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Abstract

This paper is concerned with the construction of accurate and efficient computational

algorithms for the numerical approximation of sensitivities with respect to a parameter

dependent interface location. Motivated by sensitivity analysis with respect to piezoelectric

actuator placement on an Euler-Bernoulli beam, this work illustrates the key concepts

related to sensitivity equation formulation for interface problems where the parameter

of interest determines the location of the interface. A fourth order model problem is

considered, and a homogenization procedure for sensitivity computation is constructed

using standard finite element methods. Numerical results show that proper formulation

and approximation of the sensitivity interface conditions is critical to obtaining convergent

numerical sensitivity approximations. A second order elliptic interface model problem is

also mentioned, and the homogenization procedure is outlined briefly for this model.

Mathematics subject classification: 65N06, 65B99.
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1. Introduction

Scientists often want to measure how well a mathematical model represents the fundamental

behaviors of a physical system, and they are often charged with the task of quantifying some

measure of how the uncertainty in the model parameters proliferates into uncertainty in the

results of the model simulations. As pointed out in [1], sensitivity analysis and uncertainty anal-

ysis combine to produce a systematic approach to developing a comprehensive understanding of

a mathematical model, the data it produces, and the way that the data is used to influence the

design of many engineering systems. Accurate sensitivity calculations play an important role in

this process. The term Sensitivity Equation Methods (SEMs) refers to a large class of techniques

that attempt to derive, analyze, and solve equations whose solutions are functions referred to as

sensitivities. Sensitivities are derivatives which describe how small changes in design parameters

affect the state variables of a mathematical model. Continuous Sensitivity Equation Methods

(CSEMs) are one such technique in this class of methods. CSEMs have been used to compute

gradients and greatly improve design cycle times in optimization-based design, see [2–4]. In

* Received May 19, 2009 / Revised version received March 11, 2010 / Accepted April 6, 2010 /

Published online September 20, 2010 /



Computational Issues in Sensitivity Analysis for 1D Interface Problems 109

addition, they can be used to construct fast solvers for computational fluid dynamics [5] and

are essential to quantifying uncertainties in parameter dependent systems [1, 6].

The CSEM approach requires one to first derive the appropriate sensitivity equation, then

to show the resulting equation is well posed in an appropriate function space, and finally to

develop good numerical schemes for approximating the sensitivities. In certain situations, such

as when geometry or shape parameters are considered, the sensitivity equations may have very

weak solutions (e.g., only L2 in space) and require that one develop numerical algorithms that

capture these weak solutions, see [7] for an example of this process.

A valid question to ask is whether the development of special numerical methods for approx-

imating the sensitivities is necessary; can simple, “natural,” computational methods be used to

obtain reasonable sensitivity approximations? Furthermore, is it also essential to analyze the

continuous sensitivity equation to show that it is a properly posed mathematical problem? In

this work, we show that, in general, the answer to both of these questions is yes. Specifically,

we consider a fourth order elliptic problem where the parameter of interest governs the location

of a coefficient discontinuity. We summarize our results as follows:

• We give a proper formulation of the continuous sensitivity equation and use this formu-

lation to construct a convergent numerical scheme for approximating the sensitivity.

• We consider a simple, “natural,” computational method for approximating the sensitivity

and show that it completely fails to yield convergent sensitivity approximations.

• We show that the reason for the failure of this methods is that it fails to recognize a

certain property of the sensitivity; furthermore, this property can only be found through

a preliminary analysis of the problem.

The main goal of this paper is to illustrate that when applying sensitivity analysis techniques

to partial differential equations with discontinuous coefficients, or interface problems as they

are sometimes called, it is necessary to both analyze the continuous sensitivity equation and to

develop a special numerical method to accurately approximate the sensitivity.

The fourth order model problem we consider in this work shares many similarities with

the Euler-Bernoulli beam model considered in [8]. Specifically, the model problem contains

discontinuous coefficients where the location of the discontinuity serves as the parameter of

interest for the sensitivity analysis. Furthermore, the derivation of the sensitivity equation for

this simple model exhibits similar issues to that of the original Euler-Bernoulli beam model.

However, one can explicitly write down the solution to the model equation and derive an

explicit form of the sensitivity variable. This allows us to identify some of the key ideas that

are relevant when applying sensitivity analysis to interface problems. We note that our results

outlined above for the model problem most certainly apply to the corresponding sensitivity

approximations for the more complicated Euler-Bernoulli beam model with patch actuators.

We begin with notation and an outline of the motivating beam model in Section 2. The

simplified model problem is presented in Section 3 along with the exact solution of the problem

and the corresponding sensitivity. Section 3.1 gives a brief description of the standard finite

element formulation for constructing state variable approximations. The continuous sensitivity

equation (CSE) is studied in Section 4. A homogenization procedure is used to prove that

the CSE is well posed, and a corresponding numerical technique is used to obtain convergent

numerical sensitivity approximations. Section 5 uses one type of Discretize-then-Differentiate

(DD) methodology for deriving a sensitivity equation. Numerical experiments are shown to yield
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sensitivity approximations which fail to converge to the true sensitivity for the model problem.

In Section 6, we use a formal CSE to explain the failure of the DD sensitivity approximations.

Section 7 briefly describes the application of the same type of homogenization procedure to a

second order elliptic interface model and its corresponding sensitivity equation.

1.1. Notation

We begin by briefly defining the function spaces and mathematical notation related to the

course of this exposition. Let Hm(Ω) denote the usual Sobolev space of “functions” whose

partial derivatives, up to order m, are square integrable. Let L2 = L2(Ω) with inner product

defined by

(u, v) =

∫

Ω

u(x)v(x)dx

for all u(·), v(·) ∈ L2. For the content of this work, Ω = (0, ℓ) where ℓ ∈ lR and ℓ > 0. This

paper makes use of the typical Sobolev spaces for fourth-order equations with the exception of

some particular boundary conditions. We use the function space denoted by V = H2
L(0, ℓ) =

{ v ∈ H2(0, ℓ) : v(0) = 0, vx(0) = 0 }.

If a function φ : lR × A → lR depends on a spatial variable x and a parameter α, then

differentiation with respect to the spatial variable (in the Fréchet sense) is denoted by φx(x;α),

and differentiation (also in the Fréchet sense) with respect to the parameter α will be denoted

φα(x;α). In the situation where a function has an associated index, the notation φi,xx(x) is

used to denote ∂2/∂x2φi(x). As in the previous sentence, the explicit dependence of φ on the

parameter α may be suppressed at times in order to simplify the notation.

We also remind the reader of Leibniz’ rule for differentiating integral terms.

d

dα

∫ g(α)

f(α)

h(x;α) dx =

∫ g(α)

f(α)

hα(x;α) dx + h(g(α);α)gα(α) − h(f(α);α)fα(α), (1.1)

where it is assumed that each of the functions f , g, and h are differentiable with respect to α.

2. Motivating Problem

The motivation for the model problem considered in this paper is rooted in an investigation of

sensitivity approximations for an Euler-Bernoulli beam model with a pair of piezoelectric patch

actuators placed on the beam according to a location parameter, see [8]. The voltage input

is adjusted to only consider pure bending motion. The partial differential equation contains

discontinuous (spatially) material coefficients where the discontinuities correspond to the spatial

location of the patch actuators. It is important to note that the discontinuous coefficients in

this model are explicitly dependent on the location parameter for the patch actuators, and the

mathematical formulation of the partial differential equation can be thought of as an interface

problem where the location of the interface is parameter dependent. Moreover, the location

parameter is the parameter of interest for the sensitivity analysis.

We begin by presenting the Euler-Bernoulli beam model for the situation when a pair of

piezoceramic patches are placed on either side of the beam at the same spatial location, see

Fig. 2.1.

The beam has length ℓ, height b, and thickness h. The length of the patch is given by L, and

the patch location is given by the interval [α, α + L]. We consider the case where the patches
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Fig. 2.1. Diagram of beam with a pair of piezoelectric patches of length L located on either side of the

beam on the interval x ∈ [α, α+ L].

are excited out-of-phase which results in pure bending of the beam. We account for damping

in the beam using both Kelvin-Voigt (material) and linear viscous (air) damping. The model

presented below is derived and studied extensively in [9–11].

Let w(t, x) denote the deflection of the beam at time t and position x. For small deflections,

the motion of the cantilevered beam is governed by the partial differential equation

ρAwtt + dlvwt + (dkvIwtxx)xx + (EIwxx)xx = gxx(t, x), (2.1)

w(t, 0) = wx(t, 0) = 0, (2.2)

EIwxx(t, ℓ) + dkvIwtxx(t, ℓ) = 0, (2.3)

(EIwxx)x(t, ℓ) + (dkvIwtxx)x(t, ℓ) = 0, (2.4)

with the initial deflection and initial velocity denoted by

w(0, x) = w0(x), wt(0, x) = w1(x).

The following coefficients represent material properties of the beam at a certain spatial location

x: ρ is the mass density, A is the cross-sectional area, I is the moment of inertia, E is Young’s

modulus, and dlv and dkv are the coefficients of air and Kelvin-Voigt damping, respectively.

The presence of the patches results in discontinuities in most of these coefficients, and this

can be expressed by

ρA(x) = ρA1 + ρA2[H1(x) −H2(x)],

dkvI(x) = dkvI1 + dkvI2[H1(x)−H2(x)],

EI(x) = EI1 + EI2[H1(x)−H2(x)],

where H1 and H2 denote the Heaviside functions with jump discontinuities at the left and right

ends of the patch, respectively; i.e.,

H1(x) =

{

0, 0 < x < α,

1, α < x < ℓ,
H2(x) =

{

0, 0 < x < α+ L,

1, α+ L < x < ℓ.

The constants ρA1, EI1, and dkvI1 correspond to the density, flexural rigidity, and Kelvin-Voigt

damping properties of the beam, while the constants ρA2, EI2, and dkvI2 correspond to those

of the patch, respectively. It is natural to assume that the damping due to air is not affected

by the patches; therefore, the air damping coefficient, dlv, is assumed to be constant over the

length of the beam.
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The patches influence the system by exerting a moment force on the section of the beam

where they are located. The term gxx(t, x) accounts for this moment, and the spatial influence

is described by a difference of Heaviside functions of the form

gxx(t, x) = κ[H1(x)−H2(x)]xxu(t).

The constant κ is a parameter describing the patch properties, and u(t) is the voltage applied to

the patch at time t. For a more thorough treatment of the model development and the specific

forms of the beam and patch parameters, the reader is referred to [11].

One should observe that in (2.1), the damping (dkvIwtxx)xx, stiffness (EIwxx)xx, and con-

trol term, gxx(t, x), all contain spatial derivatives of the Heaviside functions; consequently, the

PDE is naturally interpreted using the variational (or weak) formulation. The weak form is also

convenient for the numerical simulations which use the finite element method for approximation

in space. After multiplying (2.1) by a function φ and integrating twice by parts, the variational

formulation of the beam model (2.1)-(2.4) is given by

∫ ℓ

0

ρA(x;α)wtt(t, x)φ(x) dx +

∫ ℓ

0

dlvwt(t, x)φ(x) dx +

∫ ℓ

0

dkvI(x;α)wtxx(t, x)φxx(x) dx

+

∫ ℓ

0

EI(x;α)wxx(t, x)φxx(x) dx =

∫ ℓ

0

g(t, x;α)φxx(x) dx, ∀φ ∈ H2
L(0, ℓ), (2.5)

where

g(t, x;α) = κ[H1(x) −H2(x)]u(t).

In [8], sensitivity approximations are numerically computed by deriving a variational sen-

sitivity equation. This equation is obtained by implicitly differentiating the variational form

of the state equation with respect to the interface parameter. Numerical calculations for the

sensitivity approximations are shown but not verified through any other type of comparison.

Questions concerning the validity of those sensitivity approximations serve to motivate the

discussion in this paper.

In this work, we consider a related problem that clearly demonstrates the issues in computing

sensitivities with respect to interface locations. To simplify the problem, we drop the time

dependence and only consider one interface. Specifically, the variational form of the model takes

the form of the last two terms in Eq. (2.5), and the piecewise constant coefficient functions EI

and g each have one discontinuity.

3. Model Problem: A Fourth-Order Interface Equation

We begin with the strong form of the model problem. Let α ∈ (0, ℓ) be a real-valued

parameter. Consider the following interface problem: find w(x) satisfying
(

EI(x;α)wxx(x)
)

xx
= 0, (3.1a)

w(0) = 0, wx(0) = 0, (3.1b)

EI2wxx(ℓ) = g2, EI2wxxx(ℓ) = 0, (3.1c)

w(α−) = w(α+), (3.1d)

wx(α
−) = wx(α

+), (3.1e)

EI1wxx(α
−)− EI2wxx(α

+) = g1 − g2, (3.1f)

EI1wxxx(α
−)− EI2wxxx(α

+) = 0. (3.1g)
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This problem contains a differential equation (3.1a), boundary conditions (3.1b)-(3.1c), and

conditions at the interface x = α (3.1d)-(3.1g). The coefficient function EI(x;α) is piecewise

constant and is given by

EI(x;α) =

{

EI1, 0 < x < α,

EI2, α < x < ℓ,
(3.2)

where EI1 and EI2 are positive real constants. The constants g1 and g2 appearing in the

boundary conditions and interface conditions at x = α are real-valued.

Remark 3.1. This strong form contains interface conditions in (3.1d)-(3.1g) that characterize

the smoothness of the state variable at x = α. These conditions are often not included in

the statement of a PDE of this type (note that we did not include them in the beam model

above). However, they are stated explicitly here because we show below that they are useful

for determining the regularity of the sensitivity PDE.

Multiplying the differential equation by a test function φ ∈ V = H2
L(0, ℓ), integrating over

the intervals (0, α) and (α, ℓ), and integrating by parts twice shows that the solution w must

satisfy the following variational problem: find w ∈ V such that

∫ ℓ

0

EI(x;α)wxx(x)φxx(x) dx =

∫ ℓ

0

g(x;α)φxx(x) dx (3.3)

for all φ ∈ V , where g(x;α) is the piecewise constant function

g(x;α) =

{

g1, 0 < x < α,

g2, α < x < ℓ.
(3.4)

Since EI1, EI2 > 0 the variational problem in (3.3) has a unique solution by the Lax-Milgram

Theorem (see, e.g., [12]). Moreover, it can be checked that the solution to (3.3) is given by

w(x;α) =

{

c1x
2/2, 0 < x < α,

c2x
2/2 + α(c1 − c2)x− α2(c1 − c2)/2, α < x < ℓ,

(3.5)

where ci = gi/EIi for i = 1, 2.

The parameter of interest for this study is α, the parameter determining the interface

location in the coefficients of the state equation, and we denote the dependence of the state

variable on α by w(x) = w(x;α). The sensitivity of the state with respect to the interface

location is defined by

s(x;α) =
∂w

∂α
(x;α).

Differentiating the exact solution, w(x;α), given in (3.5), with respect to α shows that the

sensitivity is given by

s(x;α) =

{

0, 0 < x < α,

(c1 − c2)x− α(c1 − c2), α < x < ℓ.
(3.6)

It is important to note that the solution of the model problem w is in V = H2
L(0, ℓ), while

the sensitivity s is not in V . Specifically, the sensitivity s(x;α) is continuous and differentiable

in x with derivative

sx(x;α) =

{

0, 0 < x < α,

c1 − c2, α < x < ℓ.
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If c1 6= c2, then sx is not differentiable with respect to x and therefore s is not in V . There-

fore, the sensitivity does not have the same spatial smoothness as the state variable. In more

complicated problems, the exact state and sensitivity variables will not be known and it might

not be clear whether the sensitivity shares the same regularity as the state. In Section 4 below,

we demonstrate that the proper formulation of the continuous sensitivity equation will indi-

cate the smoothness of the sensitivity. This information can be used to guide the numerical

approximation of the sensitivity.

Although the main goal of this work is to develop efficient and convergent computational

schemes for sensitivity approximations, convergent state variable approximations are required

for that process. The next section contains a brief outline of the discretization for the state

equation.

3.1. Finite element methods for the state variable approximations

The finite element method is used for the discretization of the variational form of the state

equation in (3.3). We consider finite element bases with first cubic B-spline basis functions

(see [13,14]) and then Hermite cubic basis functions (see [12,15]). Both types of basis functions

belong to H2(0, ℓ); however, the second derivatives of the cubic B-splines are continuous, while

the second derivatives of the Hermite cubics are only piecewise continuous with discontinuities

at the finite element nodes. As shown in later sections, this has implications for the sensitivity

approximations produced using each of the discretization schemes.

Let φj represent the jth finite element basis function and define V N = span{φj}
N
j=1 to

be the corresponding finite dimensional subset of V . The finite element method constructs

an approximate solution wN ∈ V N of the model problem (3.3). Since wN ∈ V N , it can be

represented as the linear combination

wN (x) =

N
∑

j=1

ajφj(x). (3.7)

Substituting this expression into the variational equation (3.3) and taking φ = φi for i =

1, · · · , N yields the approximating linear system

KNaN = fN , (3.8)

where aN = [a1, · · · , aN ]T ,

KN
ij (α) =

∫ ℓ

0

EI(x;α)φj,xx(x)φi,xx(x) dx, and fN
i (α) =

∫ ℓ

0

g(x;α)φi,xx(x) dx. (3.9)

We briefly give a sample of the numerical results for the finite element approximations

defined in (3.7)-(3.9). In order to maintain continuity in the exposition, we have chosen a

particular set of parameter values that are used for the state variable as well as the sensitivity

variable computations shown in this paper. Those parameter values are given in Table 3.1.

Recall that the true expression for the state variable given in (3.5) depends on ci = gi/EIi for

i = 1, 2.

Fig. 3.1 shows the graph of the true state variable (3.5) and its finite element approximations

using 33 equally spaced nodes and the parameter value α = 0.5. Finite element approximations

using cubic B-spline (cbs) basis functions as well as Hermite cubic (hc) basis functions are

shown.
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Table 3.1: Parameter values.

EI1 EI2 g1 g2 c1 c2

0.2 0.1 1 −2 5 −20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

w
N

(x), hc

w(x), exact

w
N

(x), cbs

Fig. 3.1. The exact solution (3.5) of the model equation (3.3) for α = 0.5 compared with cubic B-spline

(cbs) and Hermite cubic (hc) finite element approximations using 33 equally spaced nodes.

Note that the choice of 33 nodes in the finite element mesh is used to place a node at the

interface location, x = α = 0.5, which is the point of discontinuity for the coefficient functions

EI and g in the model equation (3.3). When numerical simulations are conducted using the

algorithm outlined above, each of these finite element approximations converge to the true

solution as N → ∞ clearly, and we note that a more coarse mesh also exhibited very good

agreement between the computations and the true state variable.

Remark 3.2. We have taken a simple approach to approximating the solution of the model

problem. For more complicated problems, special interface methods may be necessary to ob-

tain accurate state approximations. We comment further on numerical methods for interface

problems and sensitivity equations for higher dimensional problems in the conclusion.

Now we move to a discussion of the sensitivity computations.

4. The Continuous Sensitivity Equation

In this section, we show that one can accurately approximate the sensitivity by performing

an initial analysis of the smoothness of the parameter dependence in the problem. For interface

problems of the type considered in this paper, the state equation does not vary smoothly with

respect to the parameter α because it is the parameter that governs the location of a disconti-

nuity in the coefficients of the equation. In order to accurately approximate the sensitivity, one

must account for this lack of smoothness. In particular, the interface conditions satisfied by

the state variable can be used to derive the appropriate sensitivity interface conditions; these

in turn allow us to properly pose the continuous sensitivity equation.
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We formally differentiate (with respect to α) the state equation, the boundary conditions,

and the interface conditions in Eq. (3.1) to arrive at a strong interface problem for the sensitivity

s(x;α) = (d/dα)w(x;α):

(EI(x;α)sxx(x;α))xx = 0, (4.1a)

s(0) = 0, EI2sxx(ℓ) = 0, (4.1b)

sx(0) = 0, EI2sxxx(ℓ) = 0, (4.1c)

s(α−)− s(α+) = 0, (4.1d)

sx(α
−)− sx(α

+) = d, (4.1e)

EI1sxx(α
−)− EI2sxx(α

+) = 0, (4.1f)

EI1sxxx(α
−)− EI2sxxx(α

+) = 0. (4.1g)

Eq. (4.1d) is a homogeneous interface condition for the sensitivity, and it is obtained by dif-

ferentiating equation (3.1d) with respect to α, applying the total derivative to the interface

condition, and using the continuity of the interface condition for wx given in (3.1e) to simplify

the expression. Eq. (4.1e) is a nonhomogeneous interface condition

sx(α
−)− sx(α

+) = d,

where

d = wxx(α
+)− wxx(α

−)

is the jump in the second derivative of the state. This is obtained by differentiating equation

(3.1e) with respect to α, and again applying the total derivative when differentiating this

interface condition.

Recall from Section 3 that the exact state and sensitivity do not possess the same degree

of smoothness; the state w is in V = H2
L(0, ℓ), while the sensitivity is not in V . This latter

property can be seen directly from the above sensitivity equation. To verify this, note that the

nonhomogeneous interface condition

sx(α
−)− sx(α

+) = d = c2 − c1 = g2/EI2 − g1/EI1 (4.2)

guarantees that s has a jump in its first derivative as long as c1 6= c2 which implies that s /∈ V .

For this problem, we achieve two goals. The first is to derive a weak formulation of a

sensitivity equation that is well-posed in the original function space V (so that we can make

use of the same finite element basis used to approximate the state variable), and the second is

to show that the sensitivity variable of interest is indeed the unique solution of that sensitivity

equation. The details are given in the following section.

4.1. Homogenization procedure

We use the following homogenization technique in order to develop a continuous sensitivity

equation which is well-posed; a change of variables is required, and the resulting sensitivity

equation can be shown to have a unique solution with the standard Lax-Milgram theorem. Once

that variational equation is solved, one can recover the original sensitivity variable directly.

We establish the well posedness of the interface sensitivity equation by changing variables

to homogenize the first derivative interface condition (4.2). This technique is used in [16]
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and [17, Section 8.6] to numerically approximate solutions of elliptic interface problems with

nonhomogeneous jump conditions. Let h be a function that satisfies the interface conditions

h(α−)− h(α+) = 0, hx(α
−)− hx(α

+) = d,

and define the function p by s(x) = p(x) + h(x). Examining the interface conditions in the

sensitivity equation (4.1d)-(4.1e), one can check that p(x) satisfies the homogeneous interface

conditions

p(α−)− p(α+) = 0, px(α
−)− px(α

+) = 0.

Once the function h is chosen and this change of variables is defined, one can derive a variational

equation with homogeneous interface conditions whose unique solution is p. This homogeniza-

tion procedure is made precise in the following theorem.

Theorem 4.1. Let d be any real number. There exists a unique solution s ∈ L2(0, ℓ) of the

continuous sensitivity equation (4.1) in the following sense. Choose a function h defined on the

interval (0, ℓ) satisfying the following:

1. h is H2 away from the interface, i.e., h(·)|(0,α) ∈ H2(0, α) and h(·)|(α,ℓ) ∈ H2(α, ℓ);

2. h satisfies the essential boundary conditions h(0) = 0, hx(0) = 0;

3. h meets the interface conditions

h(α−)− h(α+) = 0, hx(α
−)− hx(α

+) = d. (4.3)

Then p = s−h ∈ V = H2
L(0, ℓ) is uniquely determined as the solution of the following variational

equation: find p ∈ V such that

∫ ℓ

0

EIpxxφxx dx = −

∫ α

0

EI1hxxφxx dx−

∫ ℓ

α

EI2hxxφxx dx, (4.4)

for all φ ∈ V . The solution s(x;α) is independent of the function h; the choice of h simply

governs the resulting function p ∈ H2
L(0, ℓ).

Proof. Let h be a function as described in the theorem. Multiplying the strong interface

problem (4.1a) by a test function φ ∈ V , integrating over the intervals (0, α) and (α, ℓ), sub-

stituting s = p + h, and integrating by parts gives the variational problem (4.4) for p. The

Lax-Milgram Theorem shows that this equation has a unique solution p in V .

It remains to prove that using two different functions h results in the same sensitivity. Let

h1 and h2 be two homogenizing functions as defined above and let s1 = p1+h1 and s2 = p2+h2,

where each pi is the unique solution of the variational equation (4.4) with h = hi. Since each

hi satisfies the nonhomogeneous interface conditions (4.3), we have

h1 − h2 ∈ V = H2
L(0, ℓ).

Thus, subtracting the variational equations (4.4) for p1 and p2 shows

∫ ℓ

0

EI[p1 + h1 − p2 − h2]xxφxx dx = 0

for all φ ∈ V . Since h1 − h2 ∈ V , p1 + h1 − p2 − h2 is also in V . The integral operator as a

mapping from V to V ′ (the dual space of V ) is invertible; therefore, we have

p1 + h1 − p2 − h2 = 0, or s1 = s2.

Thus, s is uniquely determined and the sensitivity equation (4.1) is well posed. �
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Remark 4.1. There are many choices for a “homogenizing” function h described in the theo-

rem, and one such function is given by

h(x) =

{

dα−1x2, 0 < x < α,

d x, α < x < ℓ.
(4.5)

For this particular choice of h, it can be checked that the unique solution of the homogenized

variational problem (4.4) is given by

p(x) =

{

−dα−1x2, 0 < x < α,

−2 d x+ dα, α < x < ℓ.

Since d = wxx(α
+)− wxx(α

−) = c2 − c1, we recover the true sensitivity (3.6):

s(x) = p(x) + h(x) =

{

0, 0 < x < α,

(c1 − c2)x− α(c1 − c2), α < x < ℓ.

The homogenization procedure given here is one approach to deriving a well-posed sensitivity

equation. Alternatively, one may follow the techniques applied in [7] and use a very weak

formulation of the continuous sensitivity equation (4.1) to directly show the well posedness of

the problem. Regardless of the technique, it is important to recognize that the key piece of

information required is the nature of the interface conditions that hold for the state variable.

Once those are known, then the corresponding interface conditions satisfied by the sensitivity

variable can be derived. It is the interface condition information which allows us to properly

pose a variational equation from which the true sensitivity variable can be recovered. The

homogenization procedure used here is also a convenient formulation for numerical computation

of the sensitivity s(x;α), and an algorithm for the numerical calculation is discussed briefly in

the following section.

4.2. Numerical results

The preceding analysis of the sensitivity equation can be used to guide the choice of a

numerical algorithm to accurately approximate the sensitivity. Since the homogenization tech-

nique led to the well posedness of the sensitivity equation, we follow that procedure for our

approximations.

Algorithm: Homogenization Procedure to Approximate the Interface Sensitivity

1. Obtain a Hermite cubic finite element approximation wN (x) of the state as described

in Section 3.1.

2. Approximate the jump d = wxx(α
+)−wxx(α

−) by dN = wN
xx(α

+)−wN
xx(α

−). That is,

one uses the second derivative of the finite element approximation of w to approximate

the second derivative information needed for the interface jump condition.

3. Replace d in (4.5) with the computed jump dN to form an approximate homogenization

function hN (x).
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4. Obtain a finite element approximation pN (x) to the solution p(x) of the “homogenized”

variational problem (4.4) with hN (x) in place of h(x).

5. Form the approximate sensitivity sN (x) = pN(x) + hN (x).

In order to validate the algorithm given above, we present a numerical result using the parameter

set given in Table 3.1. Fig. 4.1 shows that the pointwise sensitivity error for the homogenization

technique is on the order of 10−13 with only N = 7 equally spaced finite element nodes. Hence,

the scheme yields very accurate sensitivity approximations even for a coarse grid size. Similar

results are obtained for other parameter values.
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Fig. 4.1. The approximate pointwise sensitivity error for the homogenization approach using Hermite

cubic finite elements with N = 7 equally spaced nodes and α = 0.5. Note the scale on the vertical axis.

The cubic B-splines should not be used to approximate the state variable if one is using

this procedure for sensitivity calculations. Since these basis functions have continuous second

derivatives, the computed jump dN = wN
xx(α

+)− wN
xx(α

−) in step 2 of this process will always

be zero and the homogenization method will fail.

Furthermore, recall that the second derivative of the state variable is discontinuous at x = α

as long as c1 6= c2, see Eq. (3.5). In particular,

wxx(x;α) =

{

c1, 0 < x < α,

c2, α < x < ℓ.
(4.6)

The Hermite cubics capture these one-sided limits in the second derivative very accurately while

the cubic B-splines do not. Recalling the computations for the state variable given in Section

3.1 and examining those calculations in greater detail, Fig. 4.2(a) shows the graph of the true

state variable (3.5) and its cubic B-spline and Hermite cubic finite element approximations

using 33 equally spaced nodes and the parameter value α = 0.5. Also shown in Fig. 4.2(b) and
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Fig. 4.2. The exact solution (3.5) of the model equation (3.3) for α = 0.5 compared with cubic B-spline

(cbs) and Hermite cubic (hc) finite element approximations using 33 equally spaced nodes. Figure (a)

compares the solution, and figures (b) and (c) compare the first and second derivatives, respectively.
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Fig. 4.3. Pointwise error in the cubic B-spline finite element approximation of the second derivative of

the exact solution (|wxx(x; 0.5)−wN
xx(x; 0.5)|) for (a) N = 33, (b) N = 129, and (c) N = 1025 equally

spaced finite element nodes. The error is essentially zero for all values of x not shown in the figures.

Fig. 4.2(c) are the first and second derivatives, wx(x;α) and wxx(x;α), and their respective

finite element approximations using 33 equally spaced nodes and α = 0.5.

Fig. 4.2(a) shows that regardless of the choice of basis elements (cubic B-spline or Hermite

cubic), each numerical approximation, wN (x;α), converges to the true solution, w(x;α), as

N → ∞. Now notice that the discontinuity in the second derivative, wxx(x; 0.5), is large

in magnitude compared to the size of the solution. As to be expected, the cubic B-spline

finite element derivative approximation, wN
xx(x; 0.5), fails to accurately approximate the second

derivative, wxx(x; 0.5), at the point of discontinuity since the second derivatives of the cubic

B-splines are continuous. The typical Gibbs phenomena can be seen in Fig. 4.2(c). This can

be seen more clearly if one examines the pointwise error. Fig. 4.3 shows a thin error “spike”

remaining at the point of discontinuity even as the mesh is refined significantly. In contrast,

the second derivatives of the Hermite cubic basis functions are discontinuous across adjacent



Computational Issues in Sensitivity Analysis for 1D Interface Problems 121

elements of the mesh, and this property allows one to capture that discontinuity in wxx at

x = α = 0.5 very accurately. That is, wN
xx(α

+) → wxx(α
+) and wN

xx(α
−) → wxx(α

−) as

N → ∞, and the magnitude of the jump discontinuity, d, in step 2 of the numerical algorithm

can be very accurately recovered by examining the jump discontinuity in wN
xx at x = α = 0.5

using the Hermite cubic elements.

Remark 4.2. In step 4 of the above algorithm, the finite element basis and corresponding

system matrix from the state variable calculation can be re-used for the computation of pN .

One can define

pN (x) =

N
∑

j=1

bjφj(x), (4.7)

and the linear system corresponding to (4.4) is given by

KNbN = zN , (4.8)

where bN = [b1, · · · , bN ]T , the matrix KN is given in (3.9), and the load vector on the right

side of the equation is defined by

zNi = −

∫ α

0

EI1h
N
xx(x;α)φi,xx(x) dx −

∫ ℓ

α

EI2h
N
xx(x;α)φi,xx(x) dx, (4.9)

for i = 1, · · · , N . Only the load vector z must be constructed separately from the computations

involved in setting up the linear system for the original model equation. This allows efficient

computation of the sensitivity approximation. Although computational efficiency is not an

important issue for the model problem considered here, these same ideas translate to large

scale systems where computational efficiency is a requirement.

For more complex interface problems, approximating the solution of the continuous sensi-

tivity equation (a PDE with nonhomogeneous interface conditions) may be a challenging task.

It is natural to attempt simpler methods to compute the sensitivity. Below, we give an example

of a “natural” method to approximate an interface sensitivity, and show that it fails to produce

convergent approximations to the sensitivity with respect to the interface location for the model

problem.

5. A Discretize-then-Differentiate Methodology for Sensitivity

Computation

Applying one standardDiscretize-then-Differentiate (DD) scheme, we implicitly differentiate

the discretized state equations in (4.8) to obtain a linear finite dimensional equation for the

approximate sensitivity. This approach assumes that it is reasonable and efficient to reuse the

same finite dimensional subspace, V N , to construct both a state variable approximation as well

as a sensitivity approximation. This is a practical assumption to make if the practitioner is

solving a large-scale problem where the underlying state equation represents a system of PDEs

for which significant time and effort has been devoted to its discretization, or where one is using

an existing legacy code.

We proceed as follows. Recall that the original state variable, w = w(x;α), depends ex-

plicitly on α. In the finite element approximations of the state, however, the basis functions

were not constructed to depend on the parameter α. This is reasonable since, as was shown in
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Section 3.1, the state can be accurately approximated without the basis functions depending

on the parameter α. Therefore, it is natural to assume that the parameter dependence of the

finite element approximation to the state is reflected in the sense that Eq. (3.7) is understood

as

wN (x;α) =

N
∑

j=1

aj(α)φj(x). (5.1)

Hence, we assume that the finite element basis functions are independent of α and that it is the

coefficients, aj = aj(α), in the finite element discretization (5.1) which are influenced by small

changes in the parameter value. This results in a sensitivity of the discretized state variable

having the following form

sN (x;α) =
∂

∂α
wN (x;α) =

N
∑

j=1

[

∂

∂α
aj(α)

]

φj(x) =

N
∑

j=1

bj(α)φj(x), (5.2)

where bj = ∂/∂α aj, for j = 1, 2, · · · , N .

Recall that the coefficients aj(α) in the state approximation (5.1) satisfy the linear system

(4.8)

KN(α)aN (α) = fN (α),

where KN and fN are defined in (3.9) and we now emphasize the dependence of the terms on

α. We implicitly differentiate through this equation with respect to α to derive an equation for

bN = aNα . The entries of KN and fN are integrals that depend on the parameter α. These

integrals are partitioned into integrals over (0, α) and (α, ℓ) and Leibniz’ rule in (1.1) is applied

to differentiate through these terms. We obtain the linear system

KNbN +KN
α aN = fNα , (5.3)

where KN is defined in (3.9) and

[KN
α ]ij(α) = EI1 φj,xx(α

−)φi,xx(α
−)− EI2 φj,xx(α

+)φi,xx(α
+), (5.4)

[

fN
α

]

i
(α) = g1 φi,xx(α

−)− g2 φi,xx(α
+). (5.5)

The discrete set of sensitivity equations takes the form of a linear system of equations where the

unknowns are given by the coefficients bj for j = 1, · · · , N . Once the original approximating

system (4.8) is solved for aN , the DD sensitivity equation (5.3) can be solved for bN . (Or, if

desired, the two equations can be coupled together and solved simultaneously.)

As previously mentioned, the second derivatives of the Hermite cubic basis functions are

discontinuous at the nodes; however, the second derivatives of the cubic B-spline functions are

continuous across elements of the mesh. Hence, the one-sided limits in equations (5.4)−(5.5)

must be handled carefully according to which basis functions are being used in the computations.

Cubic B-Splines: If each φi,xx is continuous across elements (as with the cubic B-splines),

then φi,xx(α
+) = φi,xx(α

−) for all i and the matrices in (5.4) - (5.5) take the form

[KN
α ]ij(α) = (EI1 − EI2)φj,xx(α)φi,xx(α),

[

fN
α

]

i
(α) = (g1 − g2)φi,xx(α).

Hermite Cubics: Since the second derivatives of the Hermite cubic basis functions are dis-

continuous across the element nodes, then the one-sided limits reflected in Eqs. (5.4)−(5.5)
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are evaluated using the one-sided limits of the second derivatives of the Hermite cubic basis

functions.

With this in mind, one might expect to obtain different sensitivity approximations depending

upon the type of basis function used for the computations. This is the case as we see in the

following discussion.

5.1. DD sensitivity approximations

In this section, we discuss the sensitivity approximations defined in (5.2) and computed

using Eqs. (5.3)-(5.5). The parameters used for the computations in this section are given in

Table 3.1 of Section 3.1. Fig. 5.1 compares the exact sensitivity, s(x;α) with α = 0.5, given by

(3.6) with the approximate sensitivities produced by the DD scheme using both cubic B-spline

and Hermite cubic basis functions (again with 33 equally spaced nodes and α = 0.5). The

numerical sensitivities for both types of basis functions fail to accurately approximate the true

sensitivity. Table 5.1 reports the approximate L∞ error between the DD sensitivities and the

exact sensitivity as the number of equally spaced finite element nodes is increased. As the mesh

is refined the error does not decrease in either case and the DD sensitivities each converge to

erroneous sensitivities. Similar results were observed for a wide variety of parameter values.

The graph of the cubic B-spline DD sensitivity in Fig. 5.1 has the same character as that of

the graph of the true sensitivity; however, the approximation error is significant and sN (x;α) 6→

s(x;α) as N → ∞ . The Hermite cubic DD sensitivity is zero everywhere (to finite precision

arithmetic) and completely fails both to capture the general behavior of the true sensitivity

and to converge to the true sensitivity.

It is interesting to note the vastly different results produced by the DD approach for two

similar approximation schemes where the only difference is in the choice of finite element basis

functions. Recall that the main difference in the basis functions is that the cubic B-splines

possess second derivatives which are continuous across elements while the Hermite cubics do

not. Noting that the second derivatives of the basis functions appear in the right side of the
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Fig. 5.1. The exact sensitivity given in (3.6) for α = 0.5 compared with the approximate sensitivities

produced by DD using both cubic B-spline (cbs) and Hermite cubic (hc) basis functions.
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Table 5.1: The approximate L∞ error for the DD sensitivity approximations using the cubic B-spline

and Hermite cubic basis functions at various values of N , the number of equally spaced finite element

nodes.

N 9 17 33 65 129 1025

L∞ error (cubic B-spline) 1.3889 1.3889 1.3889 1.3889 1.3889 1.3889

L∞ error (Hermite cubic) 12.5 12.5 12.5 12.5 12.5 12.5

sensitivity equation in (5.3)-(5.5), it is natural to assume that the sensitivity computations

obtained using the different types of basis functions should be different. However, it may not

be obvious why both schemes fail to converge to the true sensitivity as the mesh is refined. Also,

one might expect to incur some computational errors due to the appearance of the approximate

state solution coefficient vector, aN , in the DD sensitivity equation (5.3). The cause of the

failure of the DD approach for this problem becomes more apparent and is thoroughly discussed

once we examine a formal continuous sensitivity equation for the model problem.

6. A Formal Continuous Sensitivity Equation

This section presents a formal Continuous Sensitivity Equation Method (CSEM) approach

to computing the sensitivity of interest for the model problem. This approach is presented to

contrast with the DD approach given in Section 5. Instead of first discretizing the variational

problem and then differentiating the resulting set of linear equations, we now formally differ-

entiate the variational form of the model problem with respect to the parameter α in order to

derive the formal continuous sensitivity equation. We show the resulting equation is ill-posed,

and use it to explain the failure of the discretize-then-differentiate approach.

Recall the weak form of the model problem (3.3): find w ∈ V = H2
L(0, ℓ) satisfying

∫ ℓ

0

EI(x;α)wxx(x)φxx(x) dx =

∫ ℓ

0

g(x;α)φxx(x) dx

for all φ ∈ V . We differentiate this equation with respect to α by partitioning the integrals

over (0, ℓ) into integrals over (0, α) and (α, ℓ) and formally applying Leibniz’ rule to obtain the

following variational sensitivity equation: find s ∈ V = H2
L(0, ℓ) such that

∫ ℓ

0

EI(x;α)sxx(x)φxx(x) dx + EI1wxx(α
−)φxx(α

−)− EI2wxx(α
+)φxx(α

+)

=g1φxx(α
−)− g2φxx(α

+) (6.1)

for all φ ∈ V . Again, we have replaced the function evaluations at α appearing due to Leibniz’

rule with the one-sided limits to account for possible discontinuities.

The test functions φ are in V = H2
L(0, ℓ), and so φxx is only guaranteed to be in L2(0, ℓ);

thus the pointwise evaluations given by the one-sided limits, φxx(α
+) and φxx(α

−), are not

well-defined for a general φ ∈ V . Therefore, this formal continuous sensitivity equation is not

properly posed over V = H2
L(0, ℓ) even though the variational form of the state equation (3.3)

is well posed over V . This makes sense if we remember that the exact solution of the state

equation (3.5) is in V , yet the exact sensitivity (3.6) is not in V .

We may further explain the ill-posedness of this equation as follows. If we ignore the formal

nature of the sensitivity equation and substitute the true values of wxx(α
+) and wxx(α

−) into
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the variational form, then the equation has a solution; however, the solution is actually the

zero function and NOT the true sensitivity s(x;α) given in Eq. (3.6). This can be seen by

substituting the exact solution of the state equation, given by (3.5), into (6.1). Group the like

terms in the sensitivity equation to obtain

∫ ℓ

0

EI(x;α)sxx(x)φxx(x) dx

=
[

g1 − EI1wxx(α
−)

]

φxx(α
−)−

[

g2 − EI2wxx(α
+)

]

φxx(α
+). (6.2)

Using the exact values, wxx(α
−) = c1 = g1/EI1 and wxx(α

+) = c2 = g2/EI2, this equation

reduces to one of finding s ∈ V satisfying

∫ ℓ

0

EI(x;α)sxx(x)φxx(x) dx = 0,

for all φ ∈ V . Since the associated linear operator corresponding to the left side of this equation

is invertible, the sensitivity s(x) must be identically zero. Hence, this does not capture the true

sensitivity given in Eq. (3.6).

Although the pointwise evaluations φxx(α
+) and φxx(α

−) do not make sense for a general

φ ∈ V , they are well defined for the cubic B-spline and Hermite cubic finite element basis

functions discussed above. Below, we proceed with a numerical approximation scheme for this

ill-posed problem to explain the failure of the discretize-then-differentiate approach.

6.1. Numerical approximation schemes

The discretization for the formal continuous sensitivity equation is given in this section.
First, we clearly see from the left side of Eq. (6.1) that an approximation to the second deriva-
tive of the state variable, wxx, is required. A natural approach is to use the finite element
approximations given in (3.7) and (4.8) to obtain these approximations. The one-sided limits
in (6.1) are then approximated by

wxx(α
+) ≈ w

N
xx(α

+) =
N∑

j=1

ajφj,xx(α
+), and wxx(α

−) ≈ w
N
xx(α

−) =
N∑

j=1

ajφj,xx(α
−). (6.3)

Here, φj ∈ V N is a basis function from the finite element discretization of the original model

problem. In order to parallel the approximation schemes of Section 5, we discretize the sensi-

tivity equation using both cubic B-spline and Hermite cubic basis functions. In particular, we

make use of V N = span{φj}
N
j=1, where φj is either the jth cubic B-spline or Hermite cubic

finite element basis function. Note that if cubic B-splines are used, then φj,xx(α
+) = φj,xx(α

−)

for all j = 1, · · · , N leading to wN
xx(α

+) = wN
xx(α

−).

For the sensitivity approximation, we again look for an approximate sensitivity sN ∈ V N ⊂

V defined by the linear combination

sN (x) =

N
∑

j=1

b̃jφj(x).

Substituting this into (6.1) and taking φ = φi for i = 1, · · · , N yields the approximating linear

system

KN b̃N + hN
1 wN

xx(α
−) + hN

2 wN
xx(α

+) = fNα , (6.4)
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where b̃N = [b̃1, · · · , b̃N ]T , KN and fNα are defined in (3.9) and (5.5), respectively, and

[hN
1 ]i = EI1 φi,xx(α

−), [hN
2 ]i = −EI2 φi,xx(α

+).

Hence, Eq. (6.4) yields a system of linear equations that can be solved in order to compute

sensitivity approximations.

We use the same number of finite element basis functions to approximate both the second

order derivative of the state and the solution of the formal continuous sensitivity equation.

One could use a different number of finite element basis functions or a different basis in the

sensitivity solves; however, we use the same basis for simplicity.

It is important to note that substituting in the approximations to the second derivative of

the state in (6.3) shows that b̃N satisfies

KN b̃N +KN
α aN = fNα ,

where KN
α is defined in (5.5). That is, this equation is identical to the DD sensitivity equation

in (5.3). Therefore in this case, the approximate sensitivities produced by the DD and the

formal CSEM approach are the same.

6.2. An explanation of the failure of the DD scheme

We may now explain the failure of the discretize-then-differentiate (DD) scheme, and also

point out why using two different finite element basis functions gave such different results.

We showed above that a particular discretization of the formal continuous sensitivity equation

resulted in the same sensitivity approximations produced by the Discretize-then-Differentiate

method. It follows that the DD sensitivity approximations are actually approximations to the

“solution” of the formal continuous sensitivity equation. Since the formal continuous sensitivity

equation is not well posed, the DD approximations produced erroneous sensitivities. Thus,

an ill posed formally derived continuous sensitivity equation is a warning that approximations

produced by a Discretize-then-Differentiate procedure are most likely completely false.

Furthermore, the discretization of the formal sensitivity equation required approximations

of the one-sided limits of the second derivative of the state at the interface. As discussed

in Section 4.2, accurate finite element approximations to these quantities can be obtained

using Hermite cubic basis functions, while cubic B-splines give extremely poor approximations.

Since the discretization of the formal sensitivity equation gives the same results as the DD

sensitivity approximations, the Hermite cubic DD sensitivity approximates the “exact solution”

of the formal continuous sensitivity equation (the zero function), while the cubic B-spline DD

sensitivity is a bad approximation to this “exact solution” due to the large error in the second

derivative state approximation. Of course, in the end both approximations converge to incorrect

sensitivities as N → ∞.

7. A Second Order Example Problem

The fourth order model problem considered above was motivated by the beam equation in

Section 2. Many other applications give rise to second order interface problems. In this section,

we briefly consider the homogenization method for computing the interface sensitivity for a

second order model problem.
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Consider the 1D model interface problem from [7]: find w(x) satisfying

− (κ(x;α)wx(x))x = 0, (7.1a)

w(0) = 0, w(1) = 1, (7.1b)

w(α−) = w(α+), (7.1c)

(κwx)(α
−) = (κwx)(α

+). (7.1d)

As before, the coefficient function κ(x;α) is piecewise constant and is given by

κ(x;α) =

{

κ1, 0 < x < α,

κ2, α < x < 1,
(7.2)

where κ1 and κ2 are positive real constants.

Differentiating through this problem with respect to α yields the following interface problem

for the sensitivity s(x;α) = (d/dα)w(x;α):

− (κ(x;α)sx(x;α))x = 0, (7.3a)

s(0) = 0, s(1) = 0, (7.3b)

s(α−)− s(α+) = d, (7.3c)

(κsx)(α
−)− (κsx)(α

+) = 0, (7.3d)

where d is the jump in the first derivative of w, i.e., d = wx(α
+)− wx(α

−).

In [7], this problem was formulated in a very weak sense in order to obtain approximate

solutions in L2(0, 1) that satisfied the nonhomogeneous jump condition (7.3c). Here, we apply

the homogenization approach used previously for the fourth order problem. Similar to the

approach in Section 4.1, we select any function h(x) that is H1 on the intervals 0 < x < α

and α < x < 1 satisfying (1) the essential boundary conditions h(0) = 0 and h(1) = 0, and

(2) the essential interface condition h(α−)− h(α+) = d. Then we make the change of variable

s = p+ h. The unknown function p satisfies the zero boundary conditions, and it also satisfies

the homogeneous interface condition p(α−) = p(α+).

Next, multiplying the strong interface problem (7.3a) by a test function φ ∈ V = H1
0 (0, 1),

integrating over the intervals (0, α) and (α, ℓ), substituting s = p+ h, and integrating by parts

gives the variational problem: find p ∈ V such that

∫ 1

0

κpxφx dx = −

∫ α

0

κ1hxφx dx−

∫ 1

α

κ2hxφx dx,

for all φ ∈ V . To approximate the sensitivity s, we proceed as with the fourth order problem:

first approximate w and the jump d, then approximate p (e.g., using finite elements), and lastly

set s = p+ h.

As in our previous model problem, this method succeeds in recovering the exact sensitivity

as long as the true value of the jump parameter d is known and used explicitly in the calculation.

For example, let κ1 = 1 and κ2 = 2. Taking h(x) = (d/α)x for 0 < x < α and h(x) = 0 for

α < x < 1, it can be checked that the exact solution of the above variational problem is

p(x) =

{
(

2d
α+1 − d

α

)

x, 0 < x < α,
d

α+1 (x− 1), α < x < 1.
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For the exact value of the jump, d = −1/(α+ 1), we recover the exact sensitivity given in [7]:

s(x) = p(x) + h(x) =

{

−2x/(α+ 1)2, 0 < x < α,

−(x− 1)/(α+ 1)2, α < x < 1.

8. Conclusion

This paper uses a simple fourth order interface model problem to illustrate the computational

issues that can arise when computing sensitivities with respect to a parameter that determines

an interface location. Since accurate numerical approximations to the original state variable

can be obtained using standard finite element techniques, one may be inclined to apply those

same techniques to the sensitivity approximations. The example in this paper should serve as

a cautionary tale that points out the pitfalls that can arise when approaching the problem of

sensitivity computation in an ad hoc manner as well as the benefits of performing a rigorous

mathematical analysis to identify the smoothness properties of the state and sensitivity variables

prior to constructing an algorithm for sensitivity computation. We emphasize again that the

key to the success of the true CSEM discussed in Section 4 is that it accounts for the lack of

smoothness of the governing equations with respect to the parameter of interest. The regularity

of the sensitivity equation is not the same as that of the original state equation. The Discretize-

then-Differentiate method does not take such regularity issues into account, and it completely

fails to accurately approximate the true sensitivity.

Moreover, the coupling between the interface conditions of the sensitivity equation and

those of the state equation must be treated carefully. For both the second order and fourth

order models discussed here, one of the sensitivity interface conditions depends explicitly on

an interface jump condition that the original state variable satisfies. (For these examples, the

jump conditions involve information from wx and wxx at the interface.) The value of the jump,

labeled d in this paper, must be known analytically or must be accurately approximated in

order to construct an accurate homogenization function h. Even for the simple model problem

discussed in Section 4, we observe that the choice of basis functions in the finite element

computation of the state variable drastically affects accuracy and convergence of sensitivity

approximations through the accuracy (or lack thereof) in the approximation of the value for

the jump condition d. As noted in Section 4.2, the numerical scheme one chooses for solving the

original state equation also must be able to yield accurate interface jump conditions for state

gradients when sensitivity calculations are to follow. This refers to Step 2 of the algorithm

outlined at the beginning of Section 4.2 and the comments directly following the algorithm.

From a numerical perspective, the fourth order model demonstrates that accurate sensitivity

calculations obtained by using the homogenization procedure rely on the convergence of the

numerical approximations of the state variable in an appropriate sense; more specifically, the

second derivative approximation must converge pointwise, except at the interface. This allows

one to accurately approximate the jump condition d that occurs at the interface. Although it

isn’t explicitly stated in Section 7, pointwise convergence except at the interface is required in

the approximations of the first derivative of the state variable, when the approximate value of

the jump d is used for the homogenization procedure. In any case, the convergence requirements

for the numerical scheme chosen for state variable approximation are most clearly identified once

the correct sensitivity equation, including all relevant interface conditions, is formulated.

A problem to be considered in future work is to compute sensitivities with respect to in-

terface locations in higher dimensional problems. Again, we expect the proper formulation of
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the sensitivity equation to be crucial to obtaining accurate approximations. However, there

are many issues to be addressed. First, obtaining accurate simulations of higher dimensional

interface problems is not a simple task. For second order elliptic interface problems, it is well

known that standard finite element approximations can converge slowly [18]. Optimal con-

vergence rates can be restored if the finite element mesh is aligned to the interface [19–21].

For complicated interface geometries the construction of such a mesh may be very difficult;

therefore, many researchers have developed numerical methods to treat interface problems. For

examples, see [17] and the references therein; see also [22] for a Hermite cubic immersed finite

element method for fourth order problems.

Next, we expect that the sensitivity equation will again contain nonhomogeneous interface

conditions. It is important to note that the homogenization method applied here to such a prob-

lem can be much more difficult in higher spatial dimensions. In many cases, the homogenization

function h will not be known analytically and must be constructed as described in [16, 17]. As

noted earlier, the construction of h may require accurate state gradient information along the

interface, and the numerical scheme for state variable approximation must be chosen with that

in mind. Also, for time varying problems, h will be time dependent and so the forcing function

for the homogenized sensitivity equation will have to be reconstructed at each time step. It may

be beneficial to use other special numerical methods for nonhomogeneous interface problems,

e.g., see [17] and the references therein. Some of these methods also may require an initial

homogenization step. Nitsche’s method (as in [23, 24]) may be a viable alternative method

since no homogenization is necessary; for this method the nonhomogeneous interface conditions

are satisfied weakly. Regardless of the chosen technique, proper formulation of the sensitivity

equation as an interface problem will be the key to constructing an accurate, efficient, and

convergent numerical scheme.
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[12] P. Šoĺın, Partial Differential Equations and the Finite Element Method, Wiley, Hoboken, NJ,

2006.
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