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Abstract. We analyze a least-squares asymmetric radial basis function collocation
method for solving the modified Helmholtz equations. In the theoretical part, we
proved the convergence of the proposed method providing that the collocation
points are sufficiently dense. For numerical verification, direct solver and a sub-
space selection process for the trial space (the so-called adaptive greedy algorithm)
is employed, respectively, for small and large scale problems.
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1 Introduction

The unsymmetric RBF collocation method was first proposed by Kansa [6, 7]. Since
then, many successful applications, from linear partial differential equations [17] to
nonlinear shallow-water model [24], of recently developed mesh-free methods can be
found in different Mathematics, Physics and Engineering journals.

From the theoretical point of view, the original unsymmetric RBF collocation for-
mulation has neither error bounds nor convergence proofs. In the original formulation
proposed by Kansa, the trial and test spaces were closely related; e.g. the set of collo-
cation points and RBF centers coincide. This formulation may fail because the method
results in singular systems in some specially constructed situations [5].

In order to carry out some mathematical analysis, it is necessary to make further
assumptions and modify the formulation. In [11], we show that solvability can be
guaranteed if the Kansa’s method was modified in such a way that the test space and
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trial space are de-linked. In particular, we show that sets of proper RBF centers exist so
that the Kansa’s resultant matrix is of full rank.

Later, we proposed in [13, 21] another variant of the method so that error bounds
for the Poisson problems become possible. Convergence results and error bounds
with respect to the L∞(Ω)-norm are derived. A direct translation of theories to nu-
merical algorithm results in solving an overdetermined resultant system with linear
optimization whose implementation is not at all trivial; see [13] for an adaptive on-
the-fly algorithm.

In [8], different formulations of the unsymmetric meshless collocation methods for
solving the Poisson problems are compared in exact arithmetics. The numerical solu-
tion of convergent unsymmetric collocation method in [13] converges faster than the
interpolant with respect to the residual norm. Most importantly, the numerical results
in [8] suggests that, if the resulting overdetermined Kansa’s system is solved by the
least-squares minimization, the accuracy of the approximate PDE solution improves.
This motivates the presented research.

In this paper, we are interested in the convergence theories of a radial basis func-
tion (RBF) method for solving the modified Helmholtz equation in strong form. In
Section 2, we present the methodology of our proposed method. Section 3 devotes
to the convergence proof of the proposed method that is done in three main parts.
First, we give a brief overview of RBF interpolation/approximation theories. Next, a
continuous dependency of the modified Helmholtz equation in a special form, which
suits the least-squares approach in our formulation, is derived. Then, the denseness
requirements of collocation points needed for our convergence results are studied. Fi-
nally, we put all the ideas together and show the convergence and error bounds. In
Section 4, some numerical examples are given to conclude the work.

2 Overdetermined least-squares Kansa’s method

Let L := ∆− k2, k ∈ R, denote the modified Helmholtz operator and Ω be a bounded
domain in Rd, d ≥ 2 with boundary ∂Ω. Moreover, suppose f is continuous in Ω and
g is continuous on ∂Ω. We consider the modified Hemholtz equation with Dirichlet
boundary conditions

Lu = f in Ω, (2.1a)
u = g on ∂Ω. (2.1b)

We assume that (2.1) has the exact solution u∗ lying in some infinite dimensional trial
spaces U ; we postpone the precise definition of U to Section 3.4 in which we prove the
convergence of the proposed method.

To obtain a numerical formulation, we need to discretize U by some finite dimen-
sional subspaces UN . The overdetermined least-squares based Kansa’s method can be
initialized by a user-defined set of N scattered RBF centers

ΞN := {ξi}N
i=1.
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For any radial basis kernel Φ, the numerical solutions are expanded in the form of

uN(x) := ∑
ξi∈ΞN

λiΦ(x, ξi) ∈ UN :=
{

v : v(x) = ∑
ξi∈ΞN

λiΦ(x, ξi), λ ∈ RN
}

,

where λ := (λ1, . . . , λN)T are the unknown coefficients to be solved. We define the
continuous residual norm or Λ-norm on U as

‖u‖2
Λ := ‖Lu‖2

L2(Ω) + ‖u‖2
L2(∂Ω). (2.2)

Definition 2.2 will always provide a seminorm. By the continuous dependency of the
problem on data (shown later in Section 3.2), we know (2.2) is in fact a norm.

To make the problem numerically accessible, the test space, that is the set of in-
finitely many collocation conditions, has to be discretized. At the same time, we need
to replace the continuous residual norm by a discretized one.

Suppose a sequence of finite number of quasi-uniform collocation conditions

Lu(xi) = f (xi), for xi∈Ω, i = 1, . . . , M,
u(x̄i) = g(x̄i), for x̄i∈∂Ω, i = 1, . . . , m,

are imposed at the M and m chosen collocation points in Ω and on ∂Ω, respectively.
For convenience, we denote these sets of collocations points by

(XM, Xm) :=
(
{xi}M

i=1, {xi}m
i=1

)
⊂ (Ω, ∂Ω).

The original Kansa’s method always has N=M := M + m and ΞN=XM
⋃

Xm. Hence,
it results in square resultant matrices.

For any continuous function f ∈ C(Ω) and any set of distinct points X, we define
the `2(X)-norm as

‖y‖2
`2(X) := ∑

xi∈X
y(xi)2. (2.3)

For sufficiently large M (that will be made precise in Section 3.3), using these interior
and boundary collocation points with definition (2.3), we define the discretized residual
norm on UN as

‖u‖2
ΛM :=

1
M
‖Lu‖2

`2(XM) +
1
m
‖u‖2

`2(Xm). (2.4)

Note that (2.4) is in fact the commonly used root-mean-squares norm with different
weights applying to the interior and boundary points.

With the assumption that M>N, the approximated solution of the overdeter-
mined least-squares based Kansa’s method is defined to be the minimizer of the dis-
crete residual over the finite trial subspace

uN := arg min
v∈UN

‖v− u∗‖2
ΛM . (2.5)
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By construction, the solution to the minimization problem (2.5) is equivalent to the
least-squares solution of the matrix system Aλ = b where the resultant matrix is given
by

[A]ij =
{√

m · Lφ(xi − ξ j), 1 ≤ i ≤ M, 1 ≤ j ≤ N,√
M · φ(xi − ξ j), M + 1 ≤ i ≤M, 1 ≤ j ≤ N,

and right-hand vector is given by

[b]i =
{√

m · f (xi), 1 ≤ i ≤ M,√
M · g(xi), M + 1 ≤ i ≤M.

The unknown coefficient vector λ can be found by solving the system with least-
squares minimization. Once λ is obtained, the numerical solution can be evaluated
anywhere over Ω. As a numerical note, the least-squares solver should be imple-
mented by QR- or SVD-decomposition instead of the normal equation in order to
avoid worsening the problem of ill-conditioning.

3 Convergence analysis

To obtain the convergence theory for the least-squares Kansa’s method, we heavily
depend on the RBF interpolation theories that are reviewed in Section 3.1. Here, we
assume the exact solution lies in the native space of the RBF. Other necessary tools are
the continuous dependency shown in Section 3.2 and the equivalence of the contin-
uous and the discretized residual norms given in Section 3.3. For these, we further
assume the solution is smooth and continuous; more specifically

u ∈ H1(Ω) ∩ C(Ω).

This assumption is to the fact that the native space, for the kernel theories to apply,
contains rather smooth functions; these extra assumptions are not too much to ask for.
When all the assumptions hold, we prove the convergence of the proposed method in
Section 2. We will only give the complete proof with d≥2. After some straightforward
modifications, the result also holds when d=1.

3.1 RBF interpolation

For simplicity, we focus our discussion on some symmetric (conditionally) positive
definite kernels Φ : Rd × Rd→R. If we take the reproducing kernel Hilbert space
associated with Φ (native space) as the trial space

U = NΦ := span{Φ(·, y) : y ∈ Ω}‖·‖Φ

where ‖ · ‖U = ‖ · ‖Φ is induced from the inner product

〈 k

∑
i=1

ciΦi(·, xi),
k

∑
j=1

djΦj(·, yj)
〉

=
k

∑
i=1

k

∑
j=1

cidjΦi(xi, yj),
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then the standard hβ-type error bound [19, 20], where h is the fill distance of the data
and β is the smoothness of Φ, can be used. For the exponential error boundsO(λc/h)–
convergence (c fixed and 0<λ<1) for the Gaussians and (inverse) multiquadrics ker-
nels, see [15, 16]. For functions in some Sobolev spaces but not the native space, error
bounds for functions outside the native space can be found in [18]. The RBF conver-
gence theory itself is a big topic to be included in the work. Readers are also referred
to the research monographs on RBF [2, 4, 22] for recent reviews and details.

For this work, we require only that the discretized trial spaces UN have certain
approximation power such that for all v∈U there is some approximation sv,ε ∈ UN
with

‖v− sv,ε‖Λ ≤ ε‖v‖U , (3.1)

with a small number ε>0. The exact expression for ε depends on our assumption on
the exact solution u∗ and the chosen kernel Φ, when the function su∗,ε will be taken
as the interpolant to the PDE solution u∗ on the trial centers. Since the approximation
factor ε is a more important parameter than N, the number of RBF centers, we consider
N=N(ε) hereafter.

3.2 Continuous dependence on data

This section is devoted to prove a special version of continuous dependence. In par-
ticular, the H1-norm of the solution of (2.1) can be bounded by the L2-norm of the
residual. We begin with some necessary lemmas.

Lemma 3.1. Let u∈H1(Ω) be the solution of (2.1). Then, when d ≥ 2, we have

‖u‖H1(Ω) ≤ C1(‖ f ‖L2(Ω) + ‖g‖L2(∂Ω)),

where C1 is a generic constant and depends only on k and Ω.

Proof. Consider the H1(Ω)-norm of u,

‖u‖2
H1(Ω) :=

∫

Ω

(|∇u|2 + u2) ≤ max
{

1,
1
k2

}
a(u, u), (3.2)

where the standard bilinear form is given by

a(u, v) :=
∫

Ω
∇u∇v + k2

∫

Ω
uv, (3.3)

with any test function v∈H1(Ω). Taking v=u in (3.3), the Green formula yields a
bound for a(u, u)

0 ≤ a(u, u) =
∫

∂Ω
u

∂u
∂n
−

∫

Ω
u f

≤
∣∣∣
∫

∂Ω
u

∂u
∂n

+
∫

Ω
u f

∣∣∣ ≤
∫

∂Ω

∣∣∣u ∂u
∂n

∣∣∣ +
∫

Ω

∣∣∣u f
∣∣∣. (3.4)
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By the Cauchy-Schwarz theorem, we have
∫

∂Ω

∣∣∣u ∂u
∂n

∣∣∣ ≤ ‖g‖L2(∂Ω)

∥∥∥∂u
∂n

∥∥∥
L2(∂Ω)

.

Using the trace theorem, we obtain
∥∥∥∂u

∂n

∥∥∥
L2(∂Ω)

≤ K1‖u‖H2(Ω) = K1

√
‖u‖2

H1(Ω) + ‖∆u‖2
L2(Ω)

≤ K1

√
(‖u‖H1(Ω) + ‖∆u‖L2(Ω))2 = K1

(‖u‖H1(Ω) + ‖∆u‖L2(Ω)
)

≤ K1
(‖u‖H1(Ω) + ‖ f ‖L2(Ω) + k2‖u‖L2(Ω)

)
,

where the constant K1 depends only on Ω. Hence, we obtain
∫

∂Ω

∣∣∣u ∂u
∂n

∣∣∣ ≤ K1‖g‖L2(∂Ω)
(‖u‖H1(Ω) + ‖ f ‖L2(Ω) + k2‖u‖L2(Ω)

)

≤ K1

(
‖g‖L2(∂Ω)(‖u‖H1(Ω) + k2‖u‖L2(Ω)) + K2‖u‖H1(Ω)‖ f ‖L2(Ω)

)
. (3.5)

The last inequality follows from another application of the trace theorem that

‖g‖L2(∂Ω) = ‖u‖L2(∂Ω) ≤ K2‖u‖H1(Ω),

and K2 depends only on Ω.
A bound for the second term of (3.4) can be found similarly; by applying the

Cauchy-Schwarz theorem,
∫

Ω
|u f | ≤ ‖u‖L2(Ω)‖ f ‖L2(Ω) ≤ ‖u‖H1(Ω)‖ f ‖L2(Ω). (3.6)

Combining (3.5) and (3.6), we can rewrite the bound (3.4) as

a(u, u) ≤ ‖u‖H1(Ω)

(
K1(1 + k2)‖g‖L2(∂Ω) + (K1K2 + 1)‖ f ‖L2(Ω)

)
. (3.7)

Therefore, with the generic constant

C1 := max
{

1,
1
k2

}
max

{
K1(1 + k2), (K1K2 + 1)

}
,

the lemma is proven. ¤
The bound in Lemma 3.1 does not fit the overdetermined least-squares Kansa’s

method exactly. Below is a slight modification:

Theorem 3.1. Let u∈H1(Ω) be the solution of the modified Helmholtz Eq. (2.1). Then, we
have

‖u‖H1(Ω) ≤ C2

√
‖ f ‖2

L2(Ω) + ‖g‖2
L2(∂Ω).

where C2 is a generic constant and depends only on k and Ω.
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Proof. It is obvious to show that

a + b ≤
√

2
√

a2 + b2.

Putting a=‖ f ‖L2(Ω) and b=‖g‖L2(∂Ω) into the inequality, gives

‖ f ‖L2(Ω) + ‖g‖L2(∂Ω) ≤
√

2
√
‖ f ‖2

L2(Ω) + ‖g‖2
L2(∂Ω).

Using Lemma 3.1, we obtain a new bound

‖u‖H1(Ω) ≤ C1
√

2
√
‖ f ‖2

L2(Ω) + ‖g‖2
L2(∂Ω),

that proves the Theorem. ¤

3.3 The Denseness requirement for meshless collocation

In order to allow points to get dense in a controllable manor, we assume that the
collocation points are getting dense uniformly: If the sequence of distinct scattered
point sets XM := {xi}M

i=1 in Ω is getting dense quasi-uniformly as M→∞, then for any
partitions PM={Ωi}M

i=1 of Ω using XM (i.e. Voronoi diagram) such that

xi ∈ Ωj, if and only if i = j,

there exists two positive constants K3 and K4 independent of M, such that for each
fixed M and all i, the following inequalities hold

K3 Vol(Ω) ≤ M Vol(Ωi) ≤ K4 Vol(Ω). (3.8)

The following Lemma addresses the denseness requirement for discretizing the
test space.

Lemma 3.2. Suppose Ω is regular and bounded. The sets of collocation points XM := {xi}M
i=1

are getting dense quasi-uniformly. Let y∈C(Ω) be a positive Riemann square integrable func-
tion in Ω. Let the `2(XM)-norm be defined as (2.3). Then for sufficiently large M, there exists
two positive constants C3 and C4 independent of M such that

C3‖y‖L2(Ω) <
1√
M
‖y‖`2(XM) < C4‖y‖L2(Ω).

Proof. Supposed {XM}M satisfies the assumption stated. Let ‖PM‖ := max Vol(Ωi)
denotes the gap of the partition PM.

If ‖y‖L2(Ω)=0, then y≡0 on Ω. Therefore, ‖y‖`2(XM)=0 for all M and the assertion
holds. Consider the case when ‖y‖L2(Ω)>0. Since y is Riemann integrable over Ω,

‖y‖2
L2(Ω) = lim

M→∞

M

∑
i=1

y2(xi) Vol(Ωi) = lim
‖PM‖→0

M

∑
i=1

y2(xi) Vol(Ωi). (3.9)
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Figure 1: Schematic of collocation points and RBF centers distributions.

We take ε= 1
2‖y‖2

L2(Ω). Knowing that the limit in (3.9) exists, there must exist a M
independent constant δ(ε(y, Ω)) > 0 such that

∣∣∣
M

∑
i=1

y2(xi) Vol(Ωi)− ‖y‖2
L2(Ω)

∣∣∣ < ε, if ‖PM‖ < δ.

Equivalently, if M is sufficiently large, we have

1
2
‖y‖2

L2(Ω) <
M

∑
i=1

y2(xi) Vol(Ωi) <
3
2
‖y‖2

L2(Ω). (3.10)

Combining (3.10) and (3.8) yields the desired inequalities with

C3 =
(
2K4 Vol(Ω)

)− 1
2 and C4 =

(2
3

K3 Vol(Ω)
)− 1

2 .

Intuitively, in Lemma 3.2, we would expect that the constants C3 and C4 are closer to
1 for point distribution in Fig. 1(a) comparing to those in Fig. 1(b). ¤

Repeating arguments on ∂Ω, we have the following corollary.

Corollary 3.1. Suppose ∂Ω be an oriented closed hypersurface. Let y∈C(∂Ω) be a
positive Riemann square integrable function on ∂Ω. Let `2(Xm)-norm be defined as
(2.3) where Xm := {xi}m

i=1 are the sets of distinct scattered points on ∂Ω getting dense
quasi-uniformly as m→∞. Then, for sufficiently large m, we have

C5‖y‖L2(∂Ω) <
1√
m
‖y‖`2(Xm) < C6‖y‖L2(∂Ω),

where C5 and C6 are positive constants independent of m.

Lemma 3.3. Suppose the assumptions in Lemma 3.2 and Corollary 3.1 hold. For sufficiently
large M and m, the continuous residual norm and the discretized residual norm are equivalent;
i.e.,

C7‖u‖Λ < ‖u‖ΛM < C8‖u‖Λ,

where C7 and C8 are positive constants independent of M and m.
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Proof. Using Lemma 3.2 with y=Lu and Corollary 3.1 with y=u, we obtain

‖u‖2
Λ <

1
C2

3 M
‖Lu‖2

`2(XM) +
1

C2
5m
‖u‖2

`2(Xm).

After simplification, we have

C2
7‖u‖2

Λ <
1
M
‖Lu‖2

`2(XM) +
1
m
‖u‖2

`2(Xm) = ‖u‖2
ΛM ,

where C7 = min{C3, C5}. Using similar arguments, the other inequity can be proved
with C8 = max{C4, C6}. ¤

In our context, the numbers of collocation points M and m in Lemma 3.3 must
depend on the number of RBF centers, N. If this is not the case, ‖u − u∗‖ΛM will
be zero as N increases and becomes equal or larger than M=M + m, whereas the
error with respect to continuous residual norm is non-zero. This justifies the earlier
assumption made that M>N.

3.4 Error estimates

Suppose that f and g are Riemann integrable in Ω and on ∂Ω, respectively. Further
assume that the collocation points are dense enough, with respect to ε, in the sense of
Lemma 3.2 and Corollary 3.1. We are ready to derive the error bounded between the
exact solution u∗ and the approximate solution uN .

From Lemma 3.3, the numerical error with respect to the continue residual norm
can be bounded by that error with respect to the discretized residual norm

‖uN − u∗‖Λ ≤ 1
C7
‖uN − u∗‖ΛM.

By the minimization property of uN , the (unknown) interpolation to the exact solution
su∗,ε ∈ UN ⊂ U gives an upper bound

‖uN − u∗‖ΛM ≤ ‖su∗,ε − u∗‖ΛM .

Using Lemma 3.3 again, the upper bounded can be relaxed to

‖su∗,ε − u∗‖ΛM ≤ C8‖su∗,ε − u∗‖Λ.

Combining the above observations, we obtain

‖uN − u∗‖Λ ≤ C8

C7
‖su∗,ε − u∗‖Λ. (3.11)

Note that M, which is important in making the continuous and discretized residual
norms equivalent, does not appear in the final error bound. Eq. (3.11) also suggests
that the numerical solution of the proposed method converges faster than the inter-
polant, with respect to the Λ-norm, to the exact solution. We conclude the results as
the following Theorem.
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Theorem 3.2. Suppose Ω is regular and bounded on which the RBF interpolation theories
applied. Let u∗ ∈ U be the exact solution of the modified Helmholtz Eq. (2.1) with Riemann
square integrable data. Let XM(ε) and Xm(ε) be the sets of distinct scattered collocation points
in Ω and on ∂Ω, respectively, getting dense quasi-uniformly. Assume that {UN(ε)}ε be a
sequence of subspaces of U for ε→0 such that for all v∈U there is an approximation sv,ε∈UN(ε)
with approximation power as in (3.1). Define the approximate solution uN(ε) in the discretized
RBF trial space UN⊂U ,

uN := arg min
v∈UN

‖v− u∗‖2
ΛM .

Then, for sufficiently large M and m, the convergence and error bound are given by

‖uN − u∗‖H1(Ω) ≤ C9 ε‖u∗‖U ,

where C9 is a positive constant independent of M and m.

Proof. Combining Theorem 3.1 and 3.11, we have

‖uN − u∗‖H1(Ω)

≤ C2

√
‖L(uN − u∗)‖2

L2(Ω) + ‖uN − u∗‖2
L2(∂Ω)

= C2‖uN − u∗‖Λ ≤ C8C2

C7
‖su∗,ε − u∗‖Λ ≤ C8C2

C7
ε‖u∗‖U .

The last inequality can be refined if the employed RBF is specified. In particular, if one
consider (inverse) multiquadric- or Gaussian-RBF, than the proposed least-squares
Kansa’s method would enjoy exponential convergence [14, 15] if the exact solution
u∗ lies in the associated native space. ¤

4 Numerical demonstrations of exponential convergence

In this section, examples in high precision (HP) and double precision (DP) computa-
tions, carried out in Maple c© and Matlab c© respectively, are shown to demonstrate the
proven convergence theory.

Consider the modified Helmholtz Eq. (2.1) in Ω = [0, 1]d with Dirichlet boundary
conditions and exact solution u∗ where d is the dimension of the corresponding test
problem. In all examples, for simplicity, both the modified Helmholtz parameter k = 1
and the shape parameter c = 1 are fixed throughout the section. Using different c will
have no effect to all HP computations; the error profiles are similar in shape. On the
other hand, large c will make the DP results departs from the HP results earlier due to
the problem of ill-conditioning. The set of collocation points X and trial centers Y are
regularly spaced in Ω with grid spacings, respectively, hX and hY. We let hY be some
multiples of hX; namely, hY = whX. Moreover, the multiquadrics kernel

Φc(x, y) =

√
1 +

||x− y||2
c2 ,
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where x, y ∈ Rd and c>0 is the shape parameter, will be used in the expansion of the
unknown solutions

uN(x) = ∑
yi∈Y

λiΦ(x, yi), x ∈ Ω̄.

Accuracy of the approximation is measured by the root-mean-squares

RMS(uN) =

√
∑zi∈Z(uN(zi)− u∗(zi))2

|Z| ,

where Z⊂Ω̄ is a set of points for evaluating error and |Z| denotes the number of points
in Z that is larger than |X|. Note that both the theories and numerical algorithms
can be applied to irregular domains. Moreover, the sets of points are not necessarily
uniform. These settings are imposed only for easy comparison whenever the readers
found necessary.

4.1 Example I (1D-HP)

There is an implicit requirement, in Lemma 3.3, imposed to the number of collocation
points M=|X| such that the continuous and discretized residual norms are equiv-
alent. Our first example aims to investigate the effect of M on the approximation
accuracy. In HP computations, the problem of ill-conditioning can be completely ig-
nored. Moreover, the magnitude of errors is somehow irrelevant in this example; we
are mainly interested in the convergence behaviors.

Let the functions f and g in (2.1) be generated by the exact solution

u∗1(x) = exp(−x2), x ∈ R.

The grid spacing of trial centers hY=(4i)−1 for i=1, 2, . . . , 30. The sets of collocation
points are generated by w=1, . . . , 4. The resultingM× N collocation system is solved
by the Maple c© built-in function LEASTSQRS.

Using the MQ kernel, exponential convergence is expected if the exact solution lies
in the native space† and if the number of collocation points M is sufficiently large.
Fig. 2 shows the error profiles of against different separating distances hY with differ-
ent tested values of w. Immediately, one can see that having more collocation points
(e.g. large w value in the figure) results in better accuracy and faster convergence.
Firstly, accuracy improves with increasing w can be account by the constants C7 and
C8 in Lemma 3.3. As w increases, the discretized residual norm is expected to better
approximate the continuous one; hence, C7↗1 and C8↘1. This suggests that the er-
ror constant C10=C2C8/C9 in Theorem 3.2 will decrease from above to C2 but not to
0 when w increases. In other words, for any fixed set of trial centers, increasing the
number of collocation points will not yield any convergence.

†Note that we do not know for sure if u∗1 is in NΦ or not.
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Figure 2: Example I: RMS errors obtained through high precision (HP) computation for various w as a
function of hY.

Secondly, the tested cases show monotone decreasing errors for all h’s and their er-
rors follow a nice pattern of exponential convergence. The important observation here
is that w = 1 results in sufficient denseness for the need of exponential convergence.

4.2 Example II (2D-HP and DP)

We now consider a two-dimensional problem in high precision (HP) computations
with the exact solution

u∗2(x, y) =
1√

(x− 2)2 + (y− 2)2
, x, y ∈ R.

The grid spacing of trial centers hY=(2i + 2)−1 for i=1, 2, . . . , 9. The sets of collocation
points are generated by w=1, 2. Due to the limitation of computational power, we
cannot decrease hY further.

Fig. 3 shows the error profiles of different separating distances hY against different
tested values of w. The solid lines are the resulting profiles arising from HP compu-
tations in Maple c© . Similar to the 1D cases, we can see that having more collocation
points results in faster convergence rate.

It is not practical, if not impossible, to solve large-scale problems with HP compu-
tations. We solve such problems with DP computations.

The same M× N collocation systems are solved by the Matlab c© built-in func-
tion Backslash. When w=1, M is equal to N and the the collocation system is an
square system. Based on the setting of Backslash, the system will be solved by Gaus-
sian elimination. When w≥2, the collocation systems are overdetermined that will be
solved by the QR algorithm.

Dotted lines in Fig. 3 show the error profiles of different separating distances hY
against different tested values of w. For hY<2.5× 10−1, when the collocation systems
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Figure 3: Example III: RMS errors obtained through high precision (HP) and double precision (DP) com-
putations as a function of hY.

are relatively well-conditioned in DP, the accuracy in double precision computations
coincide with that in HP computations. When hY decreases and the problem of ill-
conditioning greatly affects the accuracy of the (proposed) Kansa’s method. Therefore,
the error blows up when w=1. For w=2, the error is stabilized by the regularization
(QR). This observation is not new, see [3, 23], and it is the result of bad chosen basis.
In the next example, we will circumvent this problem with an adaptive basis selection
algorithm.

4.3 Example III (3D-DP-Greedy)

Considering three-dimensional problems, it are not easy to solve even in DP compu-
tations. (For example, Backslash cannot be used for large-scale problems.) Besides,
when computations are carried out in DP, it is well-known that the problem of ill-
conditioning greatly affects the accuracy of the (proposed) Kansa’s method. There are
different techniques to circumvent such problem; for example, preconditioning tech-
nique [1], domain decomposition [10], null space projection method [9], etc.

Suppose the M× N overdetermined resultant matrix of the proposed method is
ill-conditioned. A trial subspace selection is performed using the (improved) adap-
tive greedy algorithm proposed in [12]. Based on the primal- and dual-residuals, the
algorithm adaptively selects the “best columns” in the original matrix for the best ap-
proximation without making the linear system solver breakdown. Note that selecting
columns in the original matrix is equivalent to selecting trial centers. Moreover, the
adaptive greedy algorithm can be implemented in a matrix-free way–evaluation of the
original matrix is not necessary.

The computational cost for solving the original system using direct method is
O(MN2 + N3). Instead of solving the original system, we solve the an k × N sub-
system as our numerical solution with k≤M selected columns. The computational
cost is then reduced to O(k3 + k2M+ k2N).
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M #Trial RMS errors
125 125 4.3569e-4
343 289 4.0116e-5
729 459 6.6359e-6
1331 594 1.2949e-6
2197 632 1.0319e-6
3375 669 9.0886e-7
4913 639 1.2376e-6

Figure 4: Example III: RMS errors as a function of collocation points’ spacings hY with trial subspace
selection.

We now consider a three-dimensional problems with exact solution

u∗3(x, y, z) = exp(−x2 − y2 − z2).

The grid spacing of trial centers

hY = (2i + 2)−1, for i = 1, 2, . . . , 7.

The sets of collocation points are generated by w=1. Therefore, we begin with hX=hY
as we are sure that the actual number of collocation points will be larger then the
number of trial centers after subspace selection.
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Figure 5: Solving three-dimensional Helmholtz equation with MQ kernel on a square domain: Error plot of
the exact solution u∗3(x, y, z) = exp(−x2 − y2 − z2).
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With the subspace selection process, instead of a clear exponential convergence
behavior for small h, high order algebraic convergence is observed, see Fig. 4. Such
(faster than) high order (order-5.8 in this example) of algebraic convergence all the
way down to h=0.1. Since the trial centers selection process will stop when the ill-
conditioning problem of the collocation system is too serious, the numbers of selected
trial centers, given under #Trial in Fig. 4, do not increase at the same rate as M.

Lastly, in Fig. 5, we show the error function for the case hX=hY=0.1 in which we
can see that the error are rather uniformly distributed.

5 Conclusions

In the theoretical part, if there are smooth kernel-based trial functions and sufficiently
many test functionals, we proved that a modified unsymmetric meshless collocation
method converges at the same rate as interpolation of the solution. In particular, trial
spaces formed by multiquadrics and Gaussian basis would result in exponential con-
vergence if the solution is analytic. In the practical part, we show some numerical
examples with high precision computations, mainly in one dimensional cases and
partially in two dimensional cases to demonstrate the proven results on exponen-
tial convergence. Because of the limitation of computational power and the problem
of ill-conditioning, in two and three dimensional cases, some calculations in double-
precision computations are shown. In the three dimensional cases, we couple the
previously proposed greedy technique to perform a trial subspace (or RBF centers)
selection process and solve the resultant overdetermined system by least square ap-
proximation. In these cases, high order algebraic convergence is observed.
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