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Abstract. The widely used micro-flow wall-boundary conditions for lattice Boltz-
mann method (LBM) are evaluated in a force driven combined nanochannel flow.
The flow field consists of a two-dimensional nanochannel (mother channel) of an
infinite length having flat plates of a finite length inside. The flat plate is set above
the bottom wall of the nanochannel with a narrow gap. The flow, thus, devel-
ops through this narrow gap (narrower channel) and the other side of the plate
(wide gap). The Knudsen number based on the mother channel height is Kn=0.14
whereas the characteristic Knudsen number in the narrower channel is 1.1. To ob-
tain the reference data, the molecular dynamics (MD) simulation is performed with
a fully diffusive wall condition. The LBMs are based on the lattice BGK model and
with the bounce-back/specular reflection (BSBC) and the diffuse scattering (DSBC)
wall boundary conditions. The relaxation time is modified to include sensitivity to
Kn. The DSBC shows generally satisfactory results in the test flow cases including
fully developed force driven Poiseuille flows, where the BSBC performs worse at
Kn>0.5 with a fixed bridge coefficient of b=0.7. This results in its overprediction
of the flow rate in the narrower channel region since the characteristic Knudsen
number there is 1.1. The MD simulation suggests that the flow develops gradually
through the narrower channel region though all the LBM predictions show almost
instant flow development. This fact suggests that the relaxation time model needs
to have more sensitivity to the locally defined Kn. Further discussions of the BSBC
with a different set of models suggest that the regularization process is required for
predicting complex nanoscale flows.
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1 Introduction

Due to the recent rapid development of micro flow devices applied in micro-total-
analysis-systems (µ-TAS) and micro-electro-mechanical systems (MEMS), modeling
and simulation methods for flows in such micro geometries have been of great interest
in the society of computational physics [1]. Since the flow geometry in such systems is
often in a sub-micron meter scale, those flows are usually distinguished by moderately
high Knudsen numbers:

Kn =
λ

H
> 10−2,

where λ is the molecular mean free path of the fluid and H is the characteristic length
of the flow domain. Accordingly, when one considers treating such flows, it is nec-
essary to understand the flows at the molecular level. The continuum Navier-Stokes
equations are, however, no longer applicable to such levels of moderately high Knud-
sen number flows and the flow physics in such flows is described by the Boltzmann
equation (BE) of the gas kinetic theory [2,3]. Although several numerical schemes have
been proposed for solving micro flows, amongst them, the lattice Boltzmann method
(LBM) has been proven as an effective scheme because of its kinetic origin and nu-
merical efficiency. Indeed, the LBMs have been well investigated in micro flows so
far [4–13].

At a finite Kn, the statistical fluid dynamics indicates that the fluid in the vicin-
ity of a solid wall should have a net motion relative to the wall. In the LBMs, there
have been several schemes to treat this slippage at a wall boundary in micro flows. By
the conventional bounce-back wall boundary condition, Nie et al. [4] simulated 2-D
microchannel and cavity flows at 0.01<Kn< 0.4 introducing Knudsen number depen-
dency into the relaxation parameter of the lattice Boltzmann equation. Shen et al. [9]
validated this strategy comparing with the direct simulation Monte Carlo (DSMC)
computations of microchannel flows. Succi [5] introduced a mix of bounce-back and
specular reflections for the wall boundary condition. Toschi and Succi [10] tested a
virtual wall collision concept into the bounce-back and diffuse scattering boundary
conditions. The diffuse scattering boundary condition was firstly proposed by An-
sumali and Karlin [6]. Zhang et al. [11] applied Maxwellian scattering kernel to the
wall conditions with an accommodation coefficient. Verhaeghe et al. [13] proposed a
diffuse bounce-back model for fully diffusive stationary walls. The present authors’
group [12] also discussed a strategy to simulate such flow topics by the LBM where
the diffuse scattering wall boundary condition and the effective relaxation time asso-
ciated with the Knudsen number are applied. In our LBM, since at least third-order
Hermite expansion is required to model the momentum equation at the Burnett level
for isothermal and small Mach numbers, the higher order discrete velocity model:
D2Q21, model was used. Moreover, to guarantee the nonequilibrium moments of the
LBM satisfied in the Hermite space, a modified regularization procedure [14] of the
nonequilibrium part of the distribution function was introduced. The results were
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validated with the results of the DSMC in Couette and Poiseuille flows. Guo and
Zheng [15] summarized these wall boundary treatments and showed that the bounce-
back/specular-reflection, the diffuse scattering and the diffuse bounce-back models
are all mathematically equivalent for prescribing the slip velocity at the wall.

As mentioned above, most of the schemes have been evaluated only in canonical
flows such as gaseous flows through long microchannels, fully developed pressure-
driven microchannel flows and Couette-Poiseuille flows. (There were some exam-
ples of application of the LBMs for a flow through a micro porous medium (e.g., [16])
though their accuracy is unknown due to the lack of reference data.) All these flow
geometries are bounded only two simple flat walls though there is no doubt that these
canonical flow cases provide essential flow physics and they are fundamental flows
of a wide range of applications in microdevices. However, it is certainly necessary to
evaluate the schemes in more complex flow fields which include other essential flow
physics. In those canonical flows, one does not need to hesitate to choose the char-
acteristic length H since they all have a single constant height of the flow passages.
However, in practical complex flow applications, one has several options to define the
characteristic length. Hence, there have been some questions arisen about the model
performance on the Knudsen number dependency of the LBMs in complex flow ge-
ometries.

Therefore, the present study tries to evaluate the LBMs in a test flow case with a
variable characteristic length. The considered flow geometry is still simple but consists
of two channel regions: one is a nanochannel with a finite length (narrower channel)
which is inserted in another larger infinite nanochannel (mother channel). The height
ratio of the two channels is 0.125. The simulated representative Kn based on the height
of the mother channel is Kn=0.14, at which the flow shows slippage at a solid wall.
However, with such a height ratio, the characteristic Knudsen number in the narrower
channel is 1.1. In order to provide the reference data, the molecular dynamics (MD)
simulation using the Lennard-Jones potential [17] is also performed with ”fully dif-
fusive” walls. The presently evaluated LBMs are the LBMs based on the lattice BGK
model with the bounce-back/specular-reflection boundary condition (BSBC) and the
diffuse scattering boundary condition (DSBC) models.

2 Lattice Boltzmann method

A brief description of the lattice Boltzmann equation (LBE), which is the fundamental
equation of the LBM [18, 19] and its steps of the application to high Knudsen number
flows are given below.

The LBE can be obtained by discretizing the velocity space of the BE into a finite
number of discrete velocities ξα{α=0, 1, · · · , Q − 1}. Although many techniques to
discretize the velocity space have been proposed, the present study employs so called
D2Q9 and D2Q21 discrete velocity models as shown in Fig. 1. Table 1 lists the sound
speed cs, the discrete velocity ξα and the weight parameter ωα in the models. Let x be
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Table 1: Main parameters of the discrete velocity models for 2-D flows.

models c2
s ξα ωα

D2Q9 1/3 (0, 0) 4/9 (α = 0)
(±1, 0), (0,±1) 1/9 (α = 1-4)
(±1,±1) 1/36 (α = 5-8)

D2Q21 2/3 (0, 0) 91/324 (α = 0)
(±1, 0), (0,±1) 1/12 (α = 1-4)
(±1,±1) 2/27 (α = 5-8)
(±2, 0), (0,±2) 7/360 (α = 9-12)
(±2,±2) 1/432 (α = 13-16)
(±3, 0), (0,±3) 1/1620 (α = 17-20)

the Cartesian coordinates of the configuration space and ξ that of velocity space. The
LBE describes evolutions of a single particle distribution function f (x, ξ, t) defined
such that f (x, ξ, t)dξdx represents the number of particles in the phase space element
dξdx at time t, and can be written in the following BGK form [20]:

fα(x + ξαδt, t + δt)

= fα(x, t)− δt
τ + 0.5δt

(
fα(x, t)− f eq

α (x, t)
)
+

τδt
τ + 0.5δt

Fα(x, t), (2.1)

where the equilibrium distribution function f eq
α is written as

f eq
α (x, t) = ωαρ

{
1 +

ξα · u
RT

+
1
2

[ (ξα · u)2

(RT)2 − u2

RT

]}
, (2.2a)

f eq
α (x, t) = ωαρ

{
1 +

ξα · u
RT

+
1
2

[ (ξα · u)2

(RT)2 − u2

RT

]

+
1
6

[ (ξα · u)2

(RT)2 − 3
u2

RT

] ξα · u
RT

}
. (2.2b)

Eq. (2.2a) retains up to the second-order term in the Hermite expansion and used in the
D2Q9 velocity model whilst Eq. (2.2b) retains further to the third-order term and used

(a) D2Q9 (b) D2Q21

Figure 1: Discrete velocity models; (a) D2Q9 model, (b) D2Q21 model.
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in the D2Q21 velocity model. The ideal gas constant is R, and ρ, u and T are respec-
tively the fluid macro density, velocity and temperature. The sound speed cs=

√
RT is

equal to
√

1/3 and
√

2/3 respectively in the D2Q9 and D2Q21 models. The contribu-
tion of the force term Fα is introduced respectively for the D2Q9 and D2Q21 models
as

Fα(x, t) = ωαρ
{[ ξα · a

RT

(
1 +

ξα · u
RT

)
− a · u

RT

]}
, (2.3a)

Fα(x, t) = ωαρ
{[ ξα · a

RT

(
1 +

ξα · u
RT

)
− a · u

RT

]

+
1

2ρRT

[
σij + ρu2

]
:
[ ξα · a

RT
H(2)

( ξα

RT

)
− 2

aξα

RT

]}
, (2.3b)

where σij = ∑Q−1
α=0 f ′αξαiξαj, a is the acceleration and H(n)(x) is the n-th order Hermite

polynomial of a variable x. The variables ρ, u and the pressure p are respectively
obtained by applying the integral of microscopic velocity moment as

ρ =
Q−1

∑
α=0

fα, ρu =
Q−1

∑
α=0

fαξα +
δt
2

a, p = ρc2
s . (2.4)

So far, the equations which govern the macroscopic variables of continuum flows are
presented. Only when the non-equilibrium part of distribution is very small and the
distribution function can be approximated by the equilibrium distribution function,
the equations can describe the fluid phenomena. However, when the Kn becomes
larger and the non-equilibrium part is no longer ignorable, the aforementioned LBE
becomes invalid. According to our previous analysis [12], the difficulty is cleared by
using the three procedures briefly described below (see [12] for more details).

2.1 Effective relaxation time

In continuum flow, the relaxation time τ can be defined in terms of viscosity η then
flow is under control of the Reynolds number. In contrast, Kn is a fundamental dimen-
sionless number in non-continuum flow. Therefore, for applying to high Kn flows, the
relaxation time needs to be associated with Kn. Specifically, in microscale geometries,
the relaxation time τ is influenced by the presence of walls and an effective relaxation
time τ∗, which is a function of Kn has been applied instead of the relaxation time
τ. With the bounce-back/specular-reflection boundary model, the following effective
relaxation time:

τ∗ =
ρoutletNyKnoutlet

ρre f erence
√

π/6
+

1
2

, (2.5)

has been applied (e.g., [21]). Here, Ny is the characteristic lattice number. Note that this
effective relaxation time is essentially constant in the whole computational domain.

The present authors’ group used another effective relaxation time model [12]:

τ∗ = τΨ(Kn∗) =
√

2
π

csHKn∗Ψ(Kn∗), (2.6)
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where H is the characteristic length confined between walls in a microscale flow ge-
ometry and Kn∗ is the local Knudsen number

Kn∗ =
λ

H
=

η

ρH

√
π

2RT
, (2.7)

which varies depending on the local condition. The function Ψ can be expressed as

Ψ(Kn∗) =
2
π

arctan(aKn∗−b), (2.8)

where the coefficient a and b are set a=
√

2 and b=3/4 (see [22]), based on the exper-
iments. The functional behavior (Ψ decreases as Kn∗ increases) indicates that some
molecules will hit walls and their flight time (effective relaxation time τ∗) may be
shorter than the mean free time (relaxation time τ) defined in an unbounded system.

2.2 Regularization procedure

Generally speaking, the distribution function fα has an aliasing error because it cannot
be entirely projected on to the Hermite space. Such an error is usually very small, but
it can be no longer neglected, when the system is far from equilibrium because of
high Knudsen number effects. To resolve this problem, the regularization procedure
was previously introduced for improving numerical stability [14]. The procedure is
implemented as the following. First, the distribution function fα is divided as

fα = f eq
α + f ′α, (2.9)

where f ′α is the non-equilibrium part of the distribution. Second, it is necessary to con-
vert f ′α to a new distribution f̃ ′α which lies within the subspace spanned by the first
three Hermite polynomials. Using the Hermite polynomials, f̃ ′α is expressed respec-
tively for the D2Q9 and D2Q21 models as

f̃ ′α = ωα

[ 1
2c2

s
H(2)

( ξα

cs

) Q−1

∑
α=o

f̃ ′αξαiξαj

]
, (2.10a)

f̃ ′α = ωα

[ 1
2c2

s
H(2)

( ξα

cs

) Q−1

∑
α=o

f̃ ′αξαiξαj +
B

6c2
s

H(3)
( ξα

cs

) Q−1

∑
α=o

f̃ ′αξαiξαjξαk

]
, (2.10b)

where, the coefficient B is given as
B = 1−Ψ,

by substituting fα in Eq. (2.1) to Eq. (2.9) after converting f ′α of Eq. (2.9) to Eq. (2.10a) or (2.10b),
one can obtain the following form:

fα(x + ξαδt, t + δt) = f eq
α (x, t) +

τ − 0.5δt
τ + 0.5δt

f̃ ′α +
τδt

τ + 0.5δt
Fα(x, t). (2.11)
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2.3 Bounce-back/specular-reflection boundary condition (BSBC)

Succi [5] originally proposed the BSBC for slippage at a solid wall in a micro flow. Then, this
simple scheme has been widely applied in flow simulations of in micro passages. In the BSBC
scheme, it is assumed that some of the particles hitting a solid wall bounce back but the others
reflect specularly. It is expressed as

fα(x, t + δt) = b fβ(x, t) + (1− b) fγ(x, t), (2.12)

where b is a bridge coefficient taking b=0.0-1.0 and vectors

ξβ = −ξα and ξγ = ξα − 2(ξα · n)n,

are, respectively, the inverse and the specular symmetric velocity vectors of ξα with the unit
wall normal vector n.

2.4 Diffuse scattering boundary condition (DSBC)

The usual wall boundary conditions used in the LBM are based on perfect reflection, so the
velocity and the temperature of a wall are not reflected into the distribution of the reflected
particles. However, from a microscopic viewpoint, the wall boundary condition should in-
clude the physics on the wall because the fluid and the wall molecules are interacted with
each other. Therefore, as Ansumali and Karlin [6] discussed the incident particles are modeled
to be reflected with the information of the Maxwell distribution function at the wall boundary.
The modeled form is written in the LBM frame as

fα(x, t) = ∑α′ |(ξ ′α − uw) · n| fα′(x, t)
∑α′ |(ξ ′α − uw) · n| f eq

α′ (x, t)
f eq
α,w(x, t), (2.13)

with
(ξ ′α − uw) · n < 0, (ξα − uw) · n > 0,

where uw is the moving velocity of the wall, ξ ′α is the velocity of incident particles, f eq
α,w is the

wall equilibrium distribution function, and the subscripts w, α′, α respectively denote the wall
and the directions of the incident and reflected particles.

3 Molecular dynamics method

Molecular dynamics simulation consists of the numerical solution of classical equations of
motion to calculate the motions of N molecules interacting via model potentials. One of the
well-known model potential is the Lennard-Jones (6–12) potential φ, which is defined as

φ(r) = 4ε
[( σ

r

)12
−

(σ

r

)6]
, (3.1)

where r is the intermolecular distance, ε and σ are the well depth and the diameter of the
molecules. This was used in the earliest study of the properties of argon. In the system which is
modeled by the Lennard-Jones molecules only, the classical equation of motion can be rewrit-
ten as

d2r∗

dt∗2 = − ετ2

mσ2
∂φ∗

∂r∗
, (3.2)



616 K. Suga, S. Takenaka, T. Ito and M. Kaneda / Adv. Appl. Math. Mech., 5 (2010), pp. 609-625

where
r∗ =

r
σ

, t∗ =
t
τ

=
t√

mσ2/ε
and φ∗ =

φ

ε
,

are the nondimensional length, time and energy, respectively. However, to make a physi-
cal interpretation, it is sometimes expressed as finite values in terms of argon. In addition,
the nondimensional number density N∗=Nσ3 and temperature T∗=kBT/ε are used in the
Lennard-Jones fluid. (Here kB is the Boltzmann constant.)

In actual calculations, to hold down the calculation effort of the interactions, the potential
effects are truncated over cut off distance rc, which is defined as rc=2.5σ-5.5σ, In the present
study, rc=3.0σ is employed.

3.1 The interactions between the fluid and wall molecules

When fluid flows in a finite space surrounded by walls, the flow is governed by the interaction
between the fluid and the wall molecules. Thus, it is necessary to evaluate the flow phenomena
in terms of the intermolecular potential energy between the fluid and the wall, which varies
with the structures and the properties of the system.

In this study, the wall is simulated by an argon atom monolayer, which is schematically
shown in Fig. 2. Wall molecules form regular triangles whose side length of rw=0.7. Each of
the wall molecules is tethered to fixed lattice site locations by harmonic springs with a large
spring constant.

A fluid molecule is located near the wall molecules with the distance of r0. Each of in-
teractions between two molecules is the Lennard-Jones potential itself. However, the total
wall-fluid interaction should include not only the nearest neighboring molecule but also sur-
rounding ones. Therefore, the effects of the surrounding molecules are considered by the
numbering molecules as follows: the nearest neighboring molecule is numbered n=1, and its
surrounding six molecules are numbered n=2. Then the number of next twelve molecules
around those numbered n=2 are defined as n=3. From this numbering rule, the potential en-
ergy between the fluid molecule and the wall molecules up to n=k is written as the following

Figure 2: Schematic drawing of the wall structure. The left hand side is an edge view, and the right hand
side is a schematic elevation of the wall.



K. Suga, S. Takenaka, T. Ito and M. Kaneda / Adv. Appl. Math. Mech., 5 (2010), pp. 609-625 617

form:

k

∑
n=1

φn(r0) =A
{

4ε
[( σ

r

)12
−

(σ

r

)6]
+ 4ε

[( σ√
r2

0 + r2
w

)12
−

( σ√
r2

0 + r2
w

)6
]

6

+ · · ·+ 4ε

[( σ√
r2

0 + [(k− 1)rw]2

)12
−

( σ√
r2

0 + [(k− 1)rw]2

)6
]

6(k− 1)
}

, (3.3)

where A is the parameter which determines the strength of the wall-fluid interaction. The
present study sets A=1 after a series of validity tests. It was found that the potential energy
almost converges by the stage of Σφ up to k=5. And the well depth of the actual potential
Σφ up to k=5 is about 7.5 times as large as that of the Lennard-Jones potential. The features
of the flows differ by the variation of this well depth. It is thus important to set appropriate
parameters such as A, k and rw according to the flow conditions. Note that the present set
of parameters are tuned particularly for flows at Kn ' 0.1 referring to the DSMC data in the
literature.

3.2 Definition of the molecular mean free path

The molecular mean free path length λ depends on the property of the system and the kind of
the particles. The estimation method for λ used in the present study is as follows.

First, a one-dimensional model of inter-molecular collision is considered. Using the prin-
ciple of equipartition of energy, the kinetic energy of a molecule with the velocity v is equal to
the mean energy

1
2

mv2 =
3
2

kBT, (3.4)

when the molecules collide, the kinetic energy of the molecule is replaced with an equal vol-
ume of the potential energy. Thus, the following formula is obtained by the conservation law
of energy:

φLJ(rm) =
1
2

mv2 =
3
2

kBT, (3.5)

where rm is the closest distance for the intermolecular collision. A repulsion force F(rm) is
defined as a threshold value, which is determined whether the collision is present

F(rm) = −
(dφLJ

dr

)
rm

. (3.6)

If the force acting on the molecule exceeds the threshold value, a collision occurs. To calculate
the mean free path length, practically, the motion and the force of sample molecules are traced.
The time interval between a collision point (the point when the force steps over the threshold
value) and next collision point is a mean free time. Obviously, the migration distance in the
mean free time is the mean free path length. Finally, the mean free path is obtained by taking
the reasonable statistics of the migration distance.

4 Results and discussions

Before discussing the combined nanochannel flow, simulation results of canonical Poiseuille
flows are discussed for the confirmation of the computer code and the model performance.
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Then, the combined nanochannel flow is discussed. In the MD simulation, Kn is a resultant
value of the computation and Kn=0.14 (this Kn is based on the single representative channel
height) has been obtained at the present simulation. In order to compare the results, such a Kn
is used as a computational condition of the LBM simulation.

In the following discussions, the LBM with the BSBC consists of the combination of
Eq. (2.12) with a fixed bridge coefficient: b=0.7, the effective relaxation time by Eq. (2.5) and
the D2Q9 discrete velocity model as in [21]. The LBM with the DSBC consists of Eq. (2.13), the
effective relaxation time by Eq. (2.6), the regularization procedure Eq. (2.11) and the D2Q21
velocity model as in Niu et al. [12].

During the computations, the criterion

∑
ij

( ∣∣u(n)
ij − u(n−100)

ij

∣∣

U(n)
b

)
6 10−6, (4.1)

is applied for the velocity at a lattice node uij=u(i, j, tn) to judge the convergence of the solu-
tion. Here, the superscript (n) denotes the iteration step and Ub is the bulk mean velocity.

4.1 Force driven Poiseuille flow

The results of the micro flow LBMs by the models with the BSBC and the DSBC are compared
in Fig. 3, where H is the channel height. These streamwise velocity U profiles are normalized
by the mean velocity Ub. The 2-D uniform Cartesian lattice of 100× 100 (this density of the
lattice was confirmed to be more than fine enough in [12]) is used for the simulations. The
drive force and periodic boundary conditions are applied to the x-direction and thus, the flow

Figure 3: Streamwise velocity profile comparisons by the wall boundary condition models in Poiseuille flows;
(a) at Kn=0.14, (b) at Kn=0.56, (c) at Kn=1.0, (d) at Kn=0.56.
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Figure 4: Velocity scaling at wall and centerline
of the channels; the DSMC results are from [1].

Figure 5: Dependency of the flow rates on Kn;
the DSMC results are from [1].

regime is regarded as in a fully developed condition. The number of iterations of the LBM
simulations is 5,000 and the results are fully converged. As shown in Fig. 3(a), at Kn=0.14 both
models well reproduce the DSMC [1] results with fully diffusive wall boundary conditions
(the accommodation coefficient is 1.0). At a little higher Kn cases, Kn≥0.56, the BSBC model
overpredicts the slippage though the DSBC works well as shown in Figs. 3(b) and (c). This
deterioration in the BSBC is not due to the difference in the discrete models as confirmed in
Fig. 3(d). Although the DSBC with the D2Q9 predicts a little worse, it is far better than the
BSBC.

The slip and centerline velocities and the mass flow rate

Q =
H

∑
y=0

ρU(y)(
ρax H2/cs

) , (4.2)

are compared in Figs. 4 and 5. It can be seen that the Kn dependency of these values in the
BSBC model is also not very reliable compared with that of the DSBC model. Although as
shown in Fig. 4 the slip and centerline velocities are reasonably predicted by the BSBC model
with b=0.7 at Kn≤0.14, the mass flow rate is somehow underpredicted as in Fig. 5. This
implies that the applicability of the presently applied set of model equations with the BSBC
model is rather limited. The above observations suggest that in the BSBC, at least the coeffi-
cient b should vary depending on Kn even for the fully diffusive walls. Note that in order to
satisfy the second order slip boundary condition, Guo et al. [23] showed a functional bridge
coefficient (:bounce-back fraction in [23]) which varied as Kn and the lattice spacing. (Their rec-
ommended function gives b=0.6, which is close to the currently applied value, for the present
computations at Kn=0.14 and 0.56. Indeed, it gives b=0.57 and b=0.63 for Kn=0.14 and 0.56,
respectively.) Verhaeghe et al. [13] also proposed a functional bridge coefficient on Kn for the
multiple relaxation time LBM.

4.2 Combined nanochannel flow

As shown in Fig. 6, a flow in a nanochannel with an inserted flat plate is considered. For
the MD simulation, the mother channel height H and its domain length L are set as respec-
tively 16.5 nm and 32 nm. The inserted flat plate, which makes another narrower channel
region, has the thickness of 0.15H and the length of L/2. The gap (the height of the finite
narrower channel) between the plate and the channel bottom wall is 0.125H. The drive force
and periodic boundary conditions are applied to the x-direction and thus, the flow regime
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Figure 6: Flow field geometries of the combined nanochannel.

is regarded as a fully developed force-driven nanochannel flow combined with developing
narrower nanochannel flows inside. In Table 2, the computational conditions for the MD sim-
ulation are summarized. The computational domain shown in Fig. 6 is 92.4σ× 24.9σ× 46.2σ
and 12784 fluid molecules surrounded by 16728 wall molecules of argon mono-layers are sim-
ulated. After the process described in the former section, the obtained Knudsen number from
the MD simulation is Kn=0.14 based on the characteristic length H. The corresponding LBM
simulations are thus carried out on the grid size of 187× 97 for the same Kn as that of the MD
simulation. After a series of grid dependency tests, results by the grid of 187× 97 are guar-
anteed to be grid independent as shown in Fig. 7, which shows that the result by the 94× 49
grid is virtually identical to that by the 187× 97 grid. The number of iterations of the LBM
simulations is 12,000 and the results are fully converged. Meanwhile, 9 million time steps are
required to obtain reasonable flow statistics by the MD simulation.

Table 2: Computational conditions of the MD simulation for a flow in a combined nanochannel.

domain fluid molecules wall molecules Kn
92.4σ× 24.9σ× 46.2σ 12784 16728 0.14

Fig. 8 compares the normalized streamwise velocity U profiles at x/L=0.0-0.93. Both the

Figure 7: Results of the grid dependency test.
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Figure 8: Comparison of the development of streamwise velocity profiles in the combined nanochannel flow
at Kn=0.14.

results of the LBM simulations by the BSBC and the DSBC models reasonably agree with the
general profiles of the MD simulation in the wider gap region since both LBMs satisfactorily
predict the Poiseuille flow field at Kn=0.14 (Fig. 3(a)). However, somehow the BSBC model
produces unphysical kinks near the edges of the flat plate as in the plots of x/L=0.0, 0.18,
0.93 of Fig. 8. Moreover, the BSBC tends to overpredict the velocity profiles in the narrower
channel region of 0.25<x/L<0.75.

This is confirmed in Fig. 9. It is obvious that the flow develops and the profile becomes
flatter in the downstream region as indicated by the MD simulation. In fact, the peak velocity
tends to be smaller. Although the DSBC model predicts better levels of the velocity profiles,
the profiles are somehow almost unchanged. Once the velocity is normalized by the mean
velocity inside the narrower channel U∗

b , as shown in Fig. 10, the velocity distribution profiles
by the LBMs look similar to the Poiseuille flow at Kn=1.0 of Fig. 3(c) though the profile of the
BSBC model shows kinks.

Since the height of the narrower channel region is 0.125H, the characteristic Knudsen num-
ber becomes 1.12 if such a length is chosen. Nonetheless, during the present LBM simulations,
the characteristic length is fixed to the mother channel height H. Correspondingly, except for
the wall boundary model, the local Kn effect comes from Eq. (2.7) by the variation of the fluid
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Figure 9: Comparison of the streamwise velocity development in the narrower nanochannel region.

density when the effective relaxation time of Eq. (2.6) is applied. This local effect is, how-
ever, not very large in the force driven flows. In the LBM with the BSBC, such a local effect is
not included because the effective relaxation time of Eq. (2.5) does not change locally. There-
fore, the velocity profiles similar to those of the Poiseuille flow at Kn=1.0 come from the wall
boundary models. This means that the relation between the flow rate and the slippage velocity
predicted by the wall boundary model controls the velocity profiles. The overprediction of the
velocity inside the narrower channel by the BSBC observed in Fig. 8 well corresponds to the
overprediction of the flow rate of the Poiseuille flow at Kn=1.0 shown in Fig. 5.

In Fig. 10, the profile by the MD simulation clearly shows that the flow is not fully devel-
oped at x/L=0.61 (x/h=4.9, where h=0.125H) since the position is still close to the entrance
region. Since it can be considered that this flow development tendency comes from the distri-
bution of the local pressure gradient inside the narrower channel, the effective relaxation time

Figure 10: Comparison of the streamwise velocity in the narrow channel; h is the height of the narrow
channel region: h=0.125H.
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Figure 11: Comparison of the development of streamwise velocity profiles in the combined nanochannel
flow at Kn=0.14; BSBC2 denotes BSBC with the regularization by Eq. (2.11) and the relaxation time of
Eq. (2.6).

requires to have more sensitivity to the local conditions for capturing this phenomenon.
In order to understand the source of the aforementioned kink profiles of the BSBC model,

a further computation by the BSBC with the effective relaxation time of Eq. (2.6) and the reg-
ularization process of Eq. (2.11) is performed. Fig. 11 compares this simulation result named
BSBC2 with the DSBC result. It is clear that all the kink profiles disappear. Although the dis-
tribution profiles become smooth, the agreement with the MD simulation tends to be worse
due to the low slippage velocities at the walls. This may be improved by modifying the bridge
coefficient b to be smaller than b=0.7 in Eq. (2.12).

5 Conclusions

The widely used micro-flow wall-boundary conditions for LBM based on the lattice BGK
model are evaluated in a force driven combined nanoscale channel flow at Kn=0.14. To obtain
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the reference data, the MD simulation is performed with a fully diffusive wall condition. The
LBMs are with the bounce-back/specular reflection and the diffuse scattering wall boundary
conditions with additional models for the relaxation time. Although the LBM with the lat-
ter boundary model shows generally satisfactory results in the test flow cases including fully
developed force driven Poiseuille flows, the former model performs worse at Kn>0.5 in the
Poiseuille flows with a fixed bridge coefficient of b=0.7. This causes its overprediction of the
flow rate in the narrower channel region since the characteristic Knudsen number there is 1.12.
Hence, the bridging coefficient for the bounce-back/specular reflection wall boundary model
should have dependency on Kn and local flow quantities. The MD simulation suggests that
the flow develops gradually through the narrow channel region whereas both the LBM predic-
tions show almost instant flow development. This result implies that the effective relaxation
time model needs to have more sensitivity to the locally defined Knudsen number. Although
the widely applied model combination with the bounce-back/specular reflection wall model
produces unphysical kinks in the velocity profiles, introducing the regularization process can
get rid of the kinks and is necessary for complex nano/micro flow fields.
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