
Journal of Computational Mathematics
Vol.29, No.3, 2011, 305–323.

http://www.global-sci.org/jcm
doi:10.4208/jcm.1010-m3285

HIGH ORDER NUMERICAL METHODS TO TWO
DIMENSIONAL HEAVISIDE FUNCTION INTEGRALS*

Xin Wen
LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100190, China

Email: wenxin@amss.ac.cn

Abstract

In this paper we design and analyze a class of high order numerical methods to two
dimensional Heaviside function integrals. Inspired by our high order numerical methods
to two dimensional delta function integrals [19], the methods comprise approximating the
mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimen-
sional Heaviside function integral can be rewritten as a one dimensional ordinary integral
with the integrand being a one dimensional Heaviside function integral which is smooth on
several subsets of the integral interval. Thus the two dimensional Heaviside function inte-
gral is approximated by applying standard one dimensional high order numerical quadra-
tures and high order numerical methods to one dimensional Heaviside function integrals.
We establish error estimates for the method which show that the method can achieve any
desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numeri-
cal examples are presented showing that the second to fourth-order methods implemented
in this paper achieve or exceed the expected accuracy.

Mathematics subject classification: 65D05, 65D30, 65D32.
Key words: Heaviside function integral, High order numerical method, Irregular domain.

1. Introduction

We study in this paper a class of high order numerical methods to the two dimensional

Heaviside function integrals ∫

R2

f(x, y)H(u(x, y))dxdy, (1.1)

where f(x, y) is an integrand function, u(x, y) is a level set function whose zero points de-

fine certain curve in the two dimensional space which compose the boundaries of an irregular

bounded domain Ω = {(x, y)|u(x, y) > 0}. The Heaviside function integral (1.1) is equivalent

to ∫

Ω

f(x, y)dxdy. (1.2)

We consider that the functions f, u have sufficient smoothness and their values are only provided

at grid points of a regular mesh. The domain Ω is defined implicitly by the level set function

u. Studying the computations of Heaviside function integrals in two and three dimensions

in the above context is applicable to many problems. One example is computing immiscible

multiphase flow [2, 9, 11]. In such applications the unknown quantities such as density and

viscosity are generally discontinuous across interfaces separating the immiscible fluids. One

convenient strategy is to employ fixed computational mesh and allow the moving interface to

cut through mesh cells. In this situation the computations by finite element method requires

* Received December 22, 2009 / Revised version received August 18, 2010 / Accepted September 14, 2010 /
Published online February 28, 2011 /

306 X. WEN

evaluating integrals with discontinuous integrands in the variational formulation, which can be

performed by resorting to computations of Heaviside function integrals.

The computation of Heaviside function integrals has much relation with computing delta

function integrals. The latter problem corresponds to evaluating integrals restricted on the

domain boundary ∂Ω which is a codimension one manifold. For the study of numerical methods

to delta function integrals one can refer to [1, 3–5, 8, 10, 12–14, 16–20]. Most of these methods

have also been extended to study the computations of Heaviside function integrals.

In [10] Tornberg studied the computations of two dimensional Heaviside and delta function

integrals. The approach is to regularize the discontinuous or singular integrand, and then

apply a standard quadrature to the integral with the regularized integrand. This approach

allows the error analysis by separately considering the analytical error from regularization and

numerical error from quadrature. The error of the approach is determined by the moment and

regularity conditions of the regularized delta function and the order of the quadrature method.

This approach can be designed to be of arbitrary high order accuracy. However high order

method requires utilizing regularized delta functions with very high order moment or regularity

conditions which can be complicated and may influence the efficiency of the method.

In [3] Engquist, Tornberg and Tsai studied the regularization of multidimensional Heaviside

function based on regularized one dimensional Heaviside functions and a variable support size

formula. The method is shown to be second-order accurate which improves on the first-order

accuracy of the conventional regularization based on regularized one dimensional Heaviside

functions and the constant support size formula. They also presented a regularized Heaviside

function based on integrating a product formula of one dimensional discrete delta functions.

The product formula method following Peskin [6, 7] has the advantage that it can achieve any

desired accuracy by using one dimensional discrete delta functions with corresponding discrete

moment conditions (see the proof in [12]). However the high order version of the product

formula method has not been implemented in the case of the domain Ω implicitly defined by a

level set function.

In [4, 5] Min and Gibou designed a geometric integration method for computing Heaviside

and delta function integrals. The approach to Heaviside function integrals is to decompose the

domain Ω into simplices on which the numerical quadrature can be applied. This method gives

second-order results.

In [15] Towers proposed a type of methods for discretizing multidimensional Heaviside func-

tion based on approximating the Heaviside function by finite differencing its first few primitives.

This idea has been adopted to study the approximation of delta function integrals in [13,14,16].

Two variants of the methods are presented in [15] for computing Heaviside function integrals.

The first method gives second-order accuracy. The second method is shown to give third-order

accuracy for a specific one dimensional example and behave fourth-order convergent for general

multidimensional computations. Error analysis for the second-order version method is given

in [15]. We will give a comparison between the numerical results of the high order version

method in [15] and our high order methods in this paper, which shows the advantage of our

third- and fourth-order methods.

In this paper we design and analyze a class of high order numerical methods to the two

dimensional Heaviside function integrals (1.1). We construct these methods by considering the

approximation of the restriction of the two dimensional Heaviside function integral in each mesh

cell. Such a natural strategy of approximating mesh cell restrictions of integrals has already been

adopted in [17] for designing high order methods to delta function integrals of full codimension

High Order Methods to Heaviside Function Integrals 307

type, in [4, 5] for designing geometric integration method for computing Heaviside and delta

function integrals and in [19,20] for designing high order methods to two and three dimensional

delta function integrals of codimension one type. By applying this strategy we need to check

the intersection between mesh cells and zero points of the level set function u representing the

domain boundary ∂Ω. In a mesh cell away from ∂Ω the computation of the Heaviside function

integral (1.1) is straightforward. The strategy to approximate the restriction of the Heaviside

function integral (1.1) in a mesh cell intersecting with ∂Ω is inspired by our design of high

order methods for computing codimension one delta function integrals in [19,20]. The method

is based on that the two dimensional Heaviside function integral in the mesh cell intersecting

with ∂Ω can be rewritten as a one dimensional ordinary integral with the integrand being a one

dimensional Heaviside function integral. We select the transformed one dimensional integral

from one of two forms according to the comparison of the two components of gradient of u in

the cell which can be checked from the mesh point values of u. With this treatment, the one

dimensional Heaviside function integral as the integrand is well-defined and can be computed

by standard numerical quadrature. The one dimensional Heaviside function integral being the

integrand however can be not sufficiently smooth on the integral interval. This issue is resolved

by showing that the integral interval of the one dimensional ordinary integral can be divided

into subsets so that the integrand is smooth on each of the subsets. Thus we construct our high

order methods by approximating each subset of the integral interval of the one dimensional

ordinary integral on which the integrand is smooth and applying standard high order numerical

quadratures to the resulting integrals on these subsets and to the evaluation of the integrands

which are the one dimensional Heaviside function integrals. The algorithm so designed to

approximate the mesh cell restrictions of the two dimensional Heaviside function integral (1.1)

comprises the numerical method developed in this paper. We carry out error analysis for the

method in this paper and prove that the method can achieve any desired accuracy to the two

dimensional Heaviside function integrals (1.1) by imposing corresponding accuracy in the sub-

algorithms in the method. The key point of the error estimates is that the approximation

of the two dimensional Heaviside function integral (1.1) in any given mesh cell may not be

accurate enough, while for such a mesh cell there exists certain neighboring cell so that the

approximate two dimensional Heaviside function integral restricted to the union of the mesh

cells has sufficient accuracy. We implement second- to fourth-order numerical methods in this

paper and the numerical examples show that these methods achieve or exceed the expected

accuracy indicated by the error analysis. In this paper we consider the computation of two

dimensional Heaviside function integrals (1.1). It is of interest to adopt similar idea to further

study high order methods to three dimensional Heaviside function integrals in the future.

This paper is organized as follows. In Section 2 we discuss the main strategy, numerical

implementation and algorithm description of the method proposed in this paper. In Section 3

we establish the error estimates for our method which show that the method can achieve any

desired accuracy by choosing corresponding accuracy in the sub-algorithms. In Section 4 we

present numerical examples in which second- to fourth-order methods are shown to achieve or

exceed the expected accuracy. We conclude the paper in Section 5.

2. High Order Numerical Methods

2.1. Main strategy and numerical implementation

Assume R
2 is covered by a uniform mesh (xi, yj), (i, j) ∈ Z

2 with the mesh size h on which

308 X. WEN

the values of f and u are given. Denote

Ii,j =

∫ yj+1

yj

∫ xi+1

xi

f(x, y)H(u(x, y))dxdy. (2.1)

Then the Heaviside function integral (1.1) is given by

∫

R2

f(x, y)H(u(x, y))dxdy =
∑

(i,j)∈Z2

Ii,j . (2.2)

Therefore the Heaviside function integral can be computed by approximating each Ii,j . Let

Îi,j be the approximation to Ii,j . Then our goal is to provide algorithm to yield Îi,j .

If the vertex values of the level set function are the same sign for a cell Ci,j = [xi, xi+1] ×
[yj , yj+1], indicating the cell is away from ∂Ω, then the computation of Îi,j is straightforward.

If the vertex values are all positive, mainly corresponding to the cell being contained in Ω,

then naturally Îi,j is computed as
∫ yj+1

yj

∫ xi+1

xi
f(x, y)dxdy. If the vertex values are all negative,

mainly corresponding to the cell being outside Ω, then naturally we set Îi,j = 0. Moreover we

also treat a special case that two vertex values of u are zero and the other two vertex values

of u are negative. This case implies the cell is totally or nearly outside Ω and naturally we

also set Îi,j = 0. This treatment is related to achieving high order accuracy of our method and

the reason will be further explained in this subsection after the presentation of Strategy I and

Algorithm I. Therefore we need to consider the computation of Îi,j in other nontrivial cases not

belonging to the above situations, mainly corresponding to that the cell essentially intersects

with ∂Ω. Inspired by the approach in [19], our strategy for the computation in the nontrivial

cases is based on the observation that the two dimensional Heaviside function integral (2.1) can

be rewritten as the following two forms

Ii,j =

∫ xi+1

xi

(∫ yj+1

yj

f(x, y)H(u(x, y))dy

)
dx, (2.3a)

Ii,j =

∫ yj+1

yj

(∫ xi+1

xi

f(x, y)H(u(x, y))dx

)
dy. (2.3b)

Namely the two dimensional Heaviside function integral Ii,j can be regarded as a one dimen-

sional integral with the integrand being a one dimensional Heaviside function integral. Therefore

in principle high order approximation to Ii,j can be achieved by applying standard one dimen-

sional high order numerical quadratures and high order methods to one dimensional Heaviside

function integrals.

One issue is that we need to choose one of the two forms (2.3a) and (2.3b) as the formula

for designing numerical methods in each mesh cell. It is convenient to choose the form so that

the level set function u is monotone with respect to the integral variable of the one dimensional

Heaviside function integral which in such case is well-defined and easy to compute. In fact

at ∂Ω at least one of ux and uy is O(1) away from zero since
√
(ux)2 + (uy)2 is the normal

derivative of u(x, y) at ∂Ω which should have O(1) positive lower bound for a well-defined level

set function u (see also the discussion in [19]). Therefore we can compare ux and uy in the cell

Ci,j to check which one of them is away from zero. In practical computation, we compare the

difference approximations to |ux| and |uy| at center point of the cell. Namely we compare the

High Order Methods to Heaviside Function Integrals 309

quantities

ũx
i,j = |ui+1,j+1 + ui+1,j − ui,j+1 − ui,j |, (2.4a)

ũ
y
i,j = |ui+1,j+1 + ui,j+1 − ui+1,j − ui,j |. (2.4b)

If ũx
i,j ≥ ũ

y
i,j , then ux is away from zero near the cell Ci,j , and we choose (2.3b) as the formula

for performing computations. Otherwise uy is away from zero near the cell, and (2.3a) is chosen

as the formula for computations.

For the convenience of description, we discuss the case that the form (2.3a) is chosen for

computations. Denote

F (x) =

∫ yj+1

yj

f(x, y)H(u(x, y))dy, xi ≤ x ≤ xi+1. (2.5)

Then (2.3a) is written to be

Ii,j =

∫ xi+1

xi

F (x)dx. (2.6)

In order to get high order numerical results by applying numerical quadratures to the one

dimensional integral (2.6), the function F (x) needs to have sufficient smoothness. However

F (x) generally can have discontinuous first derivative on [xi, xi+1]. For example, consider

f(x, y) ≡ 1 and the situations shown in Fig. 2.1, which have been similarly considered in [19]

for illustrating situations in computing delta function integrals. In the left part of the figure,

the derivative of F (x) is zero on [xi, x
∗) while nonzero on (x∗, xi+1], thus is discontinuous at

x = x∗. The right part of the figure shows a situation that the derivative of F (x) has two

discontinuity points at x = x′, x′′ due to ∂Ω having multiple intersection points between the

horizontal side of Ci,j .

(x
i
,y

j
)

(x
i
,y

j+1
)

(x
i+1

,y
j
)

(x
i+1

,y
j+1

)

(x
i
,y

j
)

(x
i
,y

j+1
)

(x
i+1

,y
j
)

(x
i+1

,y
j+1

)

∂Ω

∂Ω

x=x’ x=x’’

x=x*

Figure 2.1 Situations in which F (x) has discontinuous derivative on [xi, xi+1].

Since F (x) can have discontinuous derivative on [xi, xi+1] with one or more discontinuity

points, it is improper to directly apply numerical quadrature to (2.6) in order to obtain high

order numerical results. Nevertheless, we can show that the interval [xi, xi+1] can be split

310 X. WEN

into subsets so that F (x) is smooth on each subset. Since uy is away from zero near the cell,

introduce the definitions:

Yi,j(x) satisfying that (x, Yi,j(x)) , x ∈ [xi, xi+1] are points on ∂Ω, (2.7a)

(
yDi,j,x, y

U
i,j,x

)
=

{
(yj , Yi,j(x)) , if ui,j+1 < ui,j ,

(Yi,j(x), yj+1) , if ui,j+1 > ui,j ,
(2.7b)

Fm(x) =

∫ yU
i,j,x

yD
i,j,x

f(x, y)dy, xi ≤ x ≤ xi+1, (2.7c)

FM (x) =

∫ yj+1

yj

f(x, y)dy, xi ≤ x ≤ xi+1, (2.7d)

Λi,j =
{
x ∈ [xi, xi+1]

∣∣ Yi,j(x) ∈ [yj , yj+1]
}
, (2.7e)

Λ−

i,j =

{
x ∈ [xi, xi+1]

∣∣ Yi,j(x) ∈/ [yj , yj+1], u

(
x,

yj + yj+1

2

)
< 0

}
, (2.7f)

Λ+
i,j =

{
x ∈ [xi, xi+1]

∣∣ Yi,j(x) ∈/ [yj , yj+1], u

(
x,

yj + yj+1

2

)
> 0

}
. (2.7g)

Notice that Fm(x), FM (x) are smooth on [xi, xi+1] and that [xi, xi+1] = Λi,j ∪ Λ−

i,j ∪ Λ+
i,j . The

three sets Λi,j ,Λ
−

i,j ,Λ
+
i,j are nonoverlapping. We can show that F (x) is smooth on each of these

sets since

F (x) =





Fm(x), x ∈ Λi,j ,

0, x ∈ Λ−

i,j ,

FM (x), x ∈ Λ+
i,j ,

(2.8)

Therefore

Ii,j =

∫ xi+1

xi

F (x)dx =

∫

Λi,j

Fm(x)dx +

∫

Λ+
i,j

FM (x)dx. (2.9)

With formula (2.9) Ii,j is split into two parts, each of which is a one dimensional integral with

smooth integrands. Thus (2.9) is a suitable formula for designing high order numerical methods.

In order to construct numerical methods based on (2.9), we need to provide approximation

to the integral domains Λi,j ,Λ
+
i,j. The domain Λi,j is the projection to x-axis of ∂Ω restricted

to the cell Ci,j . Constructing approximate Λi,j has been studied in [19] for designing high order

methods to two dimensional delta function integrals. Here for completeness we present the

approach provided in [19] yielding the approximate Λi,j . One can refer to [19] for more details

on the design of this approach.

We approximate Λi,j by an interval [xL
i,j , x

R
i,j] contained in [xi, xi+1]. By using the fact that

the boundary points of Λi,j are the x-component of the intersection points between ∂Ω and the

edges of the cell Ci,j , we have the following strategy to obtain xL
i,j , x

R
i,j .

High Order Methods to Heaviside Function Integrals 311

Strategy I: give xL
i,j , x

R
i,j

xL
i,j = xi+1

❍ if ui,jui,j+1 ≤ 0, then xL
i,j = xi

❍ else

❏ if ui,j+1ui+1,j+1 < 0

Let (x̃, yj+1), xi < x̃ < xi+1 be one zero point of u, set xL
i,j = min(xL

i,j , x̃)
❏ if ui,jui+1,j < 0

Let (x̃, yj), xi < x̃ < xi+1 be one zero point of u, set xL
i,j = min(xL

i,j , x̃)

❍ end

xR
i,j = xi

❍ if ui+1,jui+1,j+1 ≤ 0, then xR
i,j = xi+1

❍ else

❏ if ui,j+1ui+1,j+1 < 0

Let (x̃, yj+1), xi < x̃ < xi+1 be one zero point of u, set xR
i,j = max(xR

i,j , x̃)

❏ if ui,jui+1,j < 0

Let (x̃, yj), xi < x̃ < xi+1 be one zero point of u, set xR
i,j = max(xR

i,j , x̃)

❍ end

The computation of x̃ in Strategy I when ui,kui+1,k < 0, k = j or j + 1 is given by the

following algorithm in which we let x̃c denote the computed x̃.

Algorithm I: give computed x̃

• Choose an Rth-order interpolation polynomial to u(x, yk) near the interval [xi, xi+1].

• Let the initial guess xini to be the root of the first-order interpolation polynomial

and use Newton iteration to compute the zero point of the Rth-order interpolation

polynomial.

• If the iterated values of the zero point during the Newton iteration come outside the

interval [xi, xi+1], then quit the Newton iteration and set x̃c = xini.

• Otherwise set x̃c = xNew, where xNew denotes the computed zero point by the Newton

iteration with given tolerance ET . Namely the absolute value of the polynomial at

xNew is less than ET .

The reason of setting x̃c = xini when the Newton iteration comes outside the interval

[xi, xi+1] is that this implies that the derivative of u(x, yk) is close to zero on [xi, xi+1], and

as will be shown in Section 3 in the error estimates for our methods that in this case it is not

necessary to obtain accurate approximation to x̃. This has also been discussed in [19].

With Strategy I and Algorithm I, we can compute xL
i,j , x

R
i,j and obtain their approximate

values x̂L
i,j , x̂

R
i,j . We remark that it is possible that [xL

i,j , x
R
i,j] provided by Strategy I is not

312 X. WEN

accurate enough for approximating Λi,j for certain cells. One example is shown in the right

part of Fig. 2.1 in which Λi,j = [xi, x
′] ∪ [x′′, xi+1] while Strategy I gives [xL

i,j , x
R
i,j] = [xi, xi+1].

See more discussions in [19]. Therefore it is possible that a single Îi,j computed based on formula

(2.9) with inaccurate approximation to Λi,j is not accurate enough to approximate Ii,j . The

key idea in designing high order methods in this paper, in similar spirit to that adopted in [19]

for treating delta function integrals, is that although the approximation to the two dimensional

Heaviside function integral in a single cell may not be accurate enough, for such a cell there

exists certain neighboring cell so that the approximation to the Heaviside function integral in

the union of the cells has high order accuracy. As an embodiment of this strategy we explain

the treatment for the special case mentioned at the beginning of this subsection. For the special

case that two cell vertex values of u are zero and the other two vertex values of u are negative,

our treatment is to set Îi,j = 0. To explain the reasonableness of this treatment, we consider

the case that ui,j = ui+1,j = 0 and ui,j+1 < 0, ui+1,j+1 < 0. Thus uy < 0 near the cell Ci,j .

Consider the neighboring cell Ci,j−1 in which ui,j = ui+1,j = 0 and ui,j−1 > 0, ui+1,j−1 > 0.

For this cell Strategy I gives xL
i,j−1 = xi, x

R
i,j−1 = xi+1. As shown in the subsequent part of the

paper, in this case the integral on Λ+
i,j in formula (2.9) is approximated by zero. From (2.7b)

one has for this case
(
yDi,j−1,x, y

U
i,j−1,x

)
= (yj−1, Yi,j−1(x)). Therefore Îi,j−1 can be designed to

be high order accuracy to the integral
∫ xi+1

xi

∫ Yi,j−1(x)

yj−1
f(x, y)dydx which is Ii,j + Ii,j−1. Thus

the setting of Îi,j = 0 enables that Îi,j + Îi,j−1 is the high order accurate approximation to

Ii,j + Ii,j−1 and our strategy of achieving high order accuracy in the union of neighboring cells

takes effect in this situation.

With x̂L
i,j , x̂

R
i,j provided by Strategy I and Algorithm I we can also construct the approxima-

tion to the domain Λ+
i,j . Let Λ

+
i,j be approximated by an interval [x̃L

i,j , x̃
R
i,j]. From the definition

of Λ+
i,j in (2.7g) we can set

x̃L
i,j = xi, x̃

R
i,j = x̂L

i,j , if x̂L
i,j > xi and ui,j > 0, (2.10a)

x̃L
i,j = x̂R

i,j x̃
R
i,j = xi+1, if x̂R

i,j < xi+1 and ui+1,j > 0, (2.10b)

x̃L
i,j = x̃R

i,j , otherwise. (2.10c)

Note that the two cases x̂L
i,j > xi, ui,j > 0 and x̂R

i,j < xi+1, ui+1,j > 0 do not happen simulta-

neously. The third case in (2.10c) implies the integral on Λ+
i,j in formula (2.9) is approximated

by zero.

With the construction of approximate Λi,j,Λ
+
i,j , the numerical quadrature to the formula

(2.9) which yields the value of Îi,j is written to be

(
x̂R
i,j − x̂L

i,j

) K∑

k=1

wkFm

(
x̂L
i,j + nk

(
x̂R
i,j − x̂L

i,j

))

+
(
x̃R
i,j − x̃L

i,j

) K∑

k=1

wkFM

(
x̃L
i,j + nk

(
x̃R
i,j − x̃L

i,j

))
, (2.11)

where wk and nk ∈ [0, 1] are weights and nodal points of the quadrature rule respectively.

Therefore for computing Îi,j we need to compute the values of Fm(x), FM (x) at several

quadrature points belonging to [xi, xi+1]. The computation of these function values are per-

High Order Methods to Heaviside Function Integrals 313

formed using the standard numerical quadrature similarly to (2.11) as follows

Fm(x) ≈
(
yUi,j,x − yDi,j,x

) K∑

k=1

wkf
(
x, yDi,j,x + nk

(
yUi,j,x − yDi,j,x

))
, (2.12a)

FM (x) ≈ (yj+1 − yj)

K∑

k=1

wkf (x, yj + nk (yj+1 − yj)) , (2.12b)

where yDi,j,x, y
U
i,j,x are defined in (2.7b), in which the computation of Yi,j(x) is achieved using

Newton iteration. We notice that since [x̂L
i,j , x̂

R
i,j] can be insufficiently accurate approximation

to Λi,j , it is also possible that a quadrature point x ∈ [x̂L
i,j , x̂

R
i,j] does not belong to Λi,j and thus

Yi,j(x) ∈/ [yj , yj+1]. This leads to that yUi,j,x < yDi,j,x in (2.12a). In this case the computation

of Fm(x) is still performed using formula (2.12a). As mentioned before, although in this case

the approximate Heaviside function integral (2.11) can be not accurate enough to approximate

Ii,j , our method is designed in such a consistent way that certain neighboring cell also gives

inaccurate approximate Heaviside function integral, and the approximation to the Heaviside

function integral in the union of these cells can be high order accurate. In Section 3 we will

give error analysis for our methods showing that our methods can achieve any desired accuracy

by choosing the corresponding accuracy in the sub-algorithms.

In summary our procedure to yield Îi,j is as follows. If the cell vertex values of u are all

positive then Îi,j is set to be the standard numerical quadrature to
∫ yj+1

yj

∫ xi+1

xi
f(x, y)dxdy. If

the vertex values of u are all negative then set Îi,j = 0. If two vertex values of u are zero and

the other two vertex values are negative then we also set Îi,j = 0. For other nontrivial cases,

we check which one of the two forms (2.3a), (2.3b) is chosen for computation according to the

comparison of two quantities (2.4a), (2.4b). In the case that the form (2.3a) is chosen, we firstly

compute x̂L
i,j , x̂

R
i,j , x̃

L
i,j , x̃

R
i,j which are the boundary points of the intervals for approximating

the integral domains Λi,j ,Λ
+
i,j in (2.9). Then we set Îi,j to be the numerical quadrature to the

formula (2.9) as given by (2.11), with the evaluations of Fm(x), FM (x) at nodal points using

the numerical quadratures (2.12a), (2.12b). We also use the Newton iteration to solve Yi,j(x)

for evaluating yDi,j,x, y
U
i,j,x in (2.12a). Similar strategy can be adopted in the case that the form

(2.3b) is chosen for computations.

We mention the bandwidth issue of our method. Considering numerical efficiency, the level

set function u only needs to be defined at grid points in a narrow band around the domain

boundary ∂Ω. The integrand function f is defined at grid points in the domain Ω and in the

narrow band on the outer side of the domain. Similarly to the analysis given in [20], this narrow

band can be determined from the cells whose distance to a mesh cell intersecting with ∂Ω is

no more than Db ≡ [R−1
2]+ mesh cells, where R is the order of interpolation polynomial. For

example our methods A, B, C which have second- to fourth-order accuracy tested in Section 4

correspond to R = 1, 2, 3 which gives Db = 0, 1, 1 respectively.

2.2. Algorithm description

With the discussions of strategy and numerical implementation of our method in the above

subsection, we now present the algorithm of our method. The algorithm is given by

314 X. WEN

Algorithm I∗

• For each cell Ci,j compute Îi,j which is the approximation to Ii,j .

• Sum up Îi,j for all mesh cells to give the numerical approximation to the Heaviside

function integral (1.1).

In the above algorithm the key algorithm to compute Îi,j for each cell is given as follows

Algorithm II∗: give Îi,j

• If the cell vertex values of u are all positive then set Îi,j to be an Sth-order numerical

quadrature to
∫ yj+1

yj

∫ xi+1

xi
f(x, y)dxdy, in which the values of f not at grid points are

approximated by an Rth-order polynomial interpolation.

• If the vertex values of u are all negative then set Îi,j = 0.

• If two vertex values of u are zero and the other two vertex values of u are negative

then set Îi,j = 0.

• In other cases first compare the quantities ũx
i,j , ũ

y
i,j defined in (2.4a), (2.4b).

If ũx
i,j < ũ

y
i,j,

Set Îi,j to be the quadrature formula (2.11), with x̂L
i,j , x̂

R
i,j given by Strat-

egy I and Algorithm I in Subsection 2.1, x̃L
i,j , x̃

R
i,j given by (2.10c), and val-

ues of Fm(x), FM (x) at nodal points computed by numerical quadratures

(2.12a), (2.12b), in which the values of f not at grid points are approximated

by an Rth-order polynomial interpolation. The computation of Yi,j(x) for

evaluating yDi,j,x, y
U
i,j,x in (2.12a) is achieved using an Rth-order polynomial

interpolation and Newton iteration with tolerance ET .

If ũx
i,j ≥ ũ

y
i,j,

Îi,j can be computed in similar principle based on the form (2.3b).

Algorithm II∗ include the following parameters: R,ET , S, where R is the order of inter-

polation polynomial, ET is the tolerance in Newton iteration and S denotes the order of the

quadrature rule used in the algorithm respectively. In the next section we will investigate error

estimates for our method given by Algorithm I∗ and Algorithm II∗. We show that our method

can achieve any desired convergence order by selecting corresponding parameters.

3. Error Estimates

In this section we give error estimates for our method given by Algorithm I∗ and Algorithm

II∗ which show that our method can achieve any desired convergence order.

The main Theorem we will prove in this section is as follows

High Order Methods to Heaviside Function Integrals 315

Theorem 3.1. Let m0 = min(R+1, S), where R,S are parameters in Algorithm II∗. Assume

parameter ET in Algorithm II∗ satisfies ET = O(hR+1), the integrand and level set functions

f, u in (1.1) have bounded max(R + 1, S)th, R + 1th derivative respectively. Then the method

given by Algorithm I∗ and Algorithm II∗ is m0th-order accurate, namely
∣∣∣∣∣∣

∑

(i,j)∈Z2

Îi,j −
∫

R2

f(x, y)H(u(x, y))dxdy

∣∣∣∣∣∣
= O(hm0). (3.1)

In the following we present some lemmas. We firstly give some definitions which have also

been adopted in analyzing the numerical methods to two dimensional delta function integrals

[19].

Consider a cell Ci,j having intersection with ∂Ω. Recall the definition of Yi,j(x), x ∈ [xi, xi+1]

in (2.7a), which is defined if the quantities ũx
i,j, ũ

y
i,j given in (2.4a), (2.4b) satisfy ũx

i,j < ũ
y
i,j .

Similarly if ũx
i,j ≥ ũ

y
i,j, we can define the smooth function Xi,j(y), y ∈ [yj , yj+1] as follows

Xi,j(y) satisfying that (Xi,j(y), y) , y ∈ [yj , yj+1] are points on ∂Ω. (3.2)

Introduce the quantity

di,j =

{
0, if ũx

i,j < ũ
y
i,j ,

1, if ũx
i,j ≥ ũ

y
i,j .

(3.3)

Define the sets

Di,j =

{
{(i, l)| ∃x ∈ [xi, xi+1], s.t.(x, Yi,j(x)) ∈ Ci,l} , if di,j = 0,

{(k, j)| ∃y ∈ [yj, yj+1], s.t.(Xi,j(y), y) ∈ Ck,j} , if di,j = 1,
(3.4)

Ei,j =

{
Di,j , if dk,l = di,j , ∀(k, l) ∈ Di,j,

{(i, j)}, if ∃(k, l) ∈ Di,j s.t. dk,l 6= di,j .
(3.5)

We see that if the elements of Di,j yield the same relation between the two components of the

gradient of u, then Ei,j is the same as Di,j. Otherwise Ei,j contains only the element (i, j).

Denote

MI = inf
(x,y)∈Γ

√
(ux(x, y))

2
+ (uy(x, y))

2
, (3.6)

which is a positive quantity for a well-defined level set function u.

The following Lemmas 3.1 and 3.2 can be directly checked.

Lemma 3.1. Assume parameters ET , R in Algorithm II∗ satisfy ET = O(hR+1), the integrand

and level set functions f, u have bounded max(R + 1, S)th, R+ 1th derivative respectively, the

cell Ci,j belongs to nontrivial cases for computing Îi,j and di,j = 0. Then Îi,j given by Algorithm

II∗ satisfies

Îi,j −
∫ x̂R

i,j

x̂L
i,j

Fm(x)dx −
∫ x̃R

i,j

x̃L
i,j

FM (x)dx = O(hm0+1), (3.7)

where m0 = min(R+ 1, S) is defined in Theorem 3.1.

Lemma 3.2. For a cell Ci,j satisfying di,j = 0, it holds

∑

(i,l)∈Di,j

Ii,l =





∫ xi+1

xi

∫ Yi,j(x)

yj1
f(x, y) dydx, if ui,j+1 < ui,j ,

∫ xi+1

xi

∫ yj2+1

Yi,j(x)
f(x, y) dydx, if ui,j+1 > ui,j ,

(3.8)

where j1 = min
(i,l)∈Di,j

l, j2 = max
(i,l)∈Di,j

l.

316 X. WEN

With the above lemmas we prove the following Lemma 3.3. The proof is classified according

to Ei,j = Di,j and Ei,j 6= Di,j . For the latter case one has Ei,j = {(i, j)}. The former case

includes that Ei,j can contain the index (i, j) as well as its neighboring ones. Therefore Lemma

3.3 ensures that the summation
∑

(k,l)∈Ei,j
Îk,l is the high order accurate approximation to

∑
(k,l)∈Ei,j

Ik,l, while each Îk,l is not necessarily accurate enough to approximate Ik,l. This is

the key point in the proof of error estimates for our method, as mentioned in Introduction and

Subsection 2.1.

Lemma 3.3. Assume parameters ET , R in Algorithm II∗ satisfy ET = O(hR+1), the integrand

and level set functions f, u have bounded max(R+1, S)th, R+1th derivative respectively. Then

Îk,l for (k, l) adjacent to (i, j) yielded by Algorithm II∗ have the following error estimates

∑

(k,l)∈Ei,j

(
Îk,l − Ik,l

)
= O(hm0+1), (3.9)

where m0 = min(R+ 1, S) is defined in Theorem 3.1.

Proof. We prove (3.9) for the case that di,j = 0. The case di,j = 1 can be similarly analyzed.

We firstly prove (3.9) in the case of Ei,j = Di,j . According to (3.5) this implies dk,l =

di,j , ∀(k, l) ∈ Di,j . Let Ni,j denote the number of elements in the set Di,j. According to

Lemma 3.1 in [19], we have that Ni,j ≤ 3 for fine enough mesh. The following discussions are

classified according to value of Ni,j .

If Ni,j = 1, namely Di,j = {(i, j)}, then yj < Yi,j(x) < yj+1, for x ∈ [xi, xi+1] and thus

Λi,j = [xi, xi+1],Λ
+
i,j = ∅. In this case Strategy I gives x̂L

i,j = xL
i,j = xi, x̂

R
i,j = xR

i,j = xi+1, and

from (2.10c) one has x̃L
i,j = x̃R

i,j . According to Lemma 3.1 and formula (2.9) one has

Îi,j =

∫ x̂R
i,j

x̂L
i,j

Fm(x)dx +O(hm0+1)

=

∫

Λi,j

Fm(x)dx +O(hm0+1) = Ii,j +O(hm0+1). (3.10)

If Ni,j = 2, then the two cells corresponding to the elements in Di,j are adjacent since ∂Ω is

smooth. Without loss of generality we assume the two elements in Di,j are (i, j) and (i, j +1).

Denote Ŷi = Yi,j(xi), Ŷi+1 = Yi,j(xi+1). There are four cases for Ŷi, Ŷi+1:

i) Ŷi = Ŷi+1 = yj+1;

ii) one of Ŷi, Ŷi+1 is yj+1, the other is not;

iii)
(
Ŷi − yj+1

)(
Ŷi+1 − yj+1

)
> 0;

iv)
(
Ŷi − yj+1

)(
Ŷi+1 − yj+1

)
< 0.

For case i), without loss of generality we discuss uy < 0 near the cell Ci,j . Namely uk,j+2 <

0, uk,j > 0, k = i, i+ 1. The cell Ci,j+1 belongs to the special case that two vertex values of u

are zero and the other two vertex values of u are negative. Thus Algorithm II∗ gives Îi,j+1 = 0.

For cell Ci,j Strategy I and (2.10c) give x̂L
i,j = xL

i,j = xi, x̂
R
i,j = xR

i,j = xi+1, x̃
L
i,j = x̃R

i,j . Using

High Order Methods to Heaviside Function Integrals 317

Lemmas 3.1 and 3.2 and expressions (2.7b), (2.7c) we then have

Îi,j =

∫ x̂R
i,j

x̂L
i,j

Fm(x)dx +O(hm0+1)

=

∫ xi+1

xi

∫ Yi,j(x)

yj

f(x, y) dydx+O(hm0+1)

=Ii,j + Ii,j+1 +O(hm0+1) (3.11)

which leads to (3.9).

The analysis of case ii) is similar to case iii). For case iii), without loss of generality we

discuss Ŷi, Ŷi+1 < yj+1. For the case uy < 0 near Ci,j , the four vertex values of u for the cell

Ci,j+1 are all negative. Thus Algorithm II∗ gives Îi,j+1 = 0. Similarly to the deduction of

(3.11) for this case one has

Îi,j = Ii,j + Ii,j+1 +O(hm0+1),

which leads to (3.9). For the case uy > 0 near Ci,j , the four vertex values of u for the cell Ci,j+1

are all positive. Algorithm II∗ gives

Îi,j+1 =

∫ xi+1

xi

∫ yj+2

yj+1

f(x, y)dydx+O(hm0+2).

For cell Ci,j Strategy I and (2.10c) give x̂L
i,j = xL

i,j = xi, x̂
R
i,j = xR

i,j = xi+1, x̃
L
i,j = x̃R

i,j . Then

using Lemmas 3.1 and 3.2 and expressions (2.7b), (2.7c) we have

Îi,j + Îi,j+1 =

∫ xi+1

xi

∫ yj+1

Yi,j(x)

f(x, y) dydx+

∫ xi+1

xi

∫ yj+2

yj+1

f(x, y)dydx+O(hm0+1)

= Ii,j + Ii,j+1 +O(hm0+1). (3.12)

For case iv), without loss of generality we discuss Ŷi > yj+1, Ŷi+1 < yj+1 and uy < 0 near

Ci,j . For this case Strategy I, Algorithm I and (2.10c) give xi = x̂L
i,j+1 < x̂R

i,j+1 = x̂L
i,j < x̂R

i,j =

xi+1 and x̃L
i,j+1 = x̃R

i,j+1, x̃
L
i,j = xi, x̃

R
i,j = x̂L

i,j . Then using Lemmas 3.1 and 3.2 and expressions

(2.7b), (2.7c), (2.7d), we have

Îi,j + Îi,j+1 =

∫ x̂R
i,j

x̂L
i,j

∫ Yi,j(x)

yj

f(x, y) dydx+

∫ x̃R
i,j

x̃L
i,j

∫ yj+1

yj

f(x, y) dydx

+

∫ x̂R
i,j+1

x̂L
i,j+1

∫ Yi,j(x)

yj+1

f(x, y) dydx+O(hm0+1)

=

∫ x̂L
i,j

xi

∫ Yi,j(x)

yj

f(x, y) dydx+

∫ xi+1

x̂L
i,j

∫ Yi,j(x)

yj

f(x, y) dydx+O(hm0+1)

=Ii,j + Ii,j+1 +O(hm0+1). (3.13)

If Ni,j = 3, without loss of generality we assume the three adjacent elements in Di,j are

(i, j), (i, j+1), (i, j+2). Since the curve (x, Yi,j(x)) , x ∈ [xi, xi+1] occupies three cells, one has

that Yi,j(x) is monotone on [xi, xi+1]. Without loss of generality we discuss Ŷi ≥ yj+2, Ŷi+1 ≤
yj+1 and uy < 0 near Ci,j . If at least one of Ŷi, Ŷi+1 equals yj+1, then we can deduce (3.9)

similarly to the cases Ni,j = 1 or 2. For the case Ŷi > yj+2, Ŷi+1 < yj+1 and reasonably fine

mesh, as discussed in the proof of Lemma 3.7 in [19], Strategy I and Algorithm I give

xi = x̂L
i,j+2 < x̂R

i,j+2 = x̂L
i,j+1 < x̂R

i,j+1 = x̂L
i,j < x̂R

i,j = xi+1.

318 X. WEN

Formula (2.10c) gives

x̃L
i,j+2 = x̃R

i,j+2, x̃
L
i,j+1 = xi, x̃

R
i,j+1 = x̂L

i,j+1, x̃
L
i,j = xi, x̃

R
i,j = x̂L

i,j .

Then using Lemmas 3.1 and 3.2 and expressions (2.7b), (2.7c), (2.7d) we have

Îi,j + Îi,j+1 + Îi,j+2 =

∫ x̂R
i,j

x̂L
i,j

∫ Yi,j(x)

yj

f(x, y) dydx+

∫ x̃R
i,j

x̃L
i,j

∫ yj+1

yj

f(x, y) dydx

+

∫ x̂R
i,j+1

x̂L
i,j+1

∫ Yi,j(x)

yj+1

f(x, y) dydx+

∫ x̃R
i,j+1

x̃L
i,j+1

∫ yj+2

yj+1

f(x, y) dydx

+

∫ x̂R
i,j+2

x̂L
i,j+2

∫ Yi,j(x)

yj+2

f(x, y) dydx+O(hm0+1)

=

∫ x̂L
i,j+1

xi

∫ Yi,j(x)

yj

f(x, y) dydx+

∫ x̂R
i,j+1

x̂L
i,j+1

∫ Yi,j(x)

yj

f(x, y) dydx

+

∫ xi+1

x̂L
i,j

∫ Yi,j(x)

yj

f(x, y) dydx+O(hm0+1)

=Ii,j + Ii,j+1 + Ii,j+2 +O(hm0+1). (3.14)

From the above discussions, we have proved that in the case of Ei,j = Di,j , for all possible

cases Ni,j = 1, 2 or 3 the estimate (3.9) can always be proved.

We then prove (3.9) when Ei,j 6= Di,j . From (3.5) for this case one has Ei,j = {(i, j)} and

∃(i, l) ∈ Di,j s.t. di,l = 1 6= di,j = 0. From the deduction in the proof of Lemma 3.7 in [19], one

has that for this case and reasonably fine mesh it holds

∣∣ux

(
x, Yi,j(x)

)∣∣ ≥ MI√
5
, ∀

(
x, Yi,j(x)

)
∈

⋃

(i,k)∈Di,j

Ci,k, (3.15)

where MI is defined in (3.6). Therefore Yi,j(x) is monotone on x ∈ [xi, xi+1] which implies

Λi,j = [xL
i,j , x

R
i,j]. There are three cases for Λ+

i,j :

i∗) xL
i,j > xi and Λ+

i,j = [xi, x
L
i,j] ;

ii∗) xR
i,j < xi+1 and Λ+

i,j = [xR
i,j , xi+1] ;

iii∗) Λ+
i,j = ∅ .

We discuss the case i∗). The other two cases can be similarly analyzed. For case i∗), formula

(2.9) gives

Ii,j =

∫ xR
i,j

xL
i,j

Fm(x)dx +

∫ xL
i,j

xi

FM (x)dx. (3.16)

Utilizing (3.15), according to Lemma 3.5 in [19] one has

x̂L
i,j = xL

i,j +O(hR+1), x̂R
i,j = xR

i,j +O(hR+1). (3.17)

Case i∗) implies ui,j > 0. Thus (2.10c) gives x̃L
i,j = xi, x̃

R
i,j = x̂L

i,j . Combining (3.16), (3.17)

and using Lemma 3.1 gives

Ii,j =

∫ x̂R
i,j

x̂L
i,j

Fm(x)dx +

∫ x̂L
i,j

xi

FM (x)dx +O(hR+2) = Îi,j +O(hm0+1). (3.18)

High Order Methods to Heaviside Function Integrals 319

Thus we prove (3.9) in the case of Ei,j 6= Di,j . �

We now give the proof of the main Theorem on the error estimates for our method.

3.1. Proof of Theorem 3.1

Proof. Denote

SU =
{
(k, l)

∣∣ the cell Ck,l contains points on ∂Ω
}
. (3.19)

According to definition of Ii,j and Algorithm II∗, for any (i, j) ∈/ SU one has

Ii,j = Îi,j = 0, if ui,j < 0, (3.20a)

Ii,j =

∫ yj+1

yj

∫ xi+1

xi

f(x, y)dxdy, Îi,j = Ii,j +O(hm0+2), if ui,j > 0. (3.20b)

Therefore ∑

(i,j)∈/SU

(
Îk,l − Ik,l

)
= O(hm0). (3.21)

By Lemma 3.2 in [19], the set Ei,j satisfies the following properties:

i) (i, j) ∈ Ei,j ;

ii) Ek,l = Ei,j , ∀(k, l) ∈ Ei,j ;

iii) Ek,l ∩ Ei,j = ∅, if (k, l) ∈/ Ei,j .

Then according to the proof of Theorem 3.1 in [19], the following equalities can be deduced:

∑

(i,j)∈SU

Ii,j =
∑

(i,j)∈SU

1

Ni,j


 ∑

(k,l)∈Ei,j

Ik,l


 , (3.22)

∑

(i,j)∈SU

Îi,j =
∑

(i,j)∈SU

1

Ni,j


 ∑

(k,l)∈Ei,j

Îk,l


 . (3.23)

Now utilizing (3.21)-(3.23) and (2.2), applying Lemma 3.3 and noticing that the number of

elements in SU is O
(
1
h

)
one obtains

∣∣∣∣∣∣

∑

(i,j)∈Z2

Îi,j −
∫

R2

f(x, y)H(u(x, y))dxdy

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

(i,j)∈SU

1

Ni,j




∑

(k,l)∈Ei,j

(
Îk,l − Ik,l

)


∣∣∣∣∣∣
+O(hm0) = O(hm0), (3.24)

which completes the proof of Theorem 3.1. �

320 X. WEN

4. Numerical Examples

In this section we present numerical examples to show the accuracy of our methods. In the

following examples we use Simpson rule in the numerical quadratures (2.11)-(2.12b), namely

we choose S = 4 in Algorithm II∗. For other parameters in Algorithm II∗ we test the following

three set of choices:

Method A: R = 1, ET = h2,

Method B: R = 2, ET = h3,

Method C: R = 3, ET = h4.

According to Theorem 3.1, if the integrand and level set functions have sufficient smoothness

then methods A, B, C have second-, third- and fourth-order accuracy respectively. We will

show that these methods achieve or behave better than the expected accuracy in our numerical

examples. We also give a comparison on numerical accuracy between the high order version

method in [15] and our high order methods in the last example, which shows the advantage of

our third- and fourth-order methods.

Example 4.1. This is an example tested in [5]. Let

u(x, y)=−
(
2
√
x2+y2 − 2− x5+5xy4−10x3y2

(x2+y2)2.5

)
, f(x, y) = 1.

The set Ω = {(x, y)|u(x, y) ≥ 0} is an irregular domain represented in the polar coordinates as

r ≤ 1 + 1
2 cos(5θ), which is shown in Fig. 4.1. The exact value of (1.1) corresponding to the

area of Ω is 9
8π. For a given mesh size we randomly shift the uniform mesh in the x and y

directions and rotated for 50 times. Table 4.1 presents the averaged relative errors of the three

methods over the 50 trials. The last column in the table presents the estimated convergence

rates from the numerical errors. In this example methods A, C achieve the expected second-

and fourth-order accuracy, while method B also behaves fourth-order accurate, better than the

third-order accuracy ensured by Theorem 3.1.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y Ω

Fig. 4.1. The domain Ω for Example 4.1.

High Order Methods to Heaviside Function Integrals 321

Table 4.1: Example 4.1, averaged relative errors of methods A, B, C

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

method A 3.41E-3 1.01E-3 2.59E-4 6.61E-5 1.65E-5 4.14E-6 1.95

method B 1.19E-3 9.63E-5 5.68E-6 3.73E-7 1.91E-8 1.12E-9 4.03

method C 1.31E-3 9.58E-5 6.22E-6 3.91E-7 2.47E-8 1.59E-9 3.94

Example 4.2. This is an example tested in [5]. Let u(x, y) = 1 − x2 − y2, f(x, y) = e−x2
−y2

.

The exact value of (1.1) is π
(
1− 1

e

)
. In [5] the authors considered defining f(x, y) only inside

the domain {(x, y)|u(x, y) ≥ 0} and extending the values of f outside the domain by extrapo-

lation to simulate the situations in the application of evaluating singular source terms. In this

paper we do not examine this issue while only focus on illustrating the high order accuracy

of our methods. Table 4.2 presents the averaged relative errors of the three methods over 50

trials in which the uniform computational mesh is randomly shifted in the x and y directions.

Similarly to the previous example methods A, C achieve the expected second and fourth or-

der accuracy, while method B also behaves fourth-order accurate. Method B however is not

generally better than third-order accuracy as shown in the next example.

Table 4.2: Example 4.2, averaged relative errors of methods A, B, C

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 Re

method A 3.88E-3 9.68E-4 2.42E-4 6.06E-5 1.52E-5 3.79E-6 2.00

method B 5.93E-5 2.76E-6 1.34E-7 7.29E-9 3.92E-10 2.23E-11 4.26

method C 1.64E-5 1.01E-6 6.25E-8 3.89E-9 2.42E-10 1.52E-11 4.01

Example 4.3. Let

u(x, y) = −
(

x2

(1.5)2
+

y2

(0.75)2
− 1

)(
(x− 0.5)2

(0.5)2
+

y2

(0.4)2
− 1

)
, f(x, y) = e

x2

(1.5)2
+ y2

(0.75)2 .

The domain Ω = {(x, y)|u(x, y) ≥ 0} is enclosed by two elliptic curves as shown in Fig. 4.2.

The exact value of (1.1) is approximately 5.29117243471186. Table 4.3 presents the averaged

−1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y Ω

Fig. 4.2. The domain Ω for Example 4.3.

322 X. WEN

relative errors of the three methods over 50 trials in which the uniform computational mesh is

randomly shifted in the x and y directions and rotated. The methods A, B, C are observed to

be second- to fourth-order accurate respectively as ensured by Theorem 3.1. We also compare

our results with that using the high order version method proposed in [15] which is called

method D in this test. As shown in [15] method D generally behaves fourth-order convergent

for computing multidimensional Heaviside function integrals. The results in Table 4.3 verify

that method D behaves fourth-order convergent for this example. The comparison shows that

our third- and fourth-order methods B, C are more accurate than method D up to the mesh

sizes tested in this example.

Table 4.3: Example 4.3, averaged relative errors of methods A, B, C, D

Mesh size 0.1 0.05 0.025 0.0125 0.00625 0.003125 0.0015625 Re

method A 1.55E-2 3.87E-3 9.76E-4 2.44E-4 6.09E-5 1.52E-5 3.80E-6 2.00

method B 6.84E-4 6.78E-5 8.93E-6 8.95E-7 1.11E-7 1.41E-8 1.66E-9 3.10

method C 1.41E-4 1.01E-5 7.65E-7 5.07E-8 3.56E-9 2.22E-10 1.38E-11 3.88

method D 4.53E-2 9.03E-3 2.20E-4 1.40E-5 9.19E-7 5.61E-8 3.47E-9 4.05

5. Conclusion

In this paper we studied a class of high order numerical methods to two dimensional Heavi-

side function integrals. Inspired by our approach for computing two dimensional delta function

integrals [19], the methods were constructed by considering the approximation of the Heaviside

function integral restricted to mesh cells. In each mesh cell the two dimensional Heaviside

function integral can be rewritten as a one dimensional ordinary integral with the integrand

being a one dimensional Heaviside function integral. The form of the one dimensional integral

takes one of two choices according to the comparison of the two components of gradient of the

level set function which can be checked from the mesh point values of the level set function.

Under such choice, the one dimensional Heaviside function integral being the integrand of the

one dimensional ordinary integral is well-defined and smooth on several subsets of the integral

interval. Consequently the mesh cell restriction of the two dimensional Heaviside function in-

tegral were approximated by constructing approximate subsets of the integral interval of the

one dimensional ordinary integral and applying standard one dimensional high order numerical

quadratures and high order numerical methods to one dimensional Heaviside function integrals.

The algorithm designed under such principle to approximate the mesh cell restrictions of the

two dimensional Heaviside function integral (1.1) comprises the numerical method proposed

in this paper. We established error estimates for the proposed method which show that the

method can achieve any desired accuracy by choosing the corresponding accuracy in the sub-

algorithms of the method. We presented numerical examples in which second- to fourth-order

methods were implemented and shown to achieve or exceed the expected accuracy indicated

by the error analysis. We considered the computation of two dimensional Heaviside function

integrals in this paper. It is interesting to consider applying similar idea to the design of high

order methods to three dimensional Heaviside function integrals in the future.

Acknowledgments. Research supported in part by the Knowledge Innovation Project of the

Chinese Academy of Sciences grant K3502012S8, NSFC grant 10601062 and the National Basic

High Order Methods to Heaviside Function Integrals 323

Research Program grant 2010CB731505.

References

[1] J.T. Beale, A proof that a discrete delta function is second-order accurate, J. Comput. Phys.,

227 (2008), 2195-2197.

[2] Y. Di, R. Li, T. Tang and P.W. Zhang, Level set calculations for incompressible two-phase flows

on a dynamically adaptive grid, J. Sci. Comput., 31 (2006), 75-98.

[3] B. Engquist, A.K. Tornberg and R. Tsai, Discretization of dirac delta functions in level set

methods, J. Comput. Phys., 207:1 (2005), 28-51.

[4] C. Min and F. Gibou, Geometric integration over irregular domains with application to level-set

methods, J. Comput. Phys., 226 (2007), 1432-1443.

[5] C. Min and F. Gibou, Robust second-order accurate discretizations of the multi-dimensional

Heaviside and Dirac delta functions, J. Comput. Phys., 227 (2008), 9686-9695.

[6] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), 220-252.

[7] C.S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), 479-511.

[8] P. Smereka, The numerical approximation of a delta function with application to level set meth-

ods, J. Comput. Phys., 211 (2006), 77-90.

[9] A.K. Tornberg, Interface Tracking Methods with Applications to Multiphase Flows, Ph.D. Thesis,

Royal Institute of Technology, Stockholm, Sweden, 2000.

[10] A.K. Tornberg, Multi-dimensional quadrature of singular and discontinuous functions, BIT, 42

(2002), 644-669.

[11] A.K. Tornberg and B. Engquist, A finite element based level set method for multiphase flow

applications, Comput. Vis. Sci., 3 (2000), 93-101.

[12] A.K. Tornberg and B. Engquist, Numerical approximations of singular source terms in differential

equations, J. Comput. Phys., 200 (2004), 462-488.

[13] J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput.

Phys., 220:2 (2007), 915-931.

[14] J.D. Towers, A convergence rate theorem for finite difference approximations to delta functions,

J. Comput. Phys., 227:13 (2008), 6591-6597.

[15] J.D. Towers, Finite difference methods for approximating Heaviside functions, J. Comput. Phys.,

228:9 (2009), 3478-3489.

[16] J.D. Towers, Discretizing delta functions via finite differences and gradient normalization, J.

Comput. Phys., 228:10 (2009), 3816-3836.

[17] X. Wen, High order numerical methods to a type of delta function integrals, J. Comput. Phys.,

226 (2007), 1952-1967.

[18] X. Wen, High order numerical quadratures to one dimensional delta function integrals, SIAM J.

Sci. Comput., 30:4 (2008), 1825-1846.

[19] X. Wen, High order numerical methods to two dimensional delta function integrals in level set

methods, J. Comput. Phys., 228:11 (2009), 4273-4290.

[20] X. Wen, High order numerical methods to three dimensional delta function integrals in level set

methods, SIAM J. Sci. Comput., 32:3 (2010), 1288-1309.

