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Abstract. We investigate the mathematical properties of a ”truly nonlinear” oscil-
lator differential equation. In particular, using phase-space methods, it is shown
that all solutions are periodic and the fixed-point is a nonlinear center. We calculate
both exact and approximate analytical expressions for the period, where the exact
solution is given in terms of elliptic functions and the method of harmonic balance
is used to calculate the approximate formula.
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1 Introduction

For the past several centuries the study of nonlinear oscillations has centered on sys-
tems for which the elastic force terms have a harmonic oscillator limiting form [1,3,8].
Thus, the corresponding mathematical models have the structure

ẍ + ω2x = ε f (x, ẋ), (1.1)

where ε is a parameter which can be taken to be non-negative; the dot over x indicates
a time derivative, i.e., ẋ ≡ dx/dt and ẍ ≡ d2x/dt2; and f (x, ẋ) is, generally, a nonlinear
function of its arguments. In the limit ε→0, Eq. (1.1) becomes

ẍ + ω2x = 0, (1.2)

which is the equation of motion for the linear harmonic oscillator. If the parame-
ter ε is small, i.e., 0<ε¿1, then a number of techniques [1, 3] can be applied to con-
struct/calculate analytic approximations to the oscillatory solutions of Eq. (1.1). How-
ever, it should be noted that all such standard procedures are based on the assumption
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that the limiting equation Eq. (1.2) can be obtained from Eq. (1.1). From this it follows
that the required oscillatory solutions can be represented by means of generalized
asymptotic expansions in ε [1].

In recent years, a new class of nonlinear oscillatory differential equations have
been studied [6, 7]. These equations do not have a harmonic oscillator limiting form
when the parameter ε goes to zero. Specific examples include the following:

ẍ + x3 = ε(1− x2)ẋ, (1.3a)
ẍ + |x|x = −εẋ, (1.3b)

ẍ + x + x1/3 = −εx2 ẋ. (1.3c)

Observe that Eqs. (1.3a) and (1.3b) have elastic force terms given respectively, by −x3

and −|x|x, and therefore they have no linear terms. However, the elastic force in
Eq. (1.3c) is −x − x1/3, and for small x is dominated by x1/3 rather than x; conse-
quently, for sufficiently small x, its equation of motion can be approximated by

ẍ + x1/3 ≈ 0. (1.4)

Thus, none of these three equations have the proper harmonic oscillator limiting form
required for the application of the standard perturbation methods [1, 3].

All of these examples are specific cases of the general equation

ẍ + g(x) = ε f (x, ẋ), (1.5)

where f (x, ẋ) is a polynomial-type function of x and ẋ, and g(x) the elastic force term,
does not have a linear approximation for x→0, i.e.,

g(x) = O(xα), α 6= 1. (1.6)

We denote such equations “truly nonlinear oscillatory” (TNL) differential equations,
and in several publications have presented techniques to calculate analytic approxi-
mations to any periodic solutions they may possess [6, 7].

The main purpose of this paper is to investigate the general properties of the fol-
lowing TNL differential equation

ẍ + x + x1/3 = 0, (1.7)

with the main effort placed on calculating both exact and approximate expressions for
the period of oscillations. In the next section, we give some preliminaries relating to
the fundamental properties of the solutions to Eq. (1.7). Section 3 gives our calculation
for the exact period, while in Section 4, an approximate formula for the period is de-
rived. Finally, in the last section, we summarize our results and indicate the next steps
in the analysis of Eq. (1.7).
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2 Preliminaries

Eq. (1.7) corresponds to a nonlinear, conservative oscillator [1, 3, 5]. This follows from
the fact that it can be rewritten to the form

ẍ = −dU(x)
dx

, (2.1)

where the potential energy function, U(x), is

U(x) =
(

1
2

)
x2 +

(
3
4

)
x4/3. (2.2)

Eq. (1.7) may also be expressed as a system of two first-order differential equations

dx
dt

= y, (2.3)

dy
dt

= −x− x1/3, (2.4)

where (x, y) are the two-dimensional phase space variables [3]. Inspection of Eqs. (2.3)
and (2.4) shows that the unique fixed-point (or equilibrium solution) is

(x̄, ȳ) = (0, 0), (2.5)

and corresponds to a nonlinear center; see Mickens [5], Section 4.5.8.
The first-order differential equation, from which the trajectories in phase-space,

i.e., y = y(x), can be determined, is

dy
dx

= − x + x1/3

y
. (2.6)

Since this equation is separable, a first integral can be readily found
(

1
2

)
y2 +

(
1
2

)
x2 +

(
3
4

)
x4/3 =

(
1
2

)
A2 +

(
3
4

)
A4/3. (2.7)

To obtain this result, we applied the initial conditions

x(0) = A, y(0) = ẋ(0) = 0. (2.8)

Using standard arguments [3], it can be easily demonstrated that Eq. (2.7) is a closed
curve in the x-y phase space. From this result, it follows that all solutions to our
original differential equation Eq. (1.7) are periodic [3, 5].

Inspection of Eq. (2.6) also shows that it is invariant under the following three
transformations:

T1 : x → −x, y → y, (reflection in the y-axis),
T2 : x → x, y → −y, (reflection in the x-axis),
T3 : x → −x, y → −y, (inversion through the origin).
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It should be indicated that independently of the direct use of the first-integral Eq. (2.7),
these symmetry operations can be used to prove “geometrically” that all solutions to
Eq. (1.7) are periodic [3, 5]. Further, Eq. (1.7) is an odd-parity system [4] with the
consequence that the Fourier representation of its periodic solutions contain only odd
multiples of the (angular) frequency Ω, i.e.,

x(t) =
∞

∑
k=0

ak cos(2k + 1)Ωt, (2.9)

where ak are the Fourier coefficients and where if T is the period, we have

Ω =
2π

T
. (2.10)

In general, since Eq. (1.7) is a nonlinear oscillator, it is expected that the period and
hence the frequency Ω are both functions of the initial conditions, i.e.,

T = T(A), Ω = Ω(A).

3 Exact solution for the period

We now present the calculations for the period of the TNL oscillator modeled by
Eq. (1.7). Since few nonlinear oscillators have known, closed form expressions for
their periods, the results that we obtain will be of broader interest than just to the spe-
cific equation that is being investigated. It clearly demonstrates the complexity of the
various exact functions calculated for general nonlinear oscillators and further shows
the importance of determining valid approximations for both the period and Fourier
representations of the solution [6, 7].

From the first-integral, the following expression can be derived for the period T(A)
( see, e.g., [3])

T(A) = 4
∫ A

0

dx√
(A2 − x2) +

( 3
2

)
(A4/3 − x4/3)

. (3.1)

The linear transformation x=Ay gives

T(A) = 4
∫ 1

0

dy√
(1− y2) + β(1− y4/3)

, (3.2)

where β=3/2A2/3. The additional transformation w=y2/3 further yields the result

T(A)
6

≡ ψ(β) =
∫ 1

0

√
w

(1 + β)− βw2 − w3 dw. (3.3)

Note that the cubic expression in the denominator can be written as

w3 − βw2 − (1 + β) = (w− 1)(w− w1)(w− w2), (3.4)
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where

w1,2 =
(

1
2

) [
−(1 + β)±

√
(β + 1)(β− 3)

]
. (3.5)

Note also that w1,2 are either negative or are complex conjugate with negative real
parts.

The integral given in Eq. (3.3) is a special form of formula 3.16.23 given in Grad-
shteyn and Ryzhik [2]:

∫ a

u

√
w− b

(a− w)(w− c)(w− d)
dx

where for our case
a = 1, u = 0, b = 0, d < c < 0, (3.6)

with c=w1 and d=w2. (More generally, the last inequalities can be taken to be real(c)=
real(d)<0.) Thus, we obtain for ψ(β)

ψ(β) =
2√

(w1 − 1)w2

{
(w2 − 1)Π

(
π

2
,

1
w2

,
w1 − w2

w1w2

)

+w2F
(

π

2
,

w1 − w2

w1w2

) }
, (3.7)

where Π(φ, n, k) is the elliptic integral of the third-kind and F(φ, k) is the elliptic inte-
gral of the first kind [2].

While these elliptic integrals are well known and their many interesting proper-
ties are provided in handbooks, such as Gradshteyn and Ryzhik [2], the absence of
elementary representations essentially eliminates them for routine calculations. Thus,
while we have an exact analytic expression for the period of the TNL oscillator given
by Eq. (1.7), we need something more usable for practicable and/or routine applica-
tions. In the next section, we show that such an approximate formula for the period
as a function of the amplitude A can be derived.

4 Approximate expression for the period

In the previous section, a closed form but very complex formula was derived for the
period of the TNL oscillator of Eq. (1.7). Here, we demonstrate that a much more
useful approximation can be derived using the method of harmonic balance. We will
merely outline the basic methodology of this technique and refer to Mickens [3, 5] for
the full details.

The method of simple harmonic balance (see Mickens [3], Section 4.3), in general
works extremely well for conservative nonlinear oscillator differential equations. It
is a well tested, reliable technique that gives elementary mathematical expressions
which provide analytical approximations for the period as a function of the amplitude
[3, 5]. The basic procedure is as follows:
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i) Assume that a first approximation to the periodic solution is xa(t)=A cos(Ωat),
where the initial conditions xa(0)=A and ẋa(0)=0 are selected; see Eq. (2.8).

ii) Assume that the needed derivatives are given by ẋa(t)=−Ωa A sin(Ωat) and
ẍa(t)=−Ω2

a A cos(Ωat).
iii) Let the differential equation of interest be denoted by

H(x, ẋ, ẍ) = 0, (4.1)

and substitute the results of i) and ii) into it and carry out the necessary trigonometric
expansions to obtain

H1(A, Ωa) cos(Ωat) + H2(A, Ωa) sin(Ωat) + (higher-order harmonics) ' 0. (4.2)

(Note that for a conservative oscillator H2(A, Ωa)≡0.) For the general case, harmonic
balancing gives

H1(A, Ωa) = 0, H2(A, Ωa) = 0. (4.3)

These give two relations which can be solved for A and Ωa. As noted, for a conserva-
tive oscillator, we only have

H1(A, Ωa) = 0, (4.4)

and the solution of this relation will provide Ωa(A), i.e., the frequency will be ex-
pressed as a function of the amplitude [3].

To apply simple harmonic balance to our equation

ẍ + x + x1/3 = 0, (4.5)

we will have to have a knowledge of

x1/3 → [A cos(Ωat)]1/3 .

The required result is

(cos θ)1/3 = a1

[
cos θ − cos 5θ

5
+

cos 5θ

10
− 7 cos 7θ

110
+ · · ·

]
, (4.6)

where

a1 =
Γ

( 1
3

)

21/3
[
Γ

( 2
3

)]2 = 1.159595 . . . . (4.7)

(See Mickens [5], Section 2.7.)
Substituting these results into Eq. (4.5) gives

(−AΩ2
a + A + a1 A1/3) cos(Ωat) + (higher-order harmonics) ' 0, (4.8)

and applying harmonic balance, the expression is

−AΩ2
a + A + a1 A1/3 = 0, (4.9)
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or
Ω2

a(A) = 1 +
a1

A2/3 . (4.10)

Using the period-frequency relation ΩT=2π, we finally obtain the following formula
for an approximation to the period

Ta(A) = 2π

[
A2/3

a1 + A2/3

]1/2

. (4.11)

Inspection of this relation shows that

Ta(A) =

{
2π, for large A;(

2π√
a1

)
A1/3, for small A;

where {
large A ⇒ A À a3/2

1 ,
small A ⇒ A ¿ a3/2

1 .

Note that in these limits, the “dominant” differential equations governing these be-
haviors are {

ẍ + x ' 0, A large;
ẍ + x1/3 ' 0, A small.

Clearly, Eq. (4.11) is exact for both large and small values of the amplitude, and pro-
vides th proper extrapolation for all intermediate values of A.

5 Summary

We have achieved the purpose of this paper, namely, the determination of both exact
and approximate expressions for the period of a TNL oscillator modeled by Eqs. (1.7)
or (4.5). The exact expression for T(A) is clearly complex in mathematical structure,
involving both first- and third-kind elliptic integrals, and would not in general be
very useful for application in practical computations. However, the approximate ex-
pression is rather elementary in form and can be easily interpreted in terms of small
and large amplitude oscillations for the original nonlinear differential equation. This
formula for T(A) is a further demonstration of the power of the harmonic balance
method when used to calculate approximations to the solutions of very nonlinear os-
cillators.

A future problem is to consider the generalization of Eq. (1.7) to

ẍ + x + x1/3 = ε(1− x2)ẋ, (5.1)

which is an extension of the standard van der Pol oscillator [3, 4]

ẍ + x = ε(1− x2)ẋ. (5.2)
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Preliminary work gives reasons to believe that Eq. (5.1) has a unique, stable limit-
cycle [7].

Finally, an additional research problem might be the way the analytic findings of
this paper relate to the discrete properties of the nonstandard finite difference schemes
considered in the recent paper of Ehrhardt and Mickens [9].
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