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Abstract. We study the extensions of the Bogner-Fox-Schmit element to the whole
family of Qk continuously differentiable finite elements on rectangular grids, for
all k≥3, in 2D and 3D. We show that the newly defined C1 spaces are maximal
in the sense that they contain all C1-Qk functions of piecewise polynomials. We
give examples of other extensions of C1-Qk elements. The result is consistent with
the Strang’s conjecture (restricted to the quadrilateral grids in 2D and 3D). Some
numerical results are provided on the family of C1 elements solving the biharmonic
equation.

AMS subject classifications: 65M60, 65N30

Key words: Differentiable finite element, biharmonic equation, Bogner-Fox-Schmit rectangle,
quadrilateral element, hexahedral element, Strang’s conjecture.

1 Introduction

It is relatively difficult to construct continuously-differentiable finite elements in two
and three space dimensions. Most such C1 elements were designed in 1970s and ear-
lier (cf. Ciarlet [10]). Most C1 elements were constructed on triangles and tetrahe-
dra with piecewise polynomials Pk. As usual, Pk and Qk stand for polynomials of
total degree and separate degree k or less, respectively. For example, we have the
Argyris P5-triangle (1968), the Bell reduced P5-triangle (1969), the Morgan-Scott Pk-
triangles (k≥5) (1975), the Hsieh-Clough-Tocher P3-macrotriangles (1965), the reduced
Hsieh-Clough-Tocher P3-macrotriangles (1976), the Douglass-Dupont-Percell-Scott Pk-
triangles (1979), the Powell-Sabin P2-triangles (1977), the Fraeijs de Veubeke-Sander P3
quadrilateral and its reduced version (1964), cf. [2,4,10–12,14,15,22,25,27,28,37]. The
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last two elements carry the term quadrilateral in the name, but they are Pk macrotrian-
gle elements too. It seems that the Bogner-Fox-Schmit rectangle (1965) is the only C1
element on rectangular grids, cf. [9, 10]. Nevertheless, there are still quite some work
on this one of the oldest elements, mainly due to its simplicity and effectiveness in
computation, cf. [1, 20, 24, 26].

In this paper, we study the Bogner-Fox-Schmit element extended to higher order
Qk elements in 2D and 3D, k≥3. Such extensions were done also in [8, 13, 21]. There
might not be much interest in application to use high order elements, though they
provide usually a better accuracy with less number of unknowns. For example, as
shown in our numerical tests, the Q4 element performs better than its Q3 cousin, the
Bogner-Fox-Schmit element. However, our main interest in studying C1-Qk elements
is to understand the structure and approximation property of C0-Qk−1 element un-
der the divergence-free or the nearly-incompressible constraint, cf. two subsequent
researches [38,39]. The approach is standard. Morgan and Scott [22] modified Argyris
P5-triangles to cover all C1-P5 functions on triangular grids, and extended it to C1-Pk
for all k≥5. Scott and Vogelius [29, 30] showed that C0-Pk elements for all k≥4 pro-
vide the optimal-order approximation property on general triangular grids under the
incompressibility constraint, for fluids and elasticity. The generalization of Scott and
Vogelius work to Qk polynomials is not accomplished yet. There are some work on Qk
elements under the incompressibility constraint and the element is shown suboptimal,
cf. [3, 32].

The construction of high-order C1 finite elements is relatively easy, compared with
that of low-order elements. Such a construction consists of two parts, the local unique-
ness and polynomial preserving, and the global inter-element coupling. We note that
Gopalacharyulu made an extension to the Bogner-Fox-Schmit element in [17]. The
extension is not a higher order element, but an element which includes some higher
order polynomial terms so that the element may work better for plates. Our work
here extends the element of Gopalacharyulu, so that the higher order approximation
can be guaranteed. In fact, it was pointed out by Watkins that the construction of
Gopalacharyulu missed some lower order terms while adding higher order terms to
the Bogner-Fox-Schmit element, cf. [36]. To correct it, Gopalacharyulu added some
more terms into the element, however, without showing the extension is conform-
ing (C1), neither complete, in [18]. For the extensions studied in this paper, we show
their completeness (the optimal order of approximation), fullness (including all C1-Qk
polynomials), and conformity. This is mainly the work further that of [8, 13, 21].

For C1 piecewise polynomials on triangular grids, Strang gave a conjecture on the
dimension based on the inter-element constraint, cf. [5, 23, 33, 34]. The conditions and
validity of the Strang’s conjecture are open problems, cf. [23]. But we will show the
conjecture holds on rectangular grids, both in 2D and 3D.

The paper has three additional sections. In Section 2, 2D C1-Qk elements are con-
structed for all k≥3. In Section 3, 3D C1-Qk elements are constructed for all k≥3. In
Section 4, a simple numerical test on the biharmonic equation is performed with the
Bogner-Fox-Schmit element and higher order C1-Qk elements.
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2 Families of C1-Qk elements on rectangular grids

In this section, we will review the construction of the Bogner-Fox-Schmit element, and
its basis functions. We will extend it to finite elements of higher degree polynomials.
We will show the finite element space is full that it includes all C1-Qk piecewise poly-
nomials. Some examples of partial coverage will be given. Also an example of natural
extension, which contradicts the Strang’s conjecture, will be shown to fail to produce
C1 elements.

Let Ω be a polygonal domain in 2D and 3D which can be discretized into rectangles
and cuboids (rectangular boxes) parallel to the coordinate planes, denoted by Ωh. For
simplicity, we may let Ω be the unit square or the unit cube with the uniform grid of
size h (=1/N):

Ωh =

{
∪1≤i,j≤NΩij, in 2D,
∪1≤i,j,l≤NΩijl , in 3D,

(2.1)

where

Ωij =
{
(x, y) | (i − 1)h ≤ x ≤ ih, (j − 1)h ≤ y ≤ jh

}
,

Ωijl =
{
(x, y, z) | (i − 1)h ≤ x ≤ ih, (j − 1)h ≤ y ≤ jh, (l − 1)h ≤ z ≤ lh

}
.

As usual, polynomial spaces are denoted by (similarly in 2D too)

Pk =
{

p(x, y, z) | p(x, y, z) = ∑
0≤i+j+l≤k

cijlxiyjzl
}

,

Qk =
{

p(x, y, z) | p(x, y, z) = ∑
0≤i,j,l≤k

cijlxiyjzl
}

.

For example

P1 = span
{

1, x, y, z
}

and Q1 = span
{

1, x, y, z, xy, xz, yz, xyz
}

.

The C1-Qk finite element spaces on Ωh are defined by

Vk =
{

v ∈ C1(Ω)
∣∣∣ v|Ωijl ∈ Qk, ∀Ωijl ∈ Ωh

}
, (2.2a)

Vk,0 =
{

v ∈ Vk

∣∣∣ v|∂Ω = 0,
∂v
∂n

∣∣∣
∂Ω

= 0
}

. (2.2b)

We introduce the space of Bogner-Fox-Schmit rectangles, V(1)
3 . On each rectangle, the

Q3 polynomials are determined by 16 nodal degrees of freedom, depicted in the first
diagram in Fig. 1. To be precise, the Bogner-Fox-Schmit rectangle is defined in [10] by
the triple (Q̂, Σ, Q3):

Q̂ = (0, 1)× (0, 1),

Σ =
{

v(ai), vx(ai), vy(ai), vxy(ai), i = 1, 2, 3, 4
}

,
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Figure 1: The family of Bogner-Fox-Schmit rectangles, cf. (2.6).

where ai are the four vertices of Q̂. Note that

dim Q3 = dim Σ = 16.

Let ϕ̂l be the 16 nodal basis functions on Q̂. Then

V(1)
3 = span

{
vl(x, y) ∈ V3

∣∣∣ vl
(

F|Ωij(x̂, ŷ)
)
= ϕ̂l′ , ∀Ωij ∈ Ωh

}
,

where F is the affine reference mapping for the rectangle Ωij, and l′ is the correspond-
ing local index for the global index l. It is shown in [10], i.e.,

V(1)
3 ⊂ V3.

It will be shown that
V(1)

3 = V3.

To define one type of extension of the Bogner-Fox-Schmit Q3 element, we study the
element as a tensor product of the cubic Hermit splines. Let the 4 cubic spline basis
functions on [0, 1] be

ϕ̂0(x) = x3 − 2x2 + x, ϕ̂1(x) = 2x3 − 3x2 + 1, (2.3a)

ϕ̂2(x) = −2x3 + 3x2, ϕ̂3(x) = x3 − x2. (2.3b)

It can be shown (cf. [20]) that on each rectangle Ωij

v(x, y) =
1

∑
m,l=0

v(xi+m, yj+l)ϕi,m+1(x)ϕj,l+1(y)

+ hvx(xi+m, yj+l)ϕi,3m(x)ϕj,l+1(y)

+ huy(xi+m, yj+l)ϕi,m+1(x)ϕj,3l(y)

+ h2uxy(xi+m, yj+l)ϕi,3m(x)ϕj,3l(y), ∀v ∈ V(1)
3 ,

where the basis functions (after the reference mapping) are

ϕi,l(x) = ϕ̂l

( x − xi

h

)
, ϕj,l(y) = ϕ̂l

(y − yj

h

)
.
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Here (xi, yj) is the lower-left corner of rectangle Ωij. Similarly, let {ϕ̂i(x)} be the (k+ 1)
basis functions for the C1-Pk splines on [0, 1], i.e.,

ϕ̂′
0(0) = 1, ϕ̂l

( j − 1
k − 2

)
= δl j, ϕ̂′

k(1) = 1, j, l = 1, 2, · · · , k − 1, (2.4)

and ϕ̂l is zero when evaluated by the other k functionals. For example, the basis func-
tions for k=3 and k=4 are listed in (2.3) and (4.3), respectively. The first family of
C1-Qk finite elements are defined by

V(1)
k =

{
v(x, y) ∈ C(Ω)

∣∣∣ v|Ωmn = ∑
0≤i,j≤k

vijϕi(x)ϕj(y), ∀Ωmn ∈ Ωh

}
, (2.5)

where

vij =


v
(
xm + i−1

k−2 h, yn +
j−1
k−2 h

)
, 0 < i, j < k,

vx
(
xm + i

k h, yn +
j−1
k−2 h

)
, i = 0, k, 0 < j < k,

vy
(

xm + i−1
k−2 h, yn +

j
k h
)
, j = 0, k, 0 < i < k,

vxy
(

xm + i
k h, yn +

j
k h
)
, i, j = 0, k,

ϕi(x) =

{
ϕ̂i
( x−xm

h

)
, 0 < i < k,

hϕ̂i
( x−xm

h

)
, i = 0, k,

ϕj(y) =

{
ϕ̂j
( y−yn

h

)
, 0 < j < k,

hϕ̂j
( y−yn

h

)
, j = 0, k.

At this moment, the relation between Vk and V(1)
k is not clear that either Vk ̸⊂V(1)

k or

Vk ̸⊃V(1)
k may happen, as we do not know if V(1)

k ⊂C1. To study this inclusion, we find
an equivalent definition of (2.5).

Theorem 2.1. The finite element space V(1)
k of (2.5) is equivalently defined by the finite ele-

ment triple: (
Q̂, Σ(1), Qk

)
, (2.6)

where Σ(1) is defined by (see Fig. 1)

Σ(1) =
{

v
( i

k − 2
,

j
k − 2

)
, 0 ≤ i, j ≤ k − 2,

vy

( i
k − 2

, j
)

, 0 ≤ i ≤ k − 2 and j = 0, 1,

vx

(
j,

i
k − 2

)
, 0 ≤ i ≤ k − 2 and j = 0, 1,

vxy(i, j), 0 ≤ i, j ≤ 1
}

,

and the reference element Q̂ is the unit square.
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Proof. It is straightforward to verify the tensor product basis defined in (2.4) and
(2.5) is the dual basis for the space of functionals Σ(1) on Q̂. �

Remark 2.1. The definition of finite element space here by the triple (Q̂, Σ(1), Qk)
needs some additional arguments, as Σ(1) is defined on a subset of H2(Ω) because
the mixed second derivatives at vertices are used. We require that the nodal value
interpolation operator associated with Σ(1) preserve functions in V(1)

k . We may define
the interpolation operator as a boundary averaging operator similar to that defined
in Scott-Zhang [31], which is identical to the nodal interpolation operator when re-
stricted to Qk. We refer to Ciarlet [10] for more discussions on how to define C1 finite
element spaces by high order nodal derivatives.

Theorem 2.2. The functional set Σ(1) defined in (2.6) is uni-solvent for the finite element
triple (Q̂, Σ(1), Qk), where Q̂ is the reference square.

Proof. Let
q(x, y) ∈ Qk and fl(q) = 0,

for all (k+ 1)2 functionals fl∈Σ(1). Let Lj(x)=0 be a vertical line passing through some
of the (k + 1)2 interpolation points, i.e.,

Lj(x) = x − j
k − 2

, j = 0, 1, · · · , k − 2.

When restricted on
Lj(x) = 0 or Lj(y) = 0,

q(x, y) is a degree k polynomial in y or x, respectively. As q(x, y) is zero at (k − 1)
points on the line segment [0, 1] × [0, 0] and qx(x, y) is zero at the two end points,
q(x, y) is identically zero on the line segment, i.e.,

q(x, y) = L0(y)q1(x, y).

Next, because qy(x, y) is zero at (k − 1) points on the line segment [0, 1] × [0, 0] and
qxy(x, y) is zero at the two end points, we can factor out another factor

q(x, y) = L2
0(y)q2(x, y).

By symmetry,

q(x, y) = L2
0(x)L2

k−2(x)L2
0(y)L2

k−2(y)q3(x, y), q3 ∈ Qk−4.

For 1≤j ≤k − 3, Lj(y)=0 is a line passing through (k − 3) internal interpolation points
(see Fig. 1). Since q has (k − 3) internal zeros, two boundary zeros, and two tangential
derivative (normal to x=0, 1) zeros at the two ends, on Lj(y)=0, we conclude that we
can factor out Lj(y) from q, i.e.,

q(x, y) = L2
0(x)L2

k−2(x)Lj(y)L2
0(y)L2

k−2(y)q4(x, y).
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By symmetry,

q(x, y) = L0(x)Lk−2(x)L0(y)Lk−2(y)
k−2

∏
i,j=0

Li(x)Lj(y)q5(x, y),

thus, q(x, y) is a product of a Qk+1 polynomial with another polynomial q5(x, y). This
leads the conclusion q5(x, y) is a polynomial of degree negative one. So

q(x, y) ≡ 0,

the proof is completed. �
One of our goals is to find out the structure, or a basis for Vk. Before we show

Vk = V(1)
k ,

we would try another extension of the Bogner-Fox-Schmit Q3 element, where we can
get more global degrees of freedom. But the finite element spaces are no longer C1.
Again, let Ωh be defined in (2.1). We count the dimension V(1)

k by the definition Σ(1)

in (2.6)

dim V(1)
k =4V + 2(k − 3)E + (k − 3)2K

=4(N + 1)2 + 4(k − 3)N(N + 1) + (k − 3)2N2

=(k − 1)2N2 + 4(k − 1)N + 4

=
(
(k − 1)N + 2

)2, (2.7)

where V, E and K denote the number of vertices, of edges, and of squares, respectively,
in Ωh (of N × N rectangles). Noting that each nodal degree of freedom at a vertex is
shared by 4 elements, while that inside an edge is shared by 2. One would expect
more total degrees of freedom, if moving some functionals at vertex to interior-edge
points. We may replace the mixed 2nd-order derivative at each vertex by two normal
derivatives at internal points on edges. To ensure the C1 continuity on each edge, we
would have two additional normal derivatives specified inside each edge, based on
Σ(1). This would lead to

Σ(2)
3 = Σ′ ∪{

vy

( i
3

, j
)

& vx

(
j,

i
3

)
, 1 ≤ i ≤ 2 and j = 0, 1

}
, (2.8a)

Σ(2)
4 = Σ′ ∪{

vy

( i
4

, j
)

& vx

(
j,

i
4

)
, 1 ≤ i ≤ 3 and j = 0, 1;

v
( i

2
, j
)

& v
(

j,
i
2

)
, 1 ≤ i ≤ 1 and j = 0, 1

}
, (2.8b)

Σ(2)
5 = Σ′ ∪{

vy

( i
5

, j
)

& vx

(
j,

i
5

)
, 1 ≤ i ≤ 4 and j = 0, 1;

v
( i

3
, j
)

& v
(

j,
i
3

)
, 1 ≤ i ≤ 2 and j = 0, 1

}
, (2.8c)
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Figure 2: Non-unisolvent sets Σ(2)
k , cf. (2.8a)–(2.8c).

where
Σ′ =

{
v(i, j), vy(i, j)& vx(i, j), i = 0, 1 and j = 0, 1

}
.

This cannot be done for Q3 and Q4 because their dimensions are less than the number
of functionals in Σ(2)

3 and Σ(2)
4 , respectively, as shown in the first two diagrams in

Fig. 2. Can we define Σ(2)
5 in (2.8c) for Q5 as depicted in Fig. 2? Can we define such a

Σ(2) for Qk for all k≥5? The answer is no. First, such a Σ(2) would not define a global
C1 space. Second, such a Σ(2) does not even resolve a Q5 polynomial, as we have too
many constraints on the boundary.
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Let us try the opposite direction, moving some nodal freedoms from interior-edge
points to the vertices. For k≥5, this can be done. Let Σ(3)

k be shown in Fig. 3, i.e.,

Σ(3) =
{

v
( i

k − 4
, j
)

, vy

( i
k − 4

, j
)

, vx

(
j,

i
k − 4

)
, 0 ≤ i ≤ (k − 4), j = 0, 1;

v
(

i,
j

k − 4

)
, 1 ≤ j ≤ (k − 5), i = 0, 1;

vxx(i, j), vyy(i, j), vxy(i, j), 0 ≤ i, j ≤ 1;

vxxy, vxyy(i, j), 0 ≤ i, j ≤ 1;

v
( i

k − 2
,

j
k − 2

)
, 1 ≤ i, j ≤ (k − 3)

}
. (2.9)
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Then, the finite element space defined by (Q̂, Σ(3), Qk) on the grid Ωh is

V(3)
k = span

{
vl(x, y) ∈ C(Ω)

∣∣∣ vl
(

F−1(x, y)
)
|Ωmn ∈ span

(
Σ(3) ′), ∀Ωmn ∈ Ωh

}
. (2.10)

Here V(3)
k is the span of global basis functions which are the mapped dual basis func-

tions of Σ(3) on each rectangle Ωmn.

Theorem 2.3. The functional set Σ(3) defined in (2.10) is uni-solvent for the finite element
triple (Q̂, Σ(3), Qk), where Q̂ is the reference square.

Proof. The proof is nearly identical to that for Theorem 2.2. Let

q(x, y) ∈ Qk and fl(q) = 0,

for all (k + 1)2 functionals of Σ(3). As in Theorem 2.2, we have

q(x, y) = L2
0(x)L2

k−2(x)L2
0(y)L2

k−2(y)q3(x, y), q3 ∈ Qk−4.

For 1 ≤j≤(k − 3), Lj(y)=0 is a horizontal line passing through (k − 3) internal inter-
polation points (see Fig. 3). Different from Theorem 2.2, there is no nodal freedom at
the two end points of line segment Lj(y)=0. But we show above q has zero values and
zero normal derivatives at the two ends, i.e., when x=0, 1. We conclude that we can
still factor out Lj(y) from q. Therefore,

q(x, y) = L0(x)Lk−2(x)L0(y)Lk−2(y)
k−2

∏
i,j=0

Li(x)Lj(y)q5(x, y).

As q5(x, y) is a polynomial of degree negative one,

q(x, y) ≡ 0,

so the proof is completed. �

Similar to (2.7), we count the dimension V(3)
k as follows:

dim V(3)
k =8V + 2(k − 5)E + (k − 3)2K

=8(N + 1)2 + 4(k − 5)N(N + 1) + (k − 3)2N2

=
(
(k − 1)N + 2

)2 − 4(N2 − 1). (2.11)

Compared with dim V(1)
k , the dimension of the new family of element is reduced by

4(N2 − 1). Strang gave a conjecture on the dimension of piecewise C1 polynomials Vh,
based on the inter-element constraint, cf. [5, 23, 33, 34], that

dim Vh = K · dim VK − E0 · Ce + V0 · Cv + σ, (2.12)
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where VK is the space of Vh restricted on one element, K the number of elements, E0
the number of internal edges, V0 the number of internal vertices, Ce the number of
constraints for continuity on each edge, Cv the number of freedoms at each vertex,
and σ is the number of singular vertices. A vertex is singular if all edges meeting at
the vertex fall into two cross lines (cf. Fig. 6). Though Strang made the conjecture for
triangular grids, we apply it to our C1-Qk space Vk on the (n × n) rectangular grid Ωh.

dim Vh =K(k + 1)2 − E0(2k + 2) + V0(3) + σ

=N2(k + 1)2 − 2N(N − 1)(2k + 2) + (N − 1)2(3) + (N − 1)2

=N2(k − 1)2 + N(4k − 4) + 4

=
(
(k − 1)N + 2

)2. (2.13)

Here
Ce = 2k + 2,

to match the (k + 1) function values and (k + 1) normal derivatives on two sides of
an edge of a piecewise Qk function, and Cv=3 for the function value and two first
derivatives to be the same at a vertex for a piecewise Qk function. We note that the
conjectured dim Vk is equal to dim V(1)

k , see (2.7). If the Strang’s conjecture is correct,
we would immediately conclude that

V(1)
k = Vk (assuming V(1)

k is C1).

Nevertheless, the conditions for the Strang’s conjecture are not yet fully discovered,
cf. [23]. Therefore, we have to prove V(1)

k =Vk directly. By this proof, we verify the
Strang’s conjecture on the rectangular grids.

Theorem 2.4. Let Vk, V(1)
k and V(3)

k be defined in (2.2a), (2.5) and (2.10), respectively. It
holds that

V(1)
k = Vk, V(3)

k ⊂
̸=

Vk ⊂ C1(Ω).

Proof. We prove V(1)
k ⊂Vk first. Since each function in V(1)

k is a piecewise Qk poly-

nomial, we need to show then V(1)
k ⊂C1(Ω). For a function q∈V(1)

k , we can write it as a
linear combination of monomials on each element. In particular, for the four elements
of Ωmn meeting at the vertex (xm, yn), we denote

q|Ωm+t,n+s =
k

∑
i,j=0

q(l)ij (x − xm)
i(y − yn)

j, t, s = −1, 0, (2.14)

where
l = 2(1 + t) + (1 + s).
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Figure 4: The monomial ordering at (0, 0) and the coefficients, cf. (2.14).

Here l=0, 1, 2, 3 (cf. Fig. 4.) We depict the terms in Fig. 4 for k=4, shifting the vertex
(xm, yn) to the origin (0, 0).

Let
y = yn,

by the definition of Σ(1), q is uniquely defined on (both sides of) the line segment, and
that (see Fig. 4)

q(0)i0 = q(1)i0 , q(2)i0 = q(3)i0 , i = 0, 1, · · · , k.

Next, as qy is uniquely determined by the functionals of Σ(1), it follows

q(0)i1 = q(1)i1 , q(2)i1 = q(3)i1 , i = 0, 1, · · · , k.

On the other direction, as q and qx are determined by the nodal freedoms on the line
x=xm, we have also

q(0)ij = q(1)ij , q(2)ij = q(3)ij , i = 0, 1 and j = 0, 1, · · · , k.

In particular, the four coefficients at the center (see Fig. 4) are the same

q(0)ij = q(l)ij , l = 1, 2, 3 and i, j = 0, 1. (2.15)

Hence q is C1 on the four rectangles

q ∈ C1

( 0∪
t,s=−1

Ωm+t,n+s

)
.
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As (xm, yn) is a generic vertex of Ωh, we conclude that

q ∈ C1(Ω).

Next we prove V(1)
k ⊃Vk. Let q∈Vk. We expand q again as a combination of monomials

on each rectangle Ωmn. Consider q on the four rectangles Ωm+t,n+s again. Since q∈C1,
the two rows of coefficients of q above the horizontal line (see Fig. 4) and those below
the horizontal line would match the nodal freedoms defined by Σ(1). Similarly for the
two columns of coefficients of q on the two sides of the vertical grid line. Thus, at the
intersection point, we have

q(l)00 = q(xm, yn), q(l)10 = qx(xm, yn),

q(l)01 = qy(xm, yn), q(l)11 = qxy(xm, yn),

for l=0, 1, 2, 3. Therefore, we have

I(1)k q = q,

where I(1)k is the global nodal interpolation operator associated with Σ(1) and Ωh
(see [10] for the standard definition). Hence

q = I(1)k q ∈ V(1)
k .

The proof for V(3)
k ⊂Vk is similar. To show V(3)

k ̸⊃Vk, we can simply use the dimension
counts (2.7) and (2.11) to get

dim V(3)
k < dim V(1)

k = dim Vk,

or we may prove this directly. Let

q ∈ Vk = V(1)
k ,

be such that (cf. Fig. 4 and (2.15)) the four values q(l)x2y(xm, yn) on the four rectangles

around a vertex are not same. This property must hold for all V(3)
k functions. Thus

q ̸∈ V(3)
k ,

so the theorem is proved. �
The Strang’s conjecture is not yet proved in general. But it is true in our special

case, the Qk element on a square grid.

Corollary 2.1. The Strang’s conjecture (2.12) is valid for rectangular grids on a square.

Proof. By Theorem 2.4,
Vk = V(1)

k .

The dimension of V(1)
k is calculated in (2.7), which matches the dimension of C1 poly-

nomial spaces predicted by the Strang’s conjecture in (2.13). �
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3 C1-Qk finite elements on 3D rectangular grids

In this section, we extend the 2D Bogner-Fox-Schmit rectangles to 3D C1-Q3 cuboids,
and further to a whole family of C1-Qk finite elements.

When extending the Bogner-Fox-Schmit element to 2D C1-Qk elements, we gave
two equivalent definitions, (2.5) and (2.6), by the tensor products of 1D splines {ϕ̂i}
and by the nodal value functionals Σ(1). We do the same for the 3D extension.

In this section, we denote the unit cube, the 3D reference element, again by Q̂, i.e.,

Q̂ = (0, 1)3.

We define the finite element triple (Q̂, Σ(4), Qk), where Qk is the space of 3D polyno-
mials of separate degree k or less, and

Σ(4) =
{

v
( i

k − 2
,

j
k − 2

,
l

k − 2

)
, 0 ≤ i, j, l ≤ (k − 2);

vx

(
i,

j
k − 2

,
l

k − 2

)
, 0 ≤ j, l ≤ (k − 2) and i = 0, 1;

vy

( i
k − 2

, j,
l

k − 2

)
, 0 ≤ i, l ≤ (k − 2) and j = 0, 1;

vz

( i
k − 2

,
j

k − 2
, l
)

, 0 ≤ i, j ≤ (k − 2) and l = 0, 1;

vxy

(
i, j,

l
k − 2

)
, 0 ≤ i, j ≤ 1 and 0 ≤ l ≤ (k − 2);

vxz

(
i,

j
k − 2

, l
)

, 0 ≤ i, l ≤ 1 and 0 ≤ j ≤ (k − 2);

vyz

( i
k − 2

, j, l
)

, 0 ≤ j, l ≤ 1 and 0 ≤ i ≤ (k − 2);

vxyz(i, j, l), 0 ≤ i, j, l ≤ 1
}

. (3.1)

We plot the nodal freedoms of Σ(4) for k=3 in Fig. 5. We note that we start to have
normal derivative at interior points of face rectangles when k>3.

Similar to the proof for Σ(1), we can show Σ(4) is uni-solvent. Then we can find
the dual basis of Σ(4) and obtain the global nodal basis of piecewise Qk functions via

8 × 1 vertex values
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Figure 5: The C1-Q3 cuboid defined in (3.3) (shown only the front face nodal freedoms).



714 S. Y. Zhang / Adv. Appl. Math. Mech., 6 (2010), pp. 701-721

reference mappings. It is then standard to define the finite element space V(4)
k by the

span of all nodal basis functions:

V(4)
k = span

{
vl(x, y, z)

∣∣∣ vl ◦ F−1∣∣
Ωmno

∈ Span
(
Σ(4) ′), ∀Ωmno ∈ Ωh

}
, (3.2)

where Ωh is defined in (2.1). Next, we give an equivalent definition of V(4)
k by the

tensor products of 1D splines. Let {ϕ̂i} be defined in (2.4), the splines on [0, 1],

V(4)
k =

{
v
∣∣∣ v

∣∣
Ωmno

= ∑
0≤i,j,l≤k

vijlϕi(x)ϕj(y)ϕl(z), ∀Ωmno ∈ Ωh

}
, (3.3)

where

ϕi(x) =

{
ϕ̂i
( x−xm

h

)
, 0 < i < k,

hϕ̂i
( x−xm

h

)
, i = 0, k,

ϕj(y) =

{
ϕ̂j(

y−yn
h ), 0 < j < k,

hϕ̂j
( y−yn

h

)
, j = 0, k,

ϕl(z) =

{
ϕ̂l
( z−zo

h

)
, 0 < l < k,

hϕ̂l
( z−zo

h

)
, l = 0, k.

We note that the tensor products of 1D splines in (3.2) are the (dual) nodal basis func-
tions for the Σ(4) in (3.1).

Theorem 3.1. Let Vk and V(4)
k be defined by (2.2a) and (3.3), respectively. Then,

Vk = V(4)
k .

That is, every C1-Qk function is a linear combination of nodal basis functions in (3.3).

Proof. The technique is the same as that used in Theorem 2.4. As each tensor prod-
uct basis function is C1, by the definition, V(4)

k ⊂Vk. We write a piecewise Qk function q
in Vk as a combination of monomial basis {xiyjzl} on each cube of Ωh, similar to the 2D
case shown in Fig. 4 and (2.15). The coefficients of q under such a basis are exactly the
nodal values used in Σ(4). We note that to be C1 on an interface square, the coefficients
of xiyjzl on the two sides must be the same. This would conclude Vk⊂V(4)

k . �
Let Ω=(0, 1)3 and Ωh be a uniform rectangular grid of size h=1/N. In Ωh, there

are (N + 1)3 vertices, 3N(N + 1)2 edges, 3N2(N + 1) rectangles, and N3 cuboids. By
counting the global freedoms of V(4)

k via (3.1), we get

dim V(4)
k =8(N + 1)3 + 4(k − 3)3N(N + 1)2 + 2(k − 3)23N2(N + 1) + (k − 3)3N3

=
(
(k − 1)N + 2

)3. (3.4)
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Figure 6: Singular vertices/edges (where some higher order derivatives are also continuous).

We give a generalization of the Strang’s conjecture to 3D C1 finite elements. Let
Vh be a C1 space of piecewise polynomials on a polygonal subdivision of Ω. Then the
Strang’s conjecture in 3D is

dim Vh = K · dim VK − F0 · C f + E0 · Ce − V0 · Cv + σe · fe − 4σv, (3.5)

where

dim VK = the degree of freedom per element,
K = the number of elements (polygons),
F0 = the number of inter-element (planar) faces,
C f = the number of C1 constraints on each face,

E0 = the number of internal edges,
Ce = the number of C1 constraints on each edge,
σe = the number of internal singular edges, where all inter-element

faces fall into two cross planes (cf. Fig. 6),
fe = the degree of freedom on each edge,
σv = the number of internal singular vertices, where all inter-element

faces fall into three cross planes meeting at the vertex (cf. Fig. 6).

In the case of piecewise Qk polynomials on every element, (3.5) becomes

dim Vh = K(k + 1)3 − F02(k + 1)2 + E03(k + 1)− V04 + σe(k + 1)− σv. (3.6)

Further, if Ω=(0, 1)3 is subdivided into N3 uniform cubes, (3.5) is simplified to

dim Vh =(k + 1)3N3 − 2(k + 1)23N2(N − 1) + 3(k + 1)3N(N − 1)2

− 4(N − 1)3 + (k + 1)3N(N − 1)2 − 4(N − 1)3

=
(
(k − 1)N + 2

)3. (3.7)

Corollary 3.1. The Strang’s conjecture (3.5) is valid for 3D rectangular grids on a cube.
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Proof. By Theorem 3.1, V(4)
k =Vk(=Vh) in 3D. The dimension of V(4)

k is calculated in
(3.4), which matches the dimension of C1 polynomial spaces obtained by the general-
ized Strang’s conjecture in (3.7). �

We remark that the generalized conjecture (3.5) needs some refinements. For exam-
ple, we need to revise it by including fractional-singular vertices, by which we mean,
for example, the vertex (1/2, 1/2, 1/2) of a uniform grid on domain (0, 1)3 \ (1/2, 1)3.
In fact, the refinement or the conditions for the Strang’s conjecture is far from com-
plete, even in 2D, cf. [23].

4 Numerical tests

In this section, we perform some simple numerical tests on the 2D C1-Qk family of
elements.

We solve the following biharmonic equation by the C1-Qk elements:

∆2u(x, y) = f (x, y), ∀(x, y) ∈ Ω, (4.1a)

u|∂Ω = 0,
∂u
∂n

∣∣∣
∂Ω

= 0. (4.1b)

The finite element problem in the variational form for (4.1) is: find uh∈Vk,0 (see (2.2b)),
such that

(∆uh, ∆vh) = ( f , vh), ∀vh ∈ Vk,0. (4.2)

The following theorem on the convergence is standard.

Theorem 4.1. Let Ωh be defined by (2.1). Let Vk,0 be defined by (2.2b) for Vk=V(1)
k , or

Vk=V(3)
k , or Vk=V(4)

k . Let u and uh be solutions of (4.1) and (4.2), respectively. Then uh
approximates u at the optimal order

|u − uh|H2(Ω) ≤ Chmin{k+1,s}−2∥u∥Hs(Ω),

here s is the elliptic regularity order, cf. [6, 19].

Proof. We have shown that the finite element spaces are C1. Therefore the discrete
solution is the Galerkin projection on the subspace. By Céa’s Lemma (cf. [10]),

|u − uh|H2(Ω) ≤ C inf
vh∈Vk,0

|u − vh|H2(Ω) ≤ C|u − Ihu|H2(Ω),

where Ih is the nodal interpolation operator. In case u is not smooth enough that the
nodal second or third derivatives are not well defined, we can let Ih be an averaging
interpolation operator similar to the ones defined in [31] and [16]. Because Vk,0 is con-
structed with full Qk locally and the interpolation operator Ih preserves Qk polynomial
locally, Ihu approximates u at the optimal order, cf. [7, 10]. �
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The domain for computation is simply the unit square Ω=(0, 1)×(0, 1). We choose
the exact solution (see Fig. 7 for its numerical approximation)

u(x, y) = sin6(πx) sin6(πy).

Then the right hand side function in the biharmonic equation (4.1) is

f =π4[360 sin2(πx)− 1560 sin4(πx) + 1296 sin6(πx)
]

sin6(πy)

+ 2π4[30 sin4(πx)− 36 sin6(πx)
][

30 sin4(πy)− 36 sin6(πy)
]

+ π4 sin6(πx)
[
360 sin2(πy)− 1560 sin4(πy) + 1296 sin6(πy)

]
.

The initial grid is the square, the domain itself. We refine the higher level grids by
subdividing each square into 4. The grid size on the n-th grid is 2−n+1. We first solve
the problem by the C1-Q3 element, i.e., the Bogner-Fox-Schmit element. The nodal
error on the 8 × 8 grid is plotted in the first diagram of Fig. 8.

In Table 1, we list the nodal errors in the maximum norm, and in the energy norm.
The maximal-norm errors converge to 0 at the right order but the energy norm, i.e., the
semi-H2 norm, errors converge at two orders higher than the general theory predicts,
see Theorem 4.1. Such a superconvergence property was studied in [20].

We test the new C1-Q4 element defined by (2.5). We note that, as shown in Section
2, the basis functions for C1-Q4 can be generated by the tensor product of the following
1D P4 spline functions:

ϕ̂0 = −2x4 + 5x3 − 4x2 + x, ϕ̂′
0(0) = 1, (4.3a)

ϕ̂1 = −8x4 + 18x3 − 11x2 + 1, ϕ̂1(0) = 1, (4.3b)

ϕ̂2 = 16x4 − 32x3 + 16x2, ϕ̂2

(1
2

)
= 1, (4.3c)

ϕ̂3 = −8x4 + 14x3 − 5x2, ϕ̂3(1) = 1, (4.3d)

ϕ̂4 = 2x4 − 3x3 + x2, ϕ̂′
4(1) = 1. (4.3e)

The new C1-Q4 element also performs better than that predicted by the theory, see
Theorem 4.1. We listed the error in the energy norm, and in the maximum norm (for
nodal errors), in Table 2. The energy-norm convergence seems to be one order higher
than that of typical finite elements of degree 4 polynomials (cf. [10]). Here we should
have a superconvergence too in function nodal values. This is known, summarized by

Table 1: The convergence of C1-Q3 (Bogner-Fox-Schmit) element.

Grid # unknowns |Ihu − uh|H2 O(hm) |u − uh|l∞ O(hm)
2 × 2 4 244.5235144 17.80019728
4 × 4 36 17.3017418 3.82 0.59618802 4.89
8 × 8 196 0.2047198 6.40 0.00098388 9.24

16 × 16 900 0.0143049 3.83 0.00007040 3.80
32 × 32 3844 0.0009136 3.96 0.00000445 3.98
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Figure 7: The solution of (4.1) by the C1-Q3 finite element.

Wahlbin for locally symmetric grids in [35]. When compared with the C1-Q3 element,
as expected, the C1-Q4 solution can provide a better accuracy with less unknowns on
coarse grids.

Finally, we list the numerical results for further higher order C1-Qk elements in
Table 3. However, the computer accuracy in Matlab is not high enough for our imple-
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Figure 8: The nodal error of C1-Qk elements, for (4.1).
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Table 2: The convergence of C1-Q4 (new) element.

Grid # unknowns |Ihu − uh|H2 O(hm) |u − uh|l∞ O(hm)
1 × 1 1 297.28721768 8.8678654571
2 × 2 24 33.62082218 3.14 2.4776861911 3.32
4 × 4 116 1.65666367 4.34 0.0543605016 5.51
8 × 8 516 0.01038290 7.31 0.0000501649 10.08

16 × 16 2180 0.00052894 4.29 0.0000007102 6.14
32 × 32 8964 0.00003212 4.04 0.0000000121 5.86

mentation. The round off error dominates the truncation error on some fine grids. The
convergence rates are of the optimal orders, shown at lower level grids.

Table 3: The convergence of C1-Qk elements, 5≤k≤7.

Grid degree |Ihu − uh|H2 O(hm) ∥Ihu − uh∥L2 O(hm)
1 × 1 5 84.49527 2.349618341
2 × 2 5 9.11393 3.21 0.237401792 3.30
4 × 4 5 0.07325 6.95 0.001359648 7.44
8 × 8 5 0.00228 5.00 0.000000835 10.66

16 × 16 5 0.00012 4.23 0.000000013 5.91
1 × 1 6 49.90785 1.317214962
2 × 2 6 2.02852 4.62 0.051355068 4.68
4 × 4 6 0.02660 6.25 0.000425660 6.91
8 × 8 6 0.00063 5.38 0.000000145 11.51

16 × 16 6 0.00001 5.00 0.000000033 2.10
1 × 1 7 9.10576 0.087387136
2 × 2 7 0.52529 4.11 0.010946550 2.99
4 × 4 7 0.00684 6.26 0.000029777 8.52
8 × 8 7 0.00011 5.87 0.000000137 7.75

16 × 16 7 0.00007 0.55 0.000002220 – –
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