.

The equivalent enhanced strains method is based on the following modified Hu-
Washizu formulation

Π3(vc, τ, ε̃, ε̃I) = ∑
K

[
−1

2

∫

K
ε̃ ·Dε̃dΩ +

∫

K
τ ·

(
ε̃− ε(vc)− ε̃I

)
dΩ

−
∮

Γ1
⋂

∂K
T · vcds−

∫

K
f · vcdΩ

]
,

where vc ∈ Uh
c is the compatible displacements, ε(vc) = (∇vc +∇Tvc)/2 is the strains

caused by displacements vc, τ ∈ Vh
1 is the unconstraint stresses,

ε ∈ Vh
1, and εI ∈ Vh

I :=
{

ε(vI) : vI ∈ Uh
I

}
,

are the independent strains and enhanced strains respectively. The spaces Uh
c , Vh

1, Uh
I

are the same as defined in Section 2.1.
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In order to explain its equivalence to ECH8, we first give the variational equations
of the above enhanced strains method as follows: Find

(σh, uh
c , ε, εI) ∈ Vh

1 ×Uh
1 ×Vh

1 ×Vh
I ,

such that

∑
K

{∫

K
τ ·

(
ε− ε(uh

c )− εI

)
dΩ

}
= 0, ∀τ ∈ Vh

1, (2.16)

∑
K

{∫

K
ε̃ ·

(
Dε− σh

)
dΩ

}
= 0, ∀ε̃ ∈ Vh

1, (2.17)

∑
K

∫

K
σh · ε(vc)dΩ = ∑

K

{∫

K
f · vcdΩ +

∮

Γ1
⋂

∂K
T · vcds

}
, ∀vc ∈ Uh

1, (2.18)

∑
K

{∫

K
σh · ε̃IdΩ

}
= 0, ∀ε̃I ∈ Vh

I . (2.19)

We show the equivalence as follows. As we choose the enhanced strains directly from
the strains caused by the Wilson bubble displacements, (2.18) and (2.19) are obviously
equivalent to (2.12). From (2.17), we know

Dε− σh = 0, or ε = D−1σh,

since

Dε− σh ∈ Vh
1.

Substitute this into (2.16), we then get an equation which is the same as (2.11). To sum
up, the resultant enhanced strains method and the new hybrid stress element ECH8
are equivalent.

Owing to this equivalence, the element ECH8 can easily be extended to non-linear
problems.

3 Numerical experiments

In this section, some test problems are used to examine numerical performance of the
hybrid elements ECH8 and ECH8′. The 2× 2× 2 Gaussian quadrature is used for all
the problems, and it is exact for the computation of ECH8 and ECH8′.

Some existing 8-node hexahedral elements are selected for comparison. They are:
the isoparametric trilinear element H8, the 3D Wilson element H11, the combined
hybrid element CHH(0-1) [56–58], Pian and Tong’s hybrid stress hexahedral element
PT18β [2, 14–16], Sze’s element SS18β [15] which is the improved version of PT18β
through admissible matrix formulation, and some famous enhanced strain methods
such as SR [31] proposed by Simo and Rifai, HIS [55] proposed by Areias, 3DEAS9
and 3DEAS30 [41] proposed by Andelfinger and Ramm. As the element 3DEAS30 is
equivalent to PT18β, we only need to list the results of PT18β in this paper.



342 S. Zhang and X. Xie. / Adv. Appl. Math. Mech., 3 (2010), pp. 333-354

It should be mentioned that all the numerical results of H8, H11, CHH(0 − 1),
3DEAS9, as well as of ECH8 and ECH8′, are computed by using our codes, while all
results of the other elements are from the corresponding references.

3.1 Test for element invariance

The standard test on element invariance is explained by the single-element structure
in Fig. 1. Local coordinates frames x− y− z attached to the bases of the structures is
shown. The nodal forces acting are defined with respected to the local frames and are
parallel to the x−direction. To test the invariance of the proposed models, the x − z
plane is rotated anti-clockwisely by angles π/8, π/4, 3π/8 and π/2. The computed
results for x−direction displacement of point C are listed in Table 1. The two proposed
elements are invariant.

Figure 1: Three-dimensional single element structure for testing element invariance .

3.2 Beam bending

A cantilever beam modeled with five elements is subjected to two different load cases
(Fig. 2). The results of every element for the energy Π, the maximum displacement
WA at point A and the normal stress σBx at point B are given in Table 2, where ∗means

Table 1: Computed deflection at point C in the x− direction.

H8 H11 3DEAS9 PT18β CHH(0− 1) ECH8 ECH8′
3DEAS30

0.4556 0.5737 0.5312 0.5364 0.5775 0.5830 0.5781
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Table 2: Cantilever beam with five irregular elements.

Case 1 Case 2
Element WA σBx Π(×104) WA σBx Π(×104)
H8 44.4 -1736.3 1.64 49.3 -2415.3 1.47
H11 98.3 -3037.9 3.86 100.2 -4224.8 3.01
H11∗ 89.7 -2892.1 3.53 92.2 -4020.5 2.77
CHH(0− 1) 98.3 -3002.4 3.86 100.3 -4159.1 3.01
CHH(0− 1)∗ 93.8 -2927.2 3.69 96.1 -4054.0 2.89
3DEAS9 95.7 -3000.3 3.70 97.8 -4131.6 2.94
PT18β, 3DEAS30 98.3 -3002.5 3.86 100.3 -4159.3 3.01
SS18β 98.3 -3002.3 3.86 100.3 -4159.1 3.01
HIS 95.9 — — 97.8 — —
ECH8 98.4 -3001.5 3.87 100.4 -4158.7 3.02
ECH8′ 98.3 -3002.3 3.87 100.3 -4159.2 3.01
Exact 100.0 -3000.0 4.00 102.6 -4050 3.08

the use of 3× 3× 3 Gaussian quadrature. We can see that the proposed elements ECH8
and ECH8′ give almost the best results.

Figure 2: Finite element mesh for cantilever beam problem.

3.3 Beam bending: sensitivity to mesh distortion

In this standard test, a beam under bending is only analyzed with two hexahedron
elements (Fig. 3). The distortion degree of element is measured by parameter e. The
results of every element for the maximum displacement WA at point A are given in
Table 3. The elements ECH8 and ECH8′ behave well.

3.4 MacNeal-Harder’s slender cantilever beams

A slender cantilever beam proposed by MacNeal and Harder [62] is used to test the
scheme accuracy under the influence of geometrical parameters of problem such as
aspect ratio. In Fig. 4, a straight beam of dimension 6× 0.2× 0.1 is analyzed with six
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Table 3: The results of WA for mesh distortion.

Element e=0.5 e=1 e=2 e=3 e=4 e=4.9 Exact
H8 20.8 13.9 9.6 8.2 7.1 6.1
H11 92.6 85.9 91.8 101.8 110.1 116.3
CHH(0− 1) 92.7 85.9 92.0 102.2 110.6 116.8
3DEAS9 82.9 65.8 60.9 64.0 65.0 62.7 100.0
PT18β, 3DEAS30 88.6 74.3 57.0 50.3 46.6 42.3
SS18β 88.8 79.9 68.0 63.7 61.4 60.6
ECH8 93.2 87.0 93.1 103.1 111.4 117.6
ECH8′ 92.9 86.1 92.3 102.6 111.1 117.5

Table 4: The tip deflections and energy for slender cantilever beam.

Element H8 H11 3DEAS9 PT18β SS18β ECH8 ECH8′
3DEAS30

WA 0.0109 0.4204 0.4204 0.4233 0.4235 0.4291 0.4237
Π -0.0054 -0.2102 -0.2102 -0.2112 -0.2117 -0.2145 -0.2119

regular hexahedron elements. An out-of-plain end shear is acting on the beam. The
results of tip deflection WA in the direction of loading and the energy Π are listed in
Table 4 and the reference is WA = 0.4321, Π = −0.2159. We can see that ECH8 gives
the best results.

Figure 3: Cantilever beam for mesh distortion test.

Figure 4: Straight-beam.

3.5 Poisson’s ratio locking free test

This example is chosen for testing the behavior of elements under the incompressible
limit condition (Poisson’s ratio varies from 0.3 to 0.49999) [19]. The cantilever beam are
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Figure 5: Volumetric test for a cantilever beam.

analyzed with five cubic elements in Fig. 5(a) and five irregular elements in (b). The
results of every element except SS18β for the maximum displacement WA at point A,
the energy Π and the normal stress σBx at point B are given in Tables 5 to 7 and Table
8 to 10, respectively. The elements ECH8 and ECH8′ are uniformly accurate.

3.6 Convergence test for solid

A clamped tapered cantilever with varying thickness is considered. This problem was
modified from Cook’s membrane [51] to test the accuracy of hexahedron elements (see
Fig. 6). The results for the tip deflection at point A of mesh 4× 4× 1 and 8× 8× 2 are

Table 5: The displacement of cubic elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 222.9 338.1 338.1 345.4 338.7 338.4
0.4 204.4 338.1 338.1 345.8 339.3 338.9 342
0.49 169.7 332.5 332.5 346.1 339.9 339.2
0.49999 135.1 320.0 320.0 346.3 340.0 339.3

Table 6: The energy Π
(×(−105)

)
of cubic elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 2.23 3.38 3.38 3.45 3.39 3.38
0.4 2.04 3.38 3.38 3.45 3.39 3.39 3.42
0.49 1.69 3.32 3.32 3.46 3.40 3.39
0.49999 1.35 3.20 3.20 3.46 3.40 3.39
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Table 7: The stress Π(×104) of cubic elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 -1.01 -1.82 -1.82 -1.35 -1.35 -1.35
0.4 -1.07 -2.93 -2.93 -1.35 -1.35 -1.35 -1.35
0.49 -1.14 -25.06 -25.06 -1.35 -1.35 -1.35
0.49999 -1.22 -27492 -27492 -1.35 -1.35 -1.35

shown in Table 11. The elements ECH8 and ECH8′ give best convergent results.

Figure 6: Solid convergence test.

Table 8: The displacement of irregular elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 189.6 301.3 266.6 284.2 302.7 302.4
0.4 178.5 298.7 266.7 284.5 301.0 300.5 342
0.49 157.4 291.8 263.0 283.9 298.6 297.8
0.49999 150.5 288.5 260.9 283.1 298.2 297.4

Table 9: The energy Π
(×(−105)

)
of cubic elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 1.89 3.04 2.70 2.87 3.05 3.05
0.4 1.78 3.01 2.69 2.88 3.03 3.03 3.42
0.49 1.56 2.94 2.65 2.85 3.01 3.00
0.49999 1.49 2.91 2.63 2.83 3.01 3.00
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Table 10: The stress Π(×104) of cubic elements for Poisson’s ratio test.

ν H8 H11 3DEAS9 PT18β ECH8 ECH8′ Exact
3DEAS30

0.3 -0.80 -1.61 -1.55 -1.33 -1.34 -1.34
0.4 -0.76 -2.68 -2.53 -1.33 -1.34 -1.34 -1.35
0.49 0.4683 -23.87 -21.65 -1.32 -1.33 -1.33
0.49999 1298.5 -24237 -21576 -1.32 -1.33 -1.33

Table 11: Solid convergence test.

Elements H8 H11 3DEAS9 CHH(0− 1) ECH8 ECH8′
4× 4× 1 365.73 499.39 477.13 499.67 500.19 499.75
8× 8× 2 460.23 507.54 501.73 507.58 507.63 507.59
Exact 508.11

3.7 Simply supported square plate subjected to uniform loading

A simply supported square plate with varies range of thickness/ span ratio (t/L) sub-
jected to a uniform load (Fig. 7) is used to test shear locking phenomenon of the
hexahedral elements. Owing to symmetry, only one-quarter of the plate is analyzed
by N × N elements. The results of the central deflection under different thickness/
span ratio are given from Table 12 to Table 15. From Table 12 we can see that ECH8
and ECH8′ are quite accurate when t/L ≥ 10−4.

Figure 7: Quadrant of a square plate: geometry and 4× 4 mesh.

3.8 One-quarter of circle plate

In this test, one-quarter of a clamped circle plate is used to demonstrate the versatility
of the proposed elements. Three meshes of 3, 12 and 48 elements are considered (Fig.
8). The results of the central deflection are listed in Table 16. We can see that ECH8
and ECH8′ behave almost the best.
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Table 12: Central deflection for simply supported square plate with a uniform load discretized into 6× 6 in
different thickness/ span ratios.

t/L 0.2 0.01 0.001 10−4 10−5

H8 393.6 30.69 0.337 3.4e-3 3.4e-5
H11 475.5 3579.1 51.15 0.584 5.9e-3
3DEAS9 470.9 377.4 48.14 0.545 5.5e-3
CHH(0− 1) 476.5 392.6 90.90 1.167 0.012
ECH8′ 476.4 406.0 405.8 401.5 31.30
ECH8 477.4 407.1 406.9 409.9 24.41
Re f ence 490.8 406.4 406.2 406.2 406.2

Table 13: Simply supported square plate (uniform load, t/L = 0.2).

N 2 4 6 10 16
H8 338.4 383.8 393.6 398.8 400.6
H11 462.5 474.2 475.5 476.1 476.3
3DEAS9 457.9 469.7 470.9 471.5 471.6
CHH(0− 1) 473.9 476.5 476.5 476.4 476.4
ECH8′ 475.6 476.3 476.4 476.4 476.4
ECH8 486.1 478.7 477.4 476.8 476.5
Re f erence 490.8

3.9 Morley’s skew plate

Fig. 9 shows the mesh generated for the Morley’s simply supported rhombic plate [61]
with skew angle Θ = 30◦, subject to a uniform load. The results of central deflection
are given in Table 17. The element ECH8 behaves the best.

Figure 8: Three meshes for quadrant of a circular plate.
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Table 14: Simply supported square plate (uniform load, t/L = 0.01).

N 2 4 6 10 16
H8 3.719 14.38 30.69 73.22 139.5
H11 56.78 298.5 379.1 402.4 405.7
CHH(0− 1) 99.73 344.7 392.6 404.5 406.1
3DEAS9 53.52 293.1 377.4 402.2 405.7
PT18β, 3DEAS30 401.3 405.1 405.6 406.1 406.3
SS18β 421.8 413.3 408.7 407.2 406.6
EAS[34] 398.9 404.9 — — 406.3
HIS 432.0 412.9 — — 410.9
SR 397.1 404.4 — — 406.3
ECH8′ 402.0 405.5 406.0 406.3 406.4
ECH8 412.5 407.9 407.1 406.6 406.5
Re f erence 406.4

Table 15: Simply supported square plate (uniform load, t/L = 0.001).

N 2 4 6 10 16
H8 0.038 0.150 0.337 0.935 2.383
H11 0.662 11.09 51.15 214.6 357.6
CHH(0− 1) 1.319 21.60 90.90 281.0 380.4
3DEAS9 0.617 10.37 48.14 207.7 354.6
PT18β, 3DEAS30 401.4 405.0 405.5 405.9 406.1
SS18β 421.2 412.6 408.1 406.8 406.4
ECH8′ 401.8 405.3 405.8 406.1 406.2
ECH8 412.3 407.7 406.9 406.5 406.3
Re f erence 406.2

3.10 Scordelis roof

In Fig. 10, a 80◦ cylindrical roof is supported on two rigid diaphragms and subjected to
a gravity loading g of intensity 90 unit per unit midsurface area. Owing to symmetry,
only a quarter of the roof is modeled. The vertical displacement at the midpoint A
of the free-hanging edge is normalized in Table 18. This is a widely employed bench-

Figure 9: Morley’s acute skew plate: geometry and 4× 4 mesh.
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Table 16: Central deflection for clamped circle plate.

t/R 0.2 0.02
n 3 12 48 3 12 48
H8 3.4722 6.5017 8.4755 48.501 176.60 647.14
H11 9.4704 10.879 11.169 1418.4 6469.6 9369.0
CHH(0− 1) 9.902 10.985 11.192 2288.5 7636.0 9546.3
3DEAS9 7.688 10.338 11.029 1134.4 6021.0 9233.4
PT18β, 3DEAS30 5.972 10.038 11.155 5058.1 8501.9 9617.2
SS18β 9.322 10.384 11.185 5865.9 9118.2 9618.3
EAS[34] — — — — 9163.3 9686.6
HIS — — — 3081.8 8002.9 9578.0
SR — — — — 9079.8 9613.8
ECH8′ 10.226 11.036 11.200 6339.5 9417.2 9722.3
ECH8 10.411 11.092 11.214 6430.0 9473.6 9736.6
Re f ence 11.551 9783.5

Table 17: Central deflection for the Morley’s skew (30◦) plate.

t/L 0.01 0.001
n 4 8 16 4 8 16
H8 0.009 0.029 0.075 9.5e-5 3.8e-4 1.5e-3
H11 0.132 0.277 0.364 0.003 0.038 0.178
CHH(0− 1) 0.172 0.302 0.377 0.005 0.064 0.210
HIS 0.419 0.410 0.405 — — —
3DEAS9 0.132 0.277 0.364 0.003 0.038 0.178
SS18β — — — 0.415 0.393 0.396
ECH8′ 0.391 0.400 0.402 0.365 0.383 0.401
ECH8 0.437 0.435 0.421 0.436 0.434 0.419
Kirchhoff solution[60] 0.408
3D solution[61] 0.424

Table 18: Normalized deflection for Scordelis-Loroof.

Mesh 2× 2 4× 4 6× 6 8× 8
H8 0.0038 0.0117 0.0209 0.0314
H11 0.0311 0.1415 0.2444 0.2836
CHH(0− 1) 0.0460 0.1922 0.2736 0.2957
3DEAS9 0.0329 0.1411 0.2441 0.2835
PT18β, 3DEAS30 0.4677 0.3291 0.3117 0.3092
SS18β 0.4702 0.3274 0.3145 0.3108
HIS 0.4194 0.3175 0.3114 0.3089
ECH8′ 0.1953 0.3015 0.3070 0.3073
ECH8 0.4666 0.3225 0.3118 0.3090
Re f erence 0.3086

mark problem for evaluating new shell elements and most of the plate/ shell elements
overestimate the deflection when the mesh is coarse. From Table 18 we can see that
ECH8 and ECH8′ give very accurate results.
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Figure 10: Scordelis-Lo’s Roof loaded by its own weight.

4 Conclusions

For three-dimensional elasticity, the energy-compatibility condition has been shown
to be an efficient stress-optimization condition for the construction of high perfor-
mance low order hybrid stress hexahedron elements based on the Hellinger-Reissner
variational principle. By following this condition, a robust 8-node hexahedral element
formulation has been derived. Due to elimination of stress parameters at the element
level, the proposed elements are of almost the same computational cost as that of H8.
The equivalence to an enhanced strains method has been established. This ensures
the convenience of the extension of the proposed hybrid stress method to general non-
linear problems. Numerical tests have shown that the new method is of high accuracy
at coarse meshes, insensitive to mesh distortions and free from volume locking in the
analysis of beams, plates and shells.
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