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Abstract

We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solv-

ing large sparse continuous Sylvester equations with non-Hermitian and positive definite/semi-

definite matrices. The unconditional convergence of the HSS iteration method is proved

and an upper bound on the convergence rate is derived. Moreover, to reduce the com-

puting cost, we establish an inexact variant of the HSS iteration method and analyze its

convergence property in detail. Numerical results show that the HSS iteration method

and its inexact variant are efficient and robust solvers for this class of continuous Sylvester

equations.
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1. Introduction

We consider iterative solutions of the continuous Sylvester equations of the form

AX +XB = F, (1.1)

where A ∈ C
m×m, B ∈ C

n×n and F ∈ C
m×n are given complex matrices. Assume that

(A1) A, B and F are large and sparse matrices;

(A2) at least one of A and B is non-Hermitian; and

(A3) both A and B are positive semi-definite, and at least one of them is positive definite.

Then from [14,29,31] we know that the continuous Sylvester equation (1.1) has a unique solution,

as under the assumptions (A1)-(A3) there is no common eigenvalue between A and −B. Note

that the continuous Lyapunov equation is a special case of the continuous Sylvester equation

with B = A∗ and F Hermitian. Here and in the sequel, W ∗ is used to denote the conjugate

transpose of the matrix W ∈ C
m×m, and we call W a positive definite or positive semi-definite

matrix if so is its Hermitian part H(W ) := 1
2 (W +W ∗); note that a positive definite or positive

semi-definite matrix is not necessarily Hermitian. We will also use S(W ) := 1
2 (W − W ∗) to

denote the skew-Hermitian part of the matrix W . Obviously, it holds that W = H(W )+S(W );

see [2–6].
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The continuous Sylvester equation (1.1) has numerous applications in control and system

theory [30,36,39], stability of linear systems [22], analysis of bilinear systems [32], power systems

[25], linear algebra [16], signal processing [1], image restoration [11], filtering [21, 23], model

order reduction [35], numerical methods for differential equations [8, 9], iterative methods for

algebraic Riccati equations [7,18–20,30], matrix nearness problem [34,41], finite element model

updating [13,26], block-diagonalization of matrices [16,31] and so on. Many of these applications

lead to stable Sylvester equations, i.e., Assumption (A3) made in the above is satisfied.

The continuous Sylvester equation (1.1) is mathematically equivalent to the system of linear

equations

Ax = f, (1.2)

where A = I ⊗ A + BT ⊗ I, and the vectors x and f contain the concatenated columns of

the matrices X and F , respectively, with ⊗ being the Kronecker product symbol and BT

representing the transpose of the matrix B. Of course, this is a numerically poor way to

determine the solution X of the continuous Sylvester equation (1.1), as the system of linear

equations (1.2) is costly to solve and can be ill-conditioned.

Standard methods for numerical solution of the continuous Sylvester equation (1.1) are the

Bartels-Stewart and the Hessenberg-Schur methods [10, 15], which consist in transforming A

and B into triangular or Hessenberg form by an orthogonal similarity transformation and then

solving the resulting system of linear equations directly by a back-substitution process. These

methods are classified as direct methods and are used, among others, by LAPACK and Matlab.

When the matrices A and B are large and sparse, iterative methods such as the Smith’s

method [37], the alternating direction implicit (ADI) method [11,24,33,40], the block successive

overrelaxation (BSOR) method [38], the preconditioned conjugate gradient method [12], the

matrix sign function method [27], and the matrix splitting methods [17] are often the methods

of choice for efficiently and accurately solving the continuous Sylvester equation (1.1).

The Bartels-Stewart and the Hessenberg-Schur methods are applicable and effective for

general continuous Sylvester equations of reasonably small sizes. For large and sparse continuous

Sylvester equations, the afore-mentioned iterative methods are often superior to these direct

methods, provided the matrices A and B are either Hermitian positive definite matrices or

M -matrices. However, when the matrix A or B is not Hermitian, the convergence of these

iterative methods may be theoretically not guaranteed, even if both matrices A and B are

either asymptotically stable or N -stable (i.e., positive definite); this will be the case if the

skew-Hermitian part of A or B is dominantly strong.

In this paper, we present an iterative method for solving the continuous Sylvester equa-

tion (1.1) by making use of the Hermitian and skew-Hermitian (HS) splittings of the matrices

A and B. This Hermitian and skew-Hermitian splitting (HSS) iteration method is a matrix

variant of the HSS iteration method firstly proposed in [6] for solving systems of linear equa-

tions, which are in spirit analogous to the ADI iteration methods [11, 24, 33, 40]. Via the HSS

iteration method, the problem of solving a general continuous Sylvester equation is decom-

posed into a sequence of sub-problems about two coupled continuous Sylvester equations with

respect to shifted Hermitian positive definite matrices and shifted skew-Hermitian matrices,

respectively. When the matrices A and B are positive semi-definite, and at least one of them

is positive definite, we prove that the HSS iteration converges unconditionally to the exact so-

lution of the continuous Sylvester equation (1.1), with a bound on the convergence rate about

the same as that of the conjugate gradient method when applied to a continuous Sylvester
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equation with respect to the Hermitian matrices H(A) and H(B). Moreover, iteration param-

eters that minimize an upper bound of the contraction factor is obtained in terms of bounds

of the largest and the smallest eigenvalues of the matrices H(A) and H(B). To further reduce

the computing cost, we establish an inexact Hermitian and skew-Hermitian splitting (IHSS)

iteration method, which uses certain efficient iterative methods to approximately solve the two

specially structured continuous Sylvester equations involved in each step of the HSS iteration.

The convergence of the IHSS iteration method is also analyzed in detail. Numerical experiments

show that both HSS and IHSS iteration methods are efficient and robust solvers for the large

sparse continuous Sylvester equations with non-Hermitian and positive definite matrices, and

the latter is usually superior to the former in computing efficiency.

In the remainder of this paper, a matrix sequence {Y (k)}∞k=0 ⊆ C
m×n is said to be conver-

gent to a matrix Y ∈ C
m×n if the corresponding vector sequence {y(k)}∞k=0 ⊆ C

mn is convergent

to the corresponding vector y ∈ C
mn, where the vectors y(k) and y contain the concatenated

columns of the matrices Y (k) and Y , respectively. If {Y (k)}∞k=0 is convergent, then its con-

vergence factor and convergence rate are defined as those of {y(k)}∞k=0, correspondingly. In

addition, we use λ(W ), ‖W‖2 and ‖W‖F to denote the spectrum, the spectral norm, and the

Frobenius norm of the matrix W ∈ C
m×m, respectively. Note that ‖·‖2 is also used to represent

the 2-norm of a vector.

2. The HSS Iteration Method

Evidently, the matrices A and B naturally admit the Hermitian and skew-Hermitian split-

tings

A = H(A) + S(A) and B = H(B) + S(B);

see [2, 3, 6]. Let α and β be given positive constants and I the identity matrix of suitable

dimension. Then we have

A =
(

αI +H(A)
)

+
(

S(A) − αI
)

=
(

αI + S(A)
)

+
(

H(A)− αI
)

,

and

B =
(

βI +H(B)
)

+
(

S(B) − βI
)

=
(

βI + S(B)
)

+
(

H(B)− βI
)

.

It follows that the continuous Sylvester equation (1.1) can be equivalently written as the fixed-

point matrix equations
{

(

αI +H(A)
)

X +X
(

βI +H(B)
)

=
(

αI − S(A)
)

X +X
(

βI − S(B)
)

+ F,
(

αI + S(A)
)

X +X
(

βI + S(B)
)

=
(

αI −H(A)
)

X +X
(

βI −H(B)
)

+ F.

Under the assumptions (A1)-(A3), we easily know that there is no common eigenvalue between

the matrices αI + H(A) and −(βI + H(B)), as well as between the matrices αI + S(A) and

−(βI+S(B)), so that these two fixed-point matrix equations have unique solutions for all given

right-hand side matrices.

Now, based on the above observations, we can establish the following Hermitian and skew-

Hermitian splitting iteration method for solving the continuous Sylvester equation (1.1).
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The HSS Iteration Method. Given an initial guess X(0) ∈ C
m×n, compute X(k+1) ∈

C
m×n for k = 0, 1, 2, · · · using the following iteration scheme until {X(k)}∞k=0 satisfies the

stopping criterion:



















(

αI +H(A)
)

X(k+ 1
2 ) +X(k+ 1

2 )
(

βI +H(B)
)

=
(

αI − S(A)
)

X(k) +X(k)
(

βI − S(B)
)

+ F,
(

αI + S(A)
)

X(k+1) +X(k+1)
(

βI + S(B)
)

=
(

αI −H(A)
)

X(k+ 1
2 ) +X(k+ 1

2 )
(

βI −H(B)
)

+ F,

where α and β are given positive constants.

Obviously, when either A or B is a zero matrix, and X(#) and F reduce to column vectors,

the HSS iteration method becomes the one for systems of linear equations; see [4,6]. In addition,

when B = A∗ and F is Hermitian, it leads to an HSS iteration method for the continuous

Lyapunov equations.

Because H(A), H(B) are Hermitian and S(A), S(B) are skew-Hermitian, the matrices

αI + H(A), αI + S(A), αI + H(B) and αI + S(B) can be diagonalized by unitary matrices.

This implies that it is possible to treat the two half-steps at each step of the HSS iteration by

efficient direct algorithms.

By making use of Theorem 2.2 and Corollary 2.3 in [6], we can demonstrate the following

convergence theorem about the HSS iteration method for solving the continuous Sylvester

equation (1.1).

Theorem 2.1. Assume that A ∈ C
m×m and B ∈ C

n×n are positive semi-definite matrices,

and at least one of them is positive definite. Let A = H(A) + S(A) and B = H(B) + S(B) be

the Hermitian and the skew-Hermitian parts of the matrices A and B, respectively, and α and

β be positive constants. Denote by A = H+ S, with

H = I ⊗H(A) +H(B)T ⊗ I and S = I ⊗ S(A) + S(B)T ⊗ I, (2.1)

and represent by

T(γ) = (γI + S)−1(γI −H)(γI +H)−1(γI − S), (2.2)

and

γ = α+ β. (2.3)

Then the HSS iteration method is convergent to the exact solution X⋆ ∈ C
m×n of the continuous

Sylvester equation (1.1), and the convergence factor is given by the spectral radius ρ(T(γ)) of

the matrix T(γ), which is bounded as

ρ
(

T(γ)
)

≤ σ(γ) := max
λi∈λ

(

H(A)
)

max
µj∈λ

(

H(B)
)

∣

∣γ − (λi + µj)
∣

∣

∣

∣γ + (λi + µj)
∣

∣

.

Moreover, if λ
(H(A))
min , λ

(H(B))
min and λ

(H(A))
max , λ

(H(B))
max are the lower and the upper bounds of

the eigenvalues of the matrices H(A) and H(B), respectively, then

γ̃ ≡ argmin
γ

{

max
λmin≤λ≤λmax

∣

∣

∣

∣

γ − λ

γ + λ

∣

∣

∣

∣

}

=
√

λminλmax,
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and

σ(γ̃) =

√
λmax −

√
λmin√

λmax +
√
λmin

=

√

κ(H)− 1
√

κ(H) + 1
,

where

λmin = λ
(H(A))
min + λ

(H(B))
min , λmax = λ(H(A))

max + λ(H(B))
max ,

and κ(H) = λmax/λmin is the spectral condition number of H.

Proof. By making use of the Kronecker product, we can rewrite the above-described HSS

iteration in the following matrix-vector form:


















(I ⊗ (αI +H(A)) + (βI +H(B))T ⊗ I)x(k+ 1
2 )

= (I ⊗ (αI − S(A)) + (βI − S(B))T ⊗ I)x(k) + f,

(I ⊗ (αI + S(A)) + (βI + S(B))T ⊗ I)x(k+1)

= (I ⊗ (αI −H(A)) + (βI −H(B))T ⊗ I)x(k+ 1
2 ) + f,

which can be arranged equivalently as
{

(γI +H)x(k+ 1
2 ) = (γI − S)x(k) + f,

(γI + S)x(k+1) = (γI −H)x(k+ 1
2 ) + f.

(2.4)

Evidently, the iteration scheme (2.4) is the HSS iteration method for solving the system of

linear equations (1.2), with A = H+ S; see [4,6]. After concrete operations, the HSS iteration

(2.4) can be neatly expressed as a stationary fixed-point iteration as follows:

x(k+1) = T(γ)x(k) +G(γ)f,

where T(γ) is the iteration matrix defined in (2.2), with H, S and γ being given in (2.1) and

(2.3), respectively, and

G(γ) = 2γ(γI + S)−1(γI +H)−1.

We can easily verify that H is a Hermitian matrix, S is a skew-Hermitian matrix, and γ is

a positive constant. Moreover, when either A ∈ C
m×m or B ∈ C

n×n is positive definite, the

matrix H is Hermitian positive definite. Hence, by making use of Theorem 2.2 in [6] we know

that the HSS iteration method (2.4) converges unconditionally to the exact solution x⋆ ∈ C
mn

of the system of linear equations Ax = f , with the convergence factor being ρ(T(γ)), and it

holds that

ρ(T(γ)) ≤ σ(γ) < 1, ∀γ > 0.

This straightforwardly shows that the HSS iteration method for the continuous Sylvester equa-

tion (1.1) also converges unconditionally to the exact solutionX⋆ ∈ C
m×n, with the convergence

factor ρ(T(γ)) being bounded by σ(γ).

In addition, by making use of Corollary 2.3 in [6], we know that the iteration parameter γ̃

that minimizes the upper bound σ(γ) is given by

γ̃ =
√

λminλmax,

and the corresponding upper bound of the convergence factor is given by

σ(γ̃) =

√
λmax −

√
λmin√

λmax +
√
λmin

=

√

κ(H)− 1
√

κ(H) + 1
.
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This completes the proof. �

Theorem 2.1 shows that the HSS iteration converges unconditionally to the exact solution

of the continuous Sylvester equation (1.1), with the upper bound on the rate of convergence

being bounded by σ(γ), which depends only on the spectrums of the Hermitian parts H(A) and

H(B), but does not depend on the the spectrums of the skew-Hermitian parts S(A) and S(B),

on the spectrums of the matrices A and B, or on the eigenvectors of the matrices H(A), H(B),

S(A), S(B), A and B.

Besides, when the parameter γ̃ is employed, the upper bound of the convergence rate of the

HSS iteration is about the same as that of the conjugate gradient method when applied to the

continuous Sylvester equation with the Hermitian matrices H(A) and H(B), and it does become

the same when, in particular, the matrices A and B are Hermitian. It should be mentioned

that, when the matrices A and B are normal, we have

H(A)S(A) = S(A)H(A) and H(B)S(B) = S(B)H(B),

and therefore, ρ(T(γ)) = σ(γ). The parameter γ̃ then minimizes both ρ(T(γ)) and σ(γ).

The actual iteration parameters α and β can be chosen as α = α̃ and β = β̃ such that

α̃+ β̃ = γ̃. For example, we may take α̃ = β̃ = 1
2 γ̃. Because

σ(γ) ≤ max

{

max
λi∈λ(H(A))

|α− λi|
|α+ λi|

, max
µj∈λ(H(B))

|β − µj |
|β + µj |

}

,

we may also take

α̃ := argmin
α

{

max
λ
(H(A))
min ≤λ≤λ

(H(A))
max

∣

∣

∣

∣

α− λ

α+ λ

∣

∣

∣

∣

}

=

√

λ
(H(A))
min λ

(H(A))
max ,

β̃ := argmin
β

{

max
λ
(H(B))
min ≤µ≤λ

(H(B))
max

∣

∣

∣

∣

β − µ

β + µ

∣

∣

∣

∣

}

=

√

λ
(H(B))
min λ

(H(B))
max .

In this case, it holds that

σ(γ̃) ≤max











√

λ
(H(A))
max −

√

λ
(H(A))
min

√

λ
(H(A))
max +

√

λ
(H(A))
min

,

√

λ
(H(B))
max −

√

λ
(H(B))
min

√

λ
(H(B))
max +

√

λ
(H(B))
min











=max

{

√

κ(H(A)) − 1
√

κ(H(A)) + 1
,

√

κ(H(B)) − 1
√

κ(H(B)) + 1

}

.

We remark again that the HSS iteration method is unconditional convergent to the exact

solution of the continuous Sylvester equation (1.1) for non-Hermitian positive definite matrices

A and B. This is different from the existing iteration methods which are only guaranteed to be

convergent for the case that A and B are M -matrices or Hermitian positive definite matrices.

Of course, we could directly apply the HSS iteration method to the expanded standard

linear system (1.2) to obtain an approximate solution to the continuous Sylvester equation (1.1).

However, it turns out that this approach is not so appropriate and efficient due to the following

reasons:

(a) it increases the dimension of the target linear system from max{m,n} to m× n, i.e., for

the continuous Sylvester equation (1.1) we only need to treat with matrices of orders m or

n, but for the expanded linear system (1.2) we need to treat with matrix of order m× n;

which is a considerable increase, especially when m or n is very large;
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(b) the matrix A may not inherit some useful properties of the matrices A and B, which

could be very important and heavily affecting their sparse factorizations, etc.;

(c) a solution matrix X , reconstructed from a solution vector x obtained from solving the

expanded linear system (1.2), may loss certain important and useful properties possessed

by the original solution matrix X⋆ of the continuous Sylvester equation (1.1);

(d) the above-mentioned three reasons may equally occur for the two sub-systems of linear

equations involved in the two-half step iterates of the HSS iteration methods for solving

the continuous Sylvester equation (1.1) and the expanded linear system (1.2).

Therefore, the HSS iteration method established and discussed here should be an appropriate

and efficient approach for iteratively solving the continuous Sylvester equation (1.1).

3. The Inexact HSS Iteration Methods

The HSS iteration method is a two-step iteration scheme for solving the continuous Sylvester

equation (1.1). At the first half-step, we need to solve continuous Sylvester equations of the

form

(αI +H(A))X +X(βI +H(B)) = FS , (3.1)

and at the second half-step, we need to solve continuous Sylvester equations of the form

(αI + S(A))X +X(βI + S(B)) = FH , (3.2)

where FH and FS are prescribed m-by-n complex matrices. This may be costly in actual

implementations, especially when the sizes of the matrices involved are very large, though these

matrices may have special properties and structures. For example, the matrices in (3.1) are

shifted Hermitian positive definite or positive semi-definite matrices and, thus, are Hermitian

positive definite; and the matrices in (3.2) are shifted skew-Hermitian matrices and, thus,

are positive definite but not Hermitian. To further improve the computational efficiency of

the HSS iteration method, we can solve the two sub-problems (3.1) and (3.2) inexactly by

utilizing certain effective iteration methods, e.g., the (block) Gauss-Seidel, the (block) SOR,

the ADI, the conjugate gradient or the Krylov subspace methods; see [11, 12, 24, 33, 38, 40].

This naturally results in the following inexact HSS iteration method for solving the continuous

Sylvester equation (1.1).

Given an initial guess X(0) ∈ C
m×n, for k = 0, 1, 2, · · · until {X(k)}∞k=0 ⊆ C

m×n

satisfies the stopping criterion, solve X(k+ 1
2 ) ∈ C

m×n approximately from

(αI+H(A))X(k+ 1
2 ) +X(k+ 1

2 )(βI +H(B))

≈(αI − S(A))X(k) +X(k)(βI − S(B)) + F

by employing an inner iteration (e.g., the Gauss-Seidel method) with X(k) as

the initial guess; then solve X(k+1) ∈ C
m×n approximately from
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(αI+S(A))X(k+1) +X(k+1)(βI + S(B))

≈(αI −H(A))X(k+ 1
2 ) +X(k+ 1

2 )(βI −H(B)) + F

by employing an inner iteration (e.g., the Gauss-Seidel method) with X(k+ 1
2 )

as the initial guess, where α and β are given positive constants.

To simplify numerical implementation and convergence analysis, we may rewrite the above

IHSS iteration method as the following equivalent scheme.

The IHSS Iteration Method. Given an initial guess X(0) ∈ C
m×n, for k = 0, 1, 2, · · ·

until {X(k)}∞k=0 ⊆ C
m×n converges,

1. approximate the solution of

(αI +H(A))Z(k) + Z(k)(βI +H(B)) = R(k),

with R(k) = F −AX(k) −X(k)B, by iterating until Z(k) is such that the residual

P (k) = R(k) −
(

(

αI +H(A)
)

Z(k) + Z(k)
(

βI +H(B)
)

)

satisfies

‖P (k)‖F ≤ εk‖R(k)‖F ,

and then compute X(k+ 1
2 ) = X(k) + Z(k);

2. approximate the solution of

(αI + S(A))Z(k+ 1
2 ) + Z(k+ 1

2 )(βI + S(B)) = R(k+ 1
2 ),

with R(k+ 1
2 ) = F −AX(k+ 1

2 ) −X(k+ 1
2 )B, by iterating until Z(k+ 1

2 ) is such that the residual

Q(k+ 1
2 ) = R(k+ 1

2 ) −
(

(

αI + S(A)
)

Z(k+ 1
2 ) + Z(k+ 1

2 )
(

βI + S(B)
)

)

satisfies

∥

∥Q(k+ 1
2 )
∥

∥

F
≤ ηk

∥

∥R(k+ 1
2 )
∥

∥

F
,

and then compute X(k+1) = X(k+ 1
2 )+Z(k+ 1

2 ). Here, {εk} and {ηk} are prescribed tolerances

used to control the accuracies of the inner iterations.

By making use of Theorems 3.1 and 3.2 in [6], we can demonstrate the following convergence

result about the above IHSS iteration method.

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied. If {X(k)}∞k=0 ⊆ C
m×n is an

iteration sequence generated by the IHSS iteration method and if X⋆ ∈ C
m×n is the exact

solution of the continuous Sylvester equation (1.1), then it holds that

‖X(k+1) −X⋆‖S ≤ (σ(γ) + θ̺ηk)(1 + θεk)‖X(k) −X⋆‖S , k = 0, 1, 2, · · · .
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where the norm ‖ · ‖S is defined as ‖Y ‖S = ‖(αI + S(A))Y + Y (βI + S(B))‖F for any matrix

Y ∈ C
m×n, and the constants ̺ and θ are given by

̺ = ‖(γI + S)(γI +H)−1‖2 and θ = ‖A(γI + S)−1‖2, (3.3)

with the matrices H and S being defined in (2.1) and the constant γ being defined in (2.3). In

particular, if

(σ(γ) + θ̺ηmax)(1 + θεmax) < 1, (3.4)

then the iteration sequence {X(k)}∞k=0 ⊆ C
m×n converges to X⋆ ∈ C

m×n, where εmax =

maxk{εk} and ηmax = maxk{ηk}.

Proof. By making use of the Kronecker product and the notations introduced in Theo-

rem 2.1, we can rewrite the above-described IHSS iteration in the following matrix-vector form:
{

(γI +H)z(k) = r(k), x(k+ 1
2 ) = x(k) + z(k),

(γI + S)z(k+
1
2 ) = r(k+

1
2 ), x(k+1) = x(k+ 1

2 ) + z(k+
1
2 ),

(3.5)

with r(k) = f −Ax(k) and r(k+
1
2 ) = f −Ax(k+ 1

2 ), where z(k) is such that the residual

p(k) = r(k) − (γI +H)z(k)

satisfies ‖p(k)‖2 ≤ εk‖r(k)‖2, and z(k+
1
2 ) is such that the residual

q(k+
1
2 ) = r(k+

1
2 ) − (γI + S)z(k+

1
2 )

satisfies ‖q(k+ 1
2 )‖2 ≤ ηk‖r(k+

1
2 )‖2.

Evidently, the iteration scheme (3.5) is the inexact HSS iteration method for solving the

system of linear equations (1.2), withA = H+S; see [4,6]. Hence, by making use of Theorem 3.2

in [6] we can obtain the estimate

|||x(k+1) − x⋆||| ≤ (σ(γ) + θ̺ηk)(1 + θεk)|||x(k) − x⋆|||, k = 0, 1, 2, · · · , (3.6)

where the norm ||| · ||| is defined as follows: for a vector y ∈ C
mn, |||y||| = ‖(γI + S)y‖2; and

for a matrix Y ∈ C
mn×mn, |||Y ||| = ‖(γI + S)Y (γI + S)−1‖2 is the correspondingly induced

matrix norm. Note that

|||y||| = ‖(γI + S)y‖2 = ‖(αI + S(A))Y + Y (βI + S(B))‖F = ‖Y ‖S .

Hence, we can equivalently rewrite the estimate (3.6) as

‖X(k+1) −X⋆‖S ≤ (σ(γ) + θ̺ηk)(1 + θεk)‖X(k) −X⋆‖S , k = 0, 1, 2, · · · .

This is exactly the estimate what we were deriving. �

We remark that if the continuous Sylvester equations of the forms (3.1) and (3.2) can be

solved exactly in some applications, the corresponding quantities {εk} and {ηk} and, hence,

εmax and ηmax, can be set to be zero. It then follows that the convergence rate of the IHSS

iteration reduces to the same as that of the HSS iteration. In general, Theorem 3.1 shows that

in order to guarantee the convergence of the IHSS iteration, it is not necessary for {εk} and

{ηk} to approach to zero as k is increasing. All we need is that the condition (3.4) is satisfied.

Therefore, in actual applications, we need to choose the inner iteration tolerances {εk} and

{ηk} so that the computational work of IHSS iteration method is minimized and the original

convergence rate of the HSS iteration is asymptotically recovered. A theoretical guarantee for

the latter demand is described in the following theorem.
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Theorem 3.2. Let the conditions of Theorem 2.1 be satisfied. Suppose that both {τ1(k)}
and {τ2(k)} are nondecreasing and positive sequences satisfying τ1(k) ≥ 1, τ2(k) ≥ 1 and

lim
k→∞

sup τ1(k) = lim
k→∞

sup τ2(k) = +∞, and that both δ1 and δ2 are real constants in the inter-

val (0, 1) satisfying

εk ≤ c1δ
τ1(k)
1 and ηk ≤ c2δ

τ2(k)
2 , k = 0, 1, 2, · · · , (3.7)

where c1 and c2 are nonnegative constants. Then it holds that

‖X(k+1) −X⋆‖S ≤
(

√

σ(γ) + ωθδτ(k)
)2

‖X(k) −X⋆‖S ,

where ̺ and θ are defined in (3.3), τ(k) and δ are defined by

τ(k) = min{τ1(k), τ2(k)} and δ = max{δ1, δ2},

and

ω = max

{

√
c1c2̺,

1

2
√

σ(γ)
(c1σ(γ) + c2̺)

}

.

In particular, we have

lim
k→∞

sup
‖X(k+1) −X⋆‖S
‖X(k) −X⋆‖S

≤ σ(γ),

i.e., the convergence rate of the IHSS iteration method is asymptotically the same as that of the

HSS iteration method.

Proof. The conclusion is straightforward according to Theorem 3.4 in [6]. �

Of course, besides (3.7) there may be other rules for which {εk} and {ηk} approach to zero

and the asymptotic convergence factor of the IHSS iteration tends to that of the HSS iteration.

4. Numerical Results

In this section, we use a few numerical results to show the effectiveness of both HSS and

IHSS iterations for solving the continuous Sylvester equation (1.1).

In actual computations, all iterations are started from the zero matrix, performed in MAT-

LAB with machine precision 10−16, and terminated when the current iterate satisfies ‖R(k)‖F /
‖R(0)‖F ≤ 10−6, where

R(k) = F −AX(k) −X(k)B

is the residual of the k-th HSS iterate. In the IHSS iteration, we set εk = ηk = 0.01, k =

0, 1, 2, · · · , and use the Smith’s method [37] as the inner iteration scheme.

4.1. Results for the HSS iteration

We consider the continuous Sylvester equation (1.1) with m = n and the matrices

A = B = M + 2rN +
100

(n+ 1)2
I,
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where M,N ∈ R
n×n are the tridiagonal matrices given by

M = tridiag(−1, 2,−1) and N = tridiag(0.5, 0,−0.5).

This class of problems may arise in the preconditioned Krylov subspace iteration methods

used for solving the systems of linear equations resulting from the finite difference or the Sinc-

Galerkin discretization of various differential equations and boundary value problems; see [2,3,

6, 8, 9].

This continuous Sylvester equation is solved by the HSS and the SOR iteration methods.

The number of iteration steps (denoted as IT) and the computing time in seconds (denoted as

CPU) are listed in Table 4.1, while the experimentally found optimal values of the iteration

parameters αexp (with βexp = αexp) and ωexp used for the HSS and the SOR iterations are

given in Table 4.2. From Table 4.1 we observe that the HSS iteration method considerably

outperforms the SOR iteration method in both iteration step and CPU time.

We can also solve the continuous Sylvester equation (1.1) through employing the HSS it-

eration method in [6] to the standard system of linear equations (1.2). The numerical results

are listed in Table 4.3. By comparing the results in Tables 4.1 and 4.3, we see that the matrix

form of the HSS iteration method is more effective than its vector form, as it requires much

less computing times. In addition, the former can solve much larger problems than the latter.

Table 4.1: IT and CPU for HSS and SOR.

n

HSS SOR

r = 0.01 r = 0.1 r = 1.0 r = 0.01 r = 0.1 r = 1.0

IT CPU IT CPU IT CPU IT CPU IT CPU IT CPU

8 10 0.001 9 0.001 10 0.001 11 0.005 11 0.005 8 0.004

16 17 0.005 14 0.004 13 0.004 19 0.036 20 0.038 16 0.031

32 27 0.030 28 0.032 24 0.027 37 0.296 38 0.303 32 0.256

64 44 0.235 57 0.322 40 0.237 74 2.520 77 2.624 64 2.197

128 93 2.771 100 3.389 62 2.007 152 24.515 156 25.056 128 20.641

256 203 44.665 156 33.893 95 20.486 310 244.407 304 236.687 256 205.225

Table 4.2: The Optimal Values αexp for HSS and ωexp for SOR.

n

αexp ωexp

r = 0.01 r = 0.1 r = 1.0 r = 0.01 r = 0.1 r = 1.0

8 2.00 2.00 2.00 1.19 1.18 1.00

16 1.00 0.80 1.20 1.34 1.35 1.00

32 0.40 0.40 0.95 1.56 1.54 1.00

64 0.17 0.23 0.81 1.74 1.69 1.00

128 0.09 0.13 0.62 1.86 1.77 1.00

256 0.05 0.09 0.51 1.92 1.81 1.00

Table 4.3: IT and CPU for HSS Applied to Solving (1.2).

n

r = 0.01 r = 0.1 r = 1.0

IT CPU IT CPU IT CPU

8 10 0.008 9 0.027 10 0.008

16 17 0.084 14 0.069 13 0.067

32 27 1.812 28 1.888 24 1.598

64 44 57.025 57 73.929 40 52.367
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4.2. Results for IHSS iteration

We consider the continuous Sylvester equation (1.1) with m = n and the matrices

{

A = diag(1, 2, · · · , n) + rLT ,

B = 2−tI + diag(1, 2, · · · , n) + rLT + 2−tL,

with L the strictly lower triangular matrix having ones in the lower triangle part. Here, t is a

problem parameter to be specified in actual computations. This example is a modification of

Example 4.3 in [28].

This continuous Sylvester equation (1.1) is solved by the HSS and the IHSS iteration meth-

ods, and the corresponding results are listed in Table 4.4. From Table 4.4 we observe that the

IHSS iteration method considerably outperforms the HSS iteration method in both iteration

step and CPU time.

Table 4.4: IT and CPU for HSS and IHSS.

αexp + βexp n

HSS IHSS

IT CPU IT CPU

7 8 16 0.017 15 0.018

10 16 21 0.090 18 0.009

15 32 27 0.496 21 0.034

25 64 35 2.851 26 0.162

40 128 43 17.212 32 1.271

68 256 51 111.301 38 11.060
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