
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 2, No. 3, pp. 379-388

DOI: 10.4208/aamm.09-m0957
June 2010

Ma’s Variation of Parameters Method for
Fisher’s Equations

Syed Tauseef Mohyud-Din1,∗and Ahmet Yıldırım2

1 HITEC University Taxila Cantt Pakistan
2 Ege University, Department of Mathematics, 35100 Bornova-İzmir, Turkey
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Abstract. In this paper, we apply Ma’s variation of parameters method (VPM) for
solving Fisher’s equations. The suggested algorithm proved to be very efficient and
finds the solution without any discretization, linearization, perturbation or restric-
tive assumptions. Numerical results reveal the complete reliability of the proposed
VPM.
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1 Introduction

Nonlinear partial differential equations arise in almost all areas of the natural and
engineering sciences [1,2,19–21,27,28]. A particular class of equations is those model-
ing nonlinear reaction and diffusion phenomena [19–21, 27, 28]. The one-dimensional
Fisher equation [19–21, 27, 28] provides an example for which the diffusion is linear
and the reaction term is quadratic in the dependent variable. However, many cases
occur in which the diffusion term is either nonlinear or the diffusion coefficients are
functions of the dependent variable, see [19–21, 27, 28] and the references therein. The
general properties of the solutions to such equations often depends on the given ini-
tial or boundary values selected, consequently a variety of possible behaviors may
exist, including wave-like shock solutions [19–21, 27, 28]. Several numerical and an-
alytical methods including Laurent series, tanh, finite difference and Adomian’s de-
composition have been developed for solving Fisher’s equation, see [19–21,27,28] and
the references therein. Most of these techniques have the inbuilt deficiencies. Ma et
al. [3–5] used variation of parameters for solving involved non-homogeneous partial
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differential equations and obtained solution formulas helpful in constructing the ex-
isting solutions coupled with a number of other new solutions including rational solu-
tions, solitons, positions, negatons, breathers, complextions and interaction solutions
of the KdV equations. It is worth mentioning that Ma et al. [3–18] also developed
and introduced some other very reliable and revolutionary new techniques also for
solving physical problems of nonlinear sciences. The basic inspiration of this paper is
the extension of Ma’s variation of parameters method [3–5,22–26] for solving Fisher’s
equations. It is to be highlighted that such equations arise very frequently in nonlin-
ear sciences and mathematical physics, see [19–21, 27, 28] and the references therein.
The VPM is applied without any discretization, perturbation, transformation or re-
strictive assumptions and is free from round off errors. We apply the proposed VPM
for all the nonlinear terms in the problem without discretizing either by finite differ-
ence or spline techniques at the nodes, involves laborious calculations coupled with a
strong possibility of the ill-conditioned resultant equations which is a too complicated
to solve. Moreover, unlike the method of separation of variables that requires initial
and boundary conditions, the VPM provides the solution by using the initial condi-
tions only. It is observed that proposed VPM is also easier to implement as compare
to the traditional decomposition method since it is independent of the complexities
arising in calculating the so-called Adomian’s polynomials. We have also applied
variational iteration method for solving Fisher’s equations and got results which are
in full agreement with the results obtained by Ma’s variation of parameters method.

2 Variation of parameters method (VPM)

Consider the following second-order partial differential equation

yn = f (t, x, y, z, yx, yy, yz, yxx, yyy, yzz), (2.1)

where t such that (∞ < t < ∞) is time, and f is linear or non linear function of y, yx,
yy, yz, yxx, yyy, yzz. The homogeneous solution of (2.1) is

y(t, x, y, z) = A + Bt,

where A and B are functions of x, y, z and t. Using Variation of parameters method,
we have following system of equations

∂A
∂t

+
∂B
∂t

= 0,

∂B
∂t

= f ,

and hence

A(x, y, z, t) = D(x, y, z)−
∫ t

0
s f ds,

B(x, y, z, t) = C(x, y, z)−
∫ t

0
f ds,
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therefore,

y(x, y, z, t) = y(x, y, z, 0) + ty1(x, y, z, 0)

+
∫ t

0
(t− s) f (s, x, y, z, yx, yy, yz, yxx, yyy, yzz)ds,

which can be solved iteratively as [3–5, 22–26],

yk+1(x, y, z, t) = y(x, y, z, 0) + ty1(x, y, z, 0)

+
∫ t

0
(t− s) f (s, x, y, z, yk

x, yk
y, yk

z, yk
xx, yk

yy, yk
zz)ds,

where k = 0, 1, 2, · · · .

3 Numerical applications

In this section, we apply Ma’s variation of parameters method (VPM) for solving
Fisher’s equations. Numerical results show the complete reliability and efficiency of
the proposed VPM.

Example 3.1. Consider Fisher’s equation of the following form

ut(x, t)− uxx(x, t)− u(x, t)
(
1− u(x, t)

)
= 0, (3.1)

with initial conditions
u(x, 0) = β. (3.2)

Applying variation of parameters method (VPM)

un+1(x, t) = u0(x, t) +
∫ t

0

(
∂2un(x, τ)

∂x2 + un(1− un)
)

dτ.

Following approximant are obtained

u0(x, t) = β,
u1(x, t) = β + β(1− β)t,

u2(x, t) = β + β(1− β)t +
t2

2!
β(1− 3β + 2β2)− t3

3
β2(−1 + β)2, · · · .

The series solution is given by

u(x, t) = β + β(1− β)t +
t3

3!
β(1− β)(1− 6β + 6β2) +

t4

3
(−1 + β)2β2(−1 + 2β)

− t5

60
(−1 + β)2β2(3− 20β + 20β2) +

t6

18
(−1 + β)3β3(−1 + 2β)

− t7

63
(−1 + β)4β4 + · · · , (3.3)
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Table 1: Numerical results for Fisher’s equation.

β = 0.2 β = 0.8
t *E (VPM) *E (VPM)
0 0 0

0.2 6.19201E-06 5.57339E-06
0.4 1.03635E-04 1.13137E-04
0.6 5.45505E-04 4.00147E-04
0.8 1.78050E-03 1.18584E-03
1 4.45699E-03 1.99502E-03

*Error = Exact solution− series solution

and in a closed form by

u(x, t) =
β exp t

1− β + β exp t
.

Table 1 exhibits errors obtained by applying variation of parameters method (VPM).
Now, we apply variational iteration method for solving (3.1)-(3.2). The correction
functional is given by

un+1(x, t) = u0(x, t) +
∫ t

0
λ(s)

(
∂un

∂s
− ∂2ũn

∂x2 − ũn(1− ũn)
)

ds.

Making the above functional stationary, the Lagrange multiplier can be identified as
λ = −1, we get

un+1(x, t) = u0(x, t)−
∫ t

0

(
∂un

∂s
− ∂2un

∂x2 − un(1− un)
)

ds.

Following approximant are obtained

u0(x, t) = β,
u1(x, t) = β + β(1− β)t, · · · .

Consequently, we obtained a series solution which is in full agreement with (3.3).

Example 3.2. Consider the Fisher’s equation of the following form

ut − uxx − 6u(1− u) = 0, (3.4)

subject to the initial conditions

u(x, 0) = (1 + ex)−2. (3.5)

Applying variation of parameters method (VPM)

un+1(x, t) = u0(x, t) +
∫ t

0

(
∂2un(x, τ)

∂x2 + 6un(1− un)
)

dτ.
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Following approximant are obtained

u0(x, t) =
1

(1 + ex)2 ,

u1(x, t) =
1

(1 + ex)2 +
10ext

(1 + ex)3 , · · · .

The series solution is given by

u(x, t) =
25ex

3(1 + ex)6

(
5− 6ex − 15e2x + 20e3x

)
t3 − 50e2x

(1− ex)8

(
− 17 + 5ex

+ 52e2xt4
)

+
150e2x

(1 + ex)9

(
5− 47ex + 20e3x

)
t5 +

10000e3x(−1 + 2ex)t6

(1 + ex)10

− 240000e4xt7

7(1 + ex)12 +
1

(1 + ex)6

[
25ex(1 + ex(1 + ex)2(−1 + 2ex)t2

− 200e2xt3 +
(
1 + ex(1 + 10t)

)]
+ · · · , (3.6)

and in a closed form by

u(x, t) =
(

1 + exp(x− 5t)
)−2

.

Table 2 exhibits errors obtained by applying variation of parameters method (VPM).
Now, we apply variational iteration method for solving (3.4)-(3.5). The correction
functional is given by

un+1(x, t) = u0(x, t) +
∫ t

0
λ(s)

(
∂un

∂s
− ∂2ũn

∂x2 − 6ũn(1− ũn)
)

ds.

Making the above functional stationary, the Lagrange multiplier can be identified as
λ = −1, we get

un+1(x, t) = u0(x, t)−
∫ t

0

(
∂un

∂s
− ∂2ũn

∂x2 − 6ũn(1− ũn)
)

ds.

Table 2: Numerical results for Fisher’s equation.

t = 0.2 t = 0.4
x *E (VPM) *E (VPM)
0 7.22002E-03 5.75298E-02

0.2 9.89049E-03 1.6115E-01
0.4 1.09765E-02 1.39113E-01
0.6 1.04039E-02 1.51579E-01
0.8 8.50732E-03 1.43529E-01
1 5.87222E-03 1.19333E-01

*Error = Exact solution− series solution
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Following approximant are obtained

u0(x, t) =
1

(1 + ex)2 , · · · .

Consequently, we obtained a series solution which is in full agreement with (3.6).

Example 3.3. Consider the generalized Fisher’s equation

ut = uxx + u(1− u6), (3.7)

subject to the initial conditions

u(x, 0) =
1

(1 + e
3
2 x)

1
3

. (3.8)

Applying variation of parameters method (VPM)

un+1(x, t) = u0(x, t) +
∫ t

0

(
∂2un(x, τ)

∂x2 + un(1− u6
n)

)
dτ.

Following approximant are obtained

u0(x, t) =
1

(1 + e
3
2 x)

1
3

,

u1(x, t) =
1

(1 + e
3
2 x)

1
3

+
4 + e3x(4 + 3t) + e

3x
2 (8 + 11t)− (1 + e

3x
2 )2

4(1 + e
3x
2 )

7
3

, · · · .

The series solution is given by

u(x, t) =
1

131072(1 + e
3x
2 )

49
3

[
4096e

3x
2 (1 + e

3x
2 )12

(
− 363 + 403e

3x
2

− 9e3x + 9e
9x
2

)
t2 − 57344e3x(1 + e

3x
2 )10(11 + 3e

3x
2 )2t3

− 17920e
9x
2 (1 + e

3x
2 )8(11 + 3e

3x
2 )3t4 − 3584e6x(1 + e

3x
2 )6(11 + 3e

3x
2 )4t5

− 448e
15x

2 (1 +
e3x
2

)4(11 + 3e
3x
2 )5t6 − 448e

15x
2 (1 +

e3x
2

)4(11 + 3e
3x
2 )5t6

− 32e9x(1 + e
3x
2 )2(11 + 3e

3x
2 )6t7 − e

21x
2 (11 + 3e

3x
2 )7t8

+ 32768(1 + e
3x
2 )14

(
4 + e3x(4 + 3t) + e

3x
2 (8 + 11t)

)]
+ · · · , (3.9)

and in closed form by

u(x, t) =
(

1
2

tanh
[−3

4

(
x− 5

2t

)]
+

1
2

) 1
3

.
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Table 3: Numerical results for the generalized Fisher’s equation.

t = 0.2 t = 0.4
x *E (VPM) *E (VPM)
0 5.24926E-02 1.21845E-01

0.2 7.79547E-02 2.17494E-01
0.4 1.10805E-01 3.4171E-01
0.6 1.51375E-01 4.94354E-01
0.8 1.99601E-01 6.74017E-01
1 2.55137E-01 8.78892E-01

*Error = Exact solution− series solution

Table 3 exhibits errors obtained by applying variation of parameters method (VPM).
Now, we apply variational iteration method for solving (3.7)-(3.8). The correction
functional is given by

un+1(x, t) = u0(x, t) +
∫ t

0
λ(s)

(
∂un

∂s
− ∂2ũn

∂x2 − ũn(1− ũ6
n)

)
ds.

Making the above functional stationary, the Lagrange multiplier can be identified as
λ = −1, we get

un+1(x, t) = u0(x, t)−
∫ t

0

(
∂un

∂s
− ∂2un

∂x2 − un(1− u6
n)

)
ds.

Following approximant are obtained

u0(x, t) = (1 + e
3
2 x)−

1
3 , · · · .

Consequently, we obtained a series solution which is in full agreement with (3.9).

Example 3.4. Consider the nonlinear diffusion equation of Fisher type

ut = uxx + u(1− u)(u− a), 0 < α < 1, (3.10)

subject to the initial conditions

u(x, 0) =
(

1 + e
x√
2

)−1
. (3.11)

Applying variation of parameters method (VPM)

un+1(x, t) = u0(x, t) +
∫ t

0

(
∂2un(x, τ)

∂x2 + un(1− un)(u− a)
)

dτ.

Proceeding as before, the series solution is given by
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Table 4: Numerical results for the nonlinear diffusion equation of the Fisher type.

t = 0.6 t = 0.8
x *E (VPM) *E (VPM)
0 7.71519E-07 4.92951E-05

0.2 7.54407E-07 4.78602E-05
0.4 7.08084E-07 4.45906E-05
0.6 6.36337E-07 3.9752E-05
0.8 5.44789E-07 3.37194E-04
1 2.02937E-06 2.69298E-05

*Error = Exact solution− series solution

u(x, t) =
1

96(1 + ex
√

2)6

[
e

x√
2

(
− 12(1− 2a)2(−1 + e

x√
2 )(−1 + e

x√
2 )3t2

+ 8(1− 2a)2e
x√
2 (1 + e

x√
2 )

(
1 + a− 2e

x√
2 + ae

x√
2 )t3

+ 3(−1 + 2a)3e
√

2xt4 + 48(1 + e
x√
2 )4(2 + 2e

x√
2 + t− 2at)

)]
+ · · · , (3.12)

and in a closed form by

u(x, t) =
(

1 + exp
−ξ√

2

)−1
.

Table 4 exhibits errors obtained by applying variation of parameters method (VPM).
Now, we apply variational iteration method for solving (3.10)-(3.11). The correc-

tion functional is given by

un+1(x, t) = u0(x, t) +
∫ t

0
λ(s)

(
∂un

∂s
− ∂2ũn

∂x2 − ũn(1− ũn)(ũn − a)
)

ds.

Making the above functional stationary, the Lagrange multiplier can be identified as
λ = −1, we get

un+1(x, t) = u0(x, t)−
∫ t

0

(
∂un

∂s
− ∂2un

∂x2 − un(1− un)(un − a)
)

ds.

Consequently, the obtained series solution is in full agreement with (3.12).

4 Conclusions

In this paper, we applied Ma’s variation of parameters method (VPM) for finding the
solution of Fisher’s equation, the generalized Fisher’s equation, and the nonlinear dif-
fusion equation of the Fisher type. The method can also be extended to other nonlinear
evolution equations. The results clearly indicate that the proposed method is equally
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good for small and large time t. The method is applied in a direct way without using
linearization, transformation, perturbation, discretization or restrictive assumptions.
It may be concluded that VPM is very powerful and efficient in finding the analytical
solutions for a wide class of boundary value problems. The method gives more realis-
tic series solutions that converge very rapidly in physical problems. The fact that the
VPM solves nonlinear problems without using the Adomian’s polynomials is a clear
advantage of this technique over the decomposition method.
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