
Journal of Computational Mathematics

Vol.29, No.4, 2011, 441–457.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1103-m3422

HSS METHOD WITH A COMPLEX PARAMETER FOR THE
SOLUTION OF COMPLEX LINEAR SYSTEM*

Guiding Gu

Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai

200433, China

Email: guiding@mail.shufe.edu.cn

Abstract

In this paper, a complex parameter is employed in the Hermitian and skew-Hermitian

splitting (HSS) method (Bai, Golub and Ng: SIAM J. Matrix Anal. Appl., 24(2003),

603-626) for solving the complex linear system Ax = f . The convergence of the resulting

method is proved when the spectrum of the matrix A lie in the right upper (or lower)

part of the complex plane. We also derive an upper bound of the spectral radius of the

HSS iteration matrix, and a estimated optimal parameter α (denoted by αest) of this upper

bound is presented. Numerical experiments on two modified model problems show that the

HSS method with αest has a smaller spectral radius than that with the real parameter which

minimizes the corresponding upper bound. In particular, for the ′dominant′ imaginary

part of the matrix A, this improvement is considerable. We also test the GMRES method

preconditioned by the HSS preconditioning matrix with our parameter αest.
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1. Introduction

We are interested in the iterative solution of the following complex linear system

Ax = f. (1.1)

We consider the case in which A ∈ Cn×n is large, sparse, non-Hermitian and positive definite

and f ∈ Cn; see several applications in [12,17,21].

Bai, Golub and Ng [6] proposed the Hermitian/skew-Hermitian splitting (HSS) method

based on the fact that the matrix A naturally possesses the Hermitian/skew-Hermitian splitting

A = H + S,

where H = 1
2 (A+AH) is the Hermitian matrix, S = 1

2 (A−AH) is the skew-Hermitian matrix,

and AH is the conjugate transpose of the matrix A. The HSS method has the following form:
{

(αI +H)x(k+
1

2
) = (αI − S)x(k) + f,

(αI + S)x(k+1) = (αI −H)x(k+
1

2
) + f,

(1.2)

where the parameter α > 0 can be chosen. The above form can be equivalently rewritten as

x(k+1) = T (α)x(k) +G(α)f, k = 0, 1, 2, · · · , (1.3)
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where T (α) = (αI + S)−1(αI − H)(αI + H)−1(αI − S) is the iteration matrix, and G(α) =

2α(αI + S)−1(αI +H)−1.

The following theorem [6] gives the convergence property of the HSS iteration.

Theorem 1.1. Suppose that A ∈ Cn×n is a positive definite matrix, H = 1
2 (A + AH), S =

1
2 (A − AH) are the Hermitian and Skew-Hermitian parts of A respectively, and the parameter

α > 0. Then the spectral radius ρ(T (α)) of the iteration matrix T (α) of the HSS iteration is

bounded by

ρ(T (α)) ≤ σ(α) = max
λj∈Λ(H)

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

, (1.4)

where Λ(·) represents the spectrum of the corresponding matrix. Since A is positive definite

(λj > 0), we have

ρ(T (α)) ≤ σ(α) < 1, for all α > 0,

i.e., the HSS iteration converges.

Furthermore, let λ1 ≥ · · · ≥ λn > 0 be the eigenvalues of H. Then the upper bound σ(α)

has the optimal parameter

α̃ =
√

λ1λn (1.5)

and

σ(α̃) = min
α>0

σ(α) =

√

κ(H)− 1
√

κ(H) + 1
,

where κ(H) = λ1

λn
is the spectral condition number of H.

However, we have the following observations:

(1) α̃ is usually different from the optimal parameter

α∗ = argmin
α>0

ρ(T (α)).

(2) Numerical experiments in [5,6,10,11] have shown that in most situations,

ρ(T (α∗)) ≪ ρ(T (α̃)).

(3) α̃ and σ(α̃) do not include any information of S.

To further improve the efficiency of the HSS method, it is desirable to determine or find a good

estimate for the optimal parameter α∗. For some special constructed matrices, in particular,

for saddle-point problems, the optimal parameter, or the quasi-optimal parameter [2], has been

extensively discussed [2,4,5,8,10], and the results show that the optimal parameter does include

the information of S.

The matrix

P =
1

2α
(H + αI)(S + αI) (1.6)

can also be employed as a preconditioner [2,8,11,23], where α is referred to as the preconditioning

parameter. The idea of HSS preconditioner is motivated from the HSS method.

More generally, the coefficient matrix A ∈ Cn×n can be splitted into

A = N + S0,

where N is a normal matrix and S0 is a skew-Hermitian matrix. Similarly to the HSS method,

normal/skew-Hermitian splitting (NSS) method with a real parameter could be formed [7].
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When A is a positive definite matrix and α is a positive parameter, the NSS method converges,

and the spectral radius ρ(M0(α)) of the iteration matrixM0(α) of the NSS iteration is bounded

by

ρ(M0(α)) ≤ σ0(α) = max
γj+iηj∈Λ(N)

√

(α− γj)2 + η2j

(α+ γj)2 + η2j
.

In [7], the optimal real parameter of the upper bound σ0(α) is also discussed, and the optimal

upper bound of the contraction factor of the HSS iteration is the smallest among all NSS

iterations.

In this paper, we employ a complex parameter α in the HSS iteration (1.2) for solving the

complex linear system (1.1). This idea is natural as it does not increase the computational

complexity of the HSS method for the complex linear systems. We show that the resulting

method converges when the spectrum of the matrix A lie in the right upper (or lower) part of

the complex plane. An upper bound of the spectral radius ρ(T (α)) of the HSS iteration matrix

T (α) is given. This upper bound includes the spectral information of the matrix S. Moreover,

a estimated optimal parameter αest of this upper bound is presented. Numerical experiments

on two modified model problems show that the HSS method with αest has a smaller spectral

radius than that with the real parameter that minimizes the upper bound (1.4). In particular,

for the ′dominant′ imaginary part of the matrix A (see Experiment 2), this improvement is

considerable. In Experiment 2, we also test the GMRES method preconditioned by the HSS

preconditioner with αest, and investigate how sensitive are the estimated parameter αest and

ρ(T (αest)) with respect to the spectral information of H and S.

2. HSS Method with Complex Parameter

We still consider the HSS iteration (1.2) for the solution of the complex linear system (1.1),

but now the parameter α is complex.

Since the matrix S is skew-Hermitian, its eigenvalues are imaginary numbers or zero [22],

denoted by λ(S) = iτj, i =
√
−1, τj ∈ R, j = 1, 2, · · · , n. Suppose that the spectrum of the

n × n complex matrix A lie in the right upper (or lower) part of the complex plane, i.e., A

is a positive definite matrix, and all τj ≥ 0 (or τj ≤ 0). This assumption is needed for the

convergence of the HSS method with a complex parameter α.

Theorem 2.1. Suppose that the spectrum of the n×n complex matrix A lie in the right upper

(or lower) part of the complex plane. The parameter α = a + ib, a, b ∈ R is chosen such that

a > 0 and b · τj ≥ 0, j = 1, · · · , n. Then the HSS iteration (1.2) with the complex parameter α

converges. Furthermore, it holds that

ρ(T (α)) ≤ ω(α) ≡ max
λj∈Λ(H)

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

max
iτj∈Λ(S)

∣

∣

∣

∣

α− iτj

α+ iτj

∣

∣

∣

∣

< 1. (2.1)

Proof. Let T̃ (α) = (αI + S)T (α)(αI + S)−1 = (αI − H)(αI + H)−1(αI − S)(αI + S)−1.

Then

ρ(T (α)) =ρ((αI −H)(αI +H)−1(αI − S)(αI + S)−1)

≤‖(αI −H)(αI +H)−1‖2‖(αI − S)(αI + S)−1‖2.
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Since S is skew-Hermitian, there exists a unitary matrix U , such that S = UΛUH , where

Λ = diag(iτ1, · · · , iτn). It follows that

‖(αI − S)(αI + S)−1‖2 =‖U(αI − Λ)(αI + Λ)−1UH‖2
=‖(αI − Λ)(αI + Λ)−1‖2

= max
iτj∈Λ(S)

∣

∣

∣

∣

α− iτj

α+ iτj

∣

∣

∣

∣

.

Similarly, it holds that ‖(αI −H)(αI +H)−1‖2 = maxλj∈Λ(H)

∣

∣

∣

α−λj

α+λj

∣

∣

∣
. Thus we obtain

ρ(T (α)) ≤ max
λj∈Λ(H)

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

max
iτj∈Λ(S)

∣

∣

∣

∣

α− iτj

α+ iτj

∣

∣

∣

∣

.

Under the assumption that λj > 0 nd Re(α) > 0, Im(α)τj ≥ 0, we have

ρ(T (α)) ≤ ω(α) < 1;

i.e., the HSS iteration converges. 2

In particular, if the parameter α = a > 0 is chosen to be a real number (i.e., b = 0), then

when the matrix A is positive definite, the HSS iteration (1.2) converges; and it holds that

ρ(T (α)) ≤ max
λj∈Λ(H)

∣

∣

∣

∣

a− λj

a+ λj

∣

∣

∣

∣

< 1.

This is the conclusion of Theorem 1.1.

The upper bound (2.1) shows that ω(α) includes the spectral information of the matrix S,

and if a suitable complex parameter α is chosen, it is possible that ω(α) < σ(α).

Remark 2.1. For a complex parameter α = a+ ib, the HS splitting can be viewed as the NS

splitting with a real parameter a:

A = αI +H − (αI − S) = aI + (ibI +H)− (aI − (−ibI + S))

and

A = αI + S − (αI −H) = aI + (ibI + S)− (aI − (−ibI +H)),

where H1 ≡ ibI + H and H2 ≡ −ibI + H are normal matrices but H1 6= H2, and S1 ≡
−ibI + S, S2 ≡ ibI + S are skew-Hermitian matrices but S1 6= S2 too. Thus the HSS method

with a complex parameter cannot be viewed as the NSS method with a real parameter [7].

Next we discuss the estimation to the optimal parameter of the upper bound ω(α).

Let

ω1(α) = max
λj∈Λ(H)

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

, ω2(α) = max
iτj∈Λ(S)

∣

∣

∣

∣

α− iτj

α+ iτj

∣

∣

∣

∣

.

According to the condition for the convergence of HSS with a complex parameter in Theorem

2.1, we assume the eigenvalues iτj of the matrix S satisfying

τ1 ≥ · · · ≥ τn ≥ 0,

and choose the parameter α = a+ ib such that a > 0 and b ≥ 0.
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Lemma 2.1. Let λ1 ≥ · · · ≥ λn > 0, τ1 ≥ · · · ≥ τn ≥ 0, and a > 0, b ≥ 0. Then it holds

that

ω1(α) = max

( |a− λ1 + ib|
|a+ λ1 + ib| ,

|a− λn + ib|
|a+ λn + ib|

)

(2.2)

and

ω2(α) = max

( |a+ i(b− τ1)|
|a+ i(b+ τ1)|

,
|a+ i(b− τn)|
|a+ i(b+ τn)|

)

. (2.3)

Proof. We consider ω2
1(α) = maxλj∈Λ(H)

(a−λj)
2+b2

(a+λj)2+b2
. Let

g(λ) ≡ (a− λ)2 + b2

(a+ λ)2 + b2
, 0 < λn ≤ λ ≤ λ1.

It is clear that λ =
√
a2 + b2 is the unique positive minimizer of g(λ). Therefore the maximum

of g(λ) reaches at the point λ1 or λn. This proves the result (2.2). Similarly, the result (2.3)

can be shown in the same way. 2

Lemma 2.2. Under the assumption of Lemma 2.1, for a fixed b ≥ 0,

(1) if b2 ≤ λn

2 (λ1−λn), there is a minimizer of ω1: a
∗ ≡ argmina>0ω1(a+ib) =

√
λ1λn − b2,

and it holds that

ω1(a
∗ + ib) =

√

λ1 + λn − 2a∗

λ1 + λn + 2a∗
=

√

λ1 + λn − 2
√
λ1λn − b2

λ1 + λn + 2
√
λ1λn − b2

; (2.4′)

(2) if b2 > λn

2 (λ1−λn), there is a minimizer of ω1: a∗ ≡ argmina>0ω1(a+ ib) =
√

λ2n + b2,

and it holds that

ω1(a∗ + ib) =

√

a∗ − λn

a∗ + λn
=

√

√

λ2n + b2 − λn
√

λ2n + b2 + λn
. (2.4′′)

Similarly, for a fixed a > 0,

(3) if a2 ≤ τn
2 (τ1−τn), there is a minimizer of ω2: b

∗ ≡ argminb≥0ω2(a+ ib) =
√
τ1τn − a2,

and it holds that

ω2(a+ ib∗) =

√

τ1 + τn − 2b∗

τ1 + τn + 2b∗
=

√

τ1 + τn − 2
√
τ1τn − a2

τ1 + τn + 2
√
τ1τn − a2

; (2.5′)

(4) if a2 > τn
2 (τ1 − τn), there is a minimizer of ω2: b∗ ≡ argminb≥0ω2(a+ ib) =

√

τ2n + a2,

and it holds that

ω2(a+ ib∗) =

√

b∗ − τn

b∗ + τn
=

√

√

τ2n + a2 − τn
√

τ2n + a2 + τn
. (2.5′′)

Proof. We only prove the result (2.4). The conclusion (2.5) can be proven in the same way.

We consider the minimum of ω2
1(a+ ib) for a fixed b. For j = 1 and j = n, let

ξj(a) ≡
(a− λj)

2 + b2

(a+ λj)2 + b2
.

Then

ξ′j(a) =
4λj(a

2 − λ2j − b2)

[(a+ λj)2 + b2]2
.
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It is clare that a =
√

λ2j + b2 is the unique positive minimizer of ξj(a).

(i) In the case of b2 ≥ λ1λn ≥ λn

2 (λ1 − λn), since for any a > 0,

ξ1(a)− ξn(a) =
4a

((a+ λ1)2 + b2)((a + λn)2 + b2)
(λ1λn − b2 − a2)(λ1 − λn) < 0, (2.6)

it holds that ω2
1(a+ ib) = ξn(a) for a fixed b ≥

√
λ1λn. Therefore, the minimizer of ω1(a+ ib)

with respect to a is the minimizer of ξn(a): a∗ =
√

λ2n + b2.

(ii) In the case of b2 < λ1λn, when a > 0, ξ1 and ξn have the unique intersection point

a∗ =
√
λ1λn − b2, and a∗ < λ1.

When a∗ =
√
λ1λn − b2 ≥

√

λ2n + b2, or equivalently, b2 ≤ λn

2 (λ1 − λn), for

a ∈ (
√

λ2n + b2,
√

λ21 + b2), ξ1(a) decreases, while ξn increases, so the minimum of ω1(a + ib)

with respect to a is reached at the intersection point a∗ =
√
λ1λn − b2, which is the result of

(2.4′).

When a∗ =
√
λ1λn − b2 <

√

λ2n + b2, or equivalently, b2 > λn

2 (λ1−λn), for a ∈ (0,
√

λ2n + b2),

both ξ1 and ξn decrease, and from (2.6), we have

ξ1(a∗)− ξn(a∗) =
4a∗

((a∗ + λ1)2 + b2)((a∗ + λn)2 + b2)
(λ1λn − b2 − (λ2n + b2))(λ1 − λn) < 0,

so the minimum value of ω1(a+ ib) with respect to a is reached at a∗ =
√

λ2n + b2 of ξn, which

is the result (2.4′′). 2

According to the expression (2.1) of ω(a+ bi), we consider the minimization of ω(a+ ib) in

the area Ω = [0 < a ≤ λ1, 0 ≤ b ≤ τ1]:

min
(a,b)∈Ω

ω(a+ ib) = min
(a,b)∈Ω

ω1(a+ ib)ω2(a+ ib). (2.7)

Clearly, the following lemma holds.

Lemma 2.3. Let f1(a, b) ≥ 0, f2(a, b) ≥ 0 for (a, b) ∈ Ω. Then for any non-negative function

b = s(a) ≤ τ1, it holds that

min
(a,b)∈Ω

f1(a, b)f2(a, b) ≤ min
0<a≤λ1

[f1(a, s(a)) min
0≤b≤τ1

f2(a, b)]. (2.8′)

Similarly, for any positive function a = t(b) ≤ λ1, it holds that

min
(a,b)∈Ω

f1(a, b)f2(a, b) ≤ min
0≤b≤τ1

[f2(t(b), b) min
0<a≤λ1

f1(a, b)]. (2.8′′)

Set

a0 = min

(
√

τn

2
(τ1 − τn), λ1

)

, b0 = min

(

√

λn

2
(λ1 − λn), τ1

)

.

According to Lemma 2.2, when 0 < a < a0, ω2(a, b) reaches its minimum at the point b∗ =√
τ1τn − a2, so we set s(a) =

√
τ1τn − a2 in Lemma 2.3; when a0 < a ≤ λ1, ω2(a, b) reaches its

minimum at the point b∗ =
√

τ2n + a2, so we set s(a) =
√
τ1τn − a2 in Lemma 2.3. Thus we

have the following result (2.9). Similarly, by setting t(b) =
√
λ1λn − b2 and t(b) =

√

λ2n + b2 in

Lemma 2.3, we can obtain the result (2.10). We summarize these in the following theorem.
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Theorem 2.2. Under the assumption of Lemma 2.1, the following results hold true

min
(a,b)∈Ω

ω(a+ ib) ≤ min( min
0<a≤a0

φ1(a), min
a0≤a≤λ1

φ2(a)) (2.9)

and

min
(a,b)∈Ω

ω(a+ ib) ≤ min( min
0≤b≤b0

ψ1(b), min
b0≤b≤τ1

ψ2(b)), (2.10)

where

φ1(a) =ω1(a+ i
√

τ1τn − a2)ω2(a+ i
√

τ1τn − a2),

φ2(a) =ω1(a+ i
√

τ2n + a2)ω2(a+ i
√

τ2n + a2),

ψ1(b) =ω1(
√

λ1λn − b2 + ib)ω2(
√

λ1λn − b2 + ib),

ψ2(b) =ω1(
√

λ2n + b2 + ib)ω2(
√

λ2n + b2 + ib).

Next, we discuss the problem min0≤b≤b0 ψ1(b) by considering the minimization of ψ2
1(b).

The problem min0<a≤a0 φ1(a) can be discussed in the same way.

From (2.4′) in Lemma 2.2 and by setting a∗(b) =
√
λ1λn − b2, we have

ω2
1(a

∗(b) + ib) = 1− 4a∗(b)

λ1 + λn + 2a∗(b)

and

ω2
2(a

∗(b) + ib) = max

(

(a∗(b))2 + (b− τ1)
2

(a∗(b))2 + (b+ τ1)2
,
(a∗(b))2 + (b− τn)

2

(a∗(b))2 + (b+ τn)2

)

.

For j = 1 and j = n, let

hj(b) ≡
(a∗(b))2 + (b− τj)

2

(a∗(b))2 + (b+ τj)2
= 1− 4bτj

τ2j + λ1λn + 2bτj
.

Then

h1(b)− hn(b) =
4b(τ1 − τn)(τ1τn − λ1λn)

(λ1λn + τ21 + 2bτ1)(λ1λn + τ2n + 2bτn)
.

If τ1τn ≥ λ1λn, then h1(b) ≥ hn(b). Therefore,

ω2
2(a

∗(b) + ib) = h1(b) = 1− 4bτ1
τ21 + λ1λn + 2bτ1

.

If τ1τn ≤ λ1λn, then h1(b) ≤ hn(b). Therefore,

ω2
2(a

∗(b) + ib) = hn(b) = 1− 4bτn
τ2n + λ1λn + 2bτn

.

Thus, ψ2
1(b) has the following expression in [0, b0] :

ψ2
1(b) =

{

(1 − 4a∗(b)
λ1+λn+2a∗(b) )(1 −

4bτ1
τ2

1
+λ1λn+2bτ1

), τ1τn ≥ λ1λn,

(1 − 4a∗(b)
λ1+λn+2a∗(b) )(1 −

4bτn
τ2
n+λ1λn+2bτn

), τ1τn ≤ λ1λn.

Similarly, φ21(a) has the following expression in (0, a0] :

φ21(a) =

{

(1− 4b∗(a)
τ1+τn+2b∗(a))(1 −

4aλ1

λ2

1
+τ1τn+2aλ1

), τ1τn ≤ λ1λn,

(1− 4b∗(a)
τ1+τn+2b∗(a))(1 − 4aλn

λ2
n+τ1τn+2aλn

), τ1τn ≥ λ1λn,

where b∗(a) =
√
τ1τn − a2.

The following theorem provides the minima of φ1(a) and ψ1(b).
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Theorem 2.3. Under the assumption of Lemma 2.1 and τ1 6= τn, there is the minimizer a′est =√
ã∗ of φ1(a) in (0,

√
τ1τn], and ã

∗ is a positive root of either

p1(ã) = 0, λ1λn ≥ τ1τn, (2.11′)

or

pn(ã) = 0, λ1λn ≤ τ1τn, (2.11′′)

where for j = 1 and j = n,

pj(ã) ≡16λ2j(λ
2
jτ

2
c + u2j)ã

3 − 48τ1τnλ
2
ju

2
j ã

2

+ u2j [τ
2
c u

2
j + λ2j (τ1 − τn)

2(τ21 + τ2n − 10τ1τn)]ã− λ2ju
2
jτ1τn(τ1 − τn)

4,

uj = λ2j + τ1τn, τc = τ1 + τn, ã = a2.

Similarly, there is a minimizer b′′est =
√

b̃∗ of ψ1(b) in [0,
√
λ1λn] , and b̃

∗ is a non-negative

root of either

q1(b̃) = 0, τ1τn ≥ λ1λn, (2.12′)

or

qn(b̃) = 0, τ1τn ≤ λ1λn, (2.12′′)

where for j = 1 and j = n,

qj(b̃) ≡ 16τ2j (τ
2
j λ

2
c + v2j )b̃

3 − 48λ1λnτ
2
j v

2
j b̃

2

+ v2j [λ
2
cv

2
j + τ2j (λ1 − λn)

2(λ21 + λ2n − 10λ1λn)]b̃ − τ2j v
2
jλ1λn(λ1 − λn)

4,

vj = τ2j + λ1λn, λc = λ1 + λn, b̃ = b2.

Proof. We prove the result (2.12′). The results (2.12′′) and (2.11) can be shown in the same

way.

For simplicity, we now omit the superscript of a∗(b) and let a(b) =
√
λ1λn − b2. Then

ψ2
1(b) =

λc − 2a(b)

λc + 2a(b)

v1 − 2bτ1
v1 + 2bτ1

.

By setting
dψ2

1

db
= 0, we have

q(b) ≡ 4λcτ
2
1 a

′(b)b2 − λcv
2
1a

′(b) + 4τ1v1a(b)
2 − τ1v1λ

2
c = 0. (2.13)

Consider the value of q(b) at bǫ =
√
λ1λn − ǫ2, where ǫ > 0 is a small positive number. Note

that a(bǫ) = ǫ > 0 and a′(bǫ) = −
√
λ1λn−ǫ2

ǫ
. Thus we have

q(bǫ) =4λcτ
2
1 (λ1λn − ǫ2)(−

√
λ1λn − ǫ2

ǫ
)− λcv

2
1(−

√
λ1λn − ǫ2

ǫ
) + 4τ1v1ǫ

2 − τ1v1λ
2
c

=
1

ǫ
[λc
√

λ1λn − ǫ2(v21 − 4τ21λ1λn) +O(ǫ)]

=
1

ǫ
[λc
√

λ1λn − ǫ2(τ21 − λ1λn)
2 +O(ǫ)].

For a suitable small ǫ > 0, q(bǫ) ≥ 0. Also for a suitable small ǫ > 0,

q(ǫ) = −τ1v1(λ1 − λn)
2 +O(ǫ) ≤ 0.
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This shows that as b increases in [0,
√
λ1λn], ψ

2
1(b) firstly decreases and then increases, and

therefore, ψ2
1(b) has the minimizer b′′est in [0,

√
λ1λn], which satisfies q(b′′est) = 0. If λ1 6= λn,

b′′est ∈ (0,
√
λ1λn].

Next, we simplify the expression (2.13). By substituting a(b)2 = λ1λn − b2 and a′(b) =

− b√
λ1λn−b2

into (2.13), we have

−4λcτ
2
1

b3√
λ1λn − b2

+ λcv
2
1

b√
λ1λn − b2

− 4τ1v1b
2 + τ1v1(4λ1λn − λ2c) = 0,

or equivalently,

λ2c(v
2
1 − 4τ21 b

2)2b2 = τ21 v
2
1 [4b

2 + (λ1 − λn)
2]2(λ1λn − b2).

Let b̃ = b2. Then we have

(16λ2cτ
4
1 + 16τ21 v

2
1)b̃

3 + [−8λ2cτ
2
1 v

2
1 + 8τ21 v

2
1(λ1 − λn)

2 − 16τ21 v
2
1λ1λn]b̃

2

+ [λ2cv
4
1 − 8τ21 v

2
1(λ1 − λn)

2λ1λn + τ21 v
2
1(λ1 − λn)

4]b̃ − τ21 v
2
1(λ1 − λn)

4λ1λn = 0,

which leads to (2.12′). 2

The minimization problems of φ2(a) and ψ2(b) can be discussed in a similar way, and hence

are omitted. It is worthy mentioned that our numerical experiments indicate that the minimum

value of φ1(a) or ψ1(b) is smaller than the minimum value of φ2(a) or ψ2(b) in (2.9) and (2.10).

Consequently by Theorem 2.2, we have the following upper bound for min ω(a+ ib),

min
0<a≤λ1,0≤b≤τ1

ω(a+ ib) ≤ min( min
0<a≤√

τ1τ2
φ1(a), min

0≤b≤
√
λ1λ2

ψ1(b)). (2.14)

This minimization problem, by Theorem 2.3, can be solved via solving equations of (2.11) and

(2.12).

We now summarize our discussions and provide our parameter αest which estimates the

optimal parameter of the upper bound ω(α) as follows.

Given λ1 ≥ λn > 0 and τ1 > τn ≥ 0,

(1) for the case λ1λn ≥ τ1τn:

• find the minimizer a′est of φ1(a) by solving the positive root p1(ã) = 0 in (2.11′), and the

minimizer b′′est of ψ1(b) by solving the positive root qn(b̃) = 0 in (2.12′′);

• if φ1(a
′
est) ≤ ψ1(b

′′
est), let aest = a′est, best =

√

τ1τn − a2est to form αest = aest + ibest;

otherwise

• if φ1(a
′
est) > ψ1(b

′′
est), let best = b′′est, aest =

√

λ1λn − b2est to form αest = aest + ibest.

(2) for the case λ1λn < τ1τn:

• find the minimizer a′est of φ1(a) by solving the positive root pn(ã) = 0 in (2.11′′), and the

minimizer b′′est of ψ1(b) by solving the positive root q1(b̃) = 0 in (2.12′);

• if φ1(a
′
est) ≤ ψ1(b

′′
est), let aest = a′est, best =

√

τ1τn − a2est to form αest = aest + ibest;

otherwise

• if φ1(a
′
est) > ψ1(b

′′
est), let best = b′′est, aest =

√

λ1λn − b2est to form αest = aest + ibest.
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3. Implementation Aspects

In the HSS method, two shifted sub-systems with respect to αI +H and αI + S must be

solved in each iteration.

For a real parameter α > 0 and a Hermitian positive definite matrix H , the shifted matrix

αI + H remains a Hermitian positive definite, so the ′exact′ solution could be solved by the

(complex) Cholesky factorization method, while its ′inexact′ solution could be solved by the

(complex) CG method; however, for the real shifted skew-Hermitian matrix αI + S, when S

is structured [3], the difficulty in solving the relevant system varies from case to case. But in

general, this will not be the case.

For a complex parameter α = a + ib, since the sub-system (αI + S)u = g is equivalent to

(iαI + iS)u = ig, both shifted sub-systems become systems with respect to a complex shifted

Hermitian positive definite matrix αI + H or iαI + iS under the assumption of Lemma 2.1.

For large sparse matrices, these shifted sub-systems could be solved by certain shifted Krylov

subspace method like the Lanczos method, or the MINRES method et al. [13-16,18-20]. Since

the Krylov method keeps shift invariance, the basis vector can be constructed by the matrix H

or iS (using short recurrence), irrelative to the shift α or iα. Thus the computational cost with

a complex parameter could not be significantly higher than that with a real parameter. This

deserves a further and detailed investigation.

The HSS preconditioner is nowadays mostly discussed. The matrix

P =
1

2α
(H + αI)(S + αI)

is called the HSS preconditioner, where α is referred to as the preconditioning parameter. It

is known that in general, the smaller the spectral radius ρ(T (α)) of the HSS iterative matrix

is, the better the gathering of the spectrum the preconditioned matrix P−1A. This will make

the Krylov subspace method converge faster; see Experiment 2 in the next section. Also, two

shifted systems with respect to H + αI and S + αI (or iS + iαI) have to be solved in solving

the preconditioning sub-system each iteration. We can still use the shifted Krylov subspace

method to solve them as a polynomial preconditioner. In addition, the incomplete factorization

[14] of these shifted matrix may be used as a proconditioner, instead of H + αI and S + αI,

which could probably keep the computational cost economic, even for the complex parameter.

How to solve the systems with respect to a shifted Hermitian or skew-Hermitian efficiently

is a further problem. We will leave it for our further work.

4. Numerical Experiments

In this section, we present two numerical experiments in solving the complex linear systems

(1.1) from two modified model problems by the HSS iteration with our estimated parameter

αest and with the real parameter α̃ in (1.5); moreover, for comparison purpose, the HSS method

with the experimental ′optimal′ parameter αexp = aexp+ ibexp is also tested, which is obtained

by computing the spectral radius ρ(T (α)) of the iterative matrix T (α) with all parameter α

on 100 × 100 mesh points in [0, λ1; 0, τ1]. In Experiment 2, we also report results from full

GMRES method, full GMRES preconditioned by HSS(α) preconditioner (see Table 4.5), and

the sensitivity of the estimated parameter αest and ρ(T (αest)) with respect to the spectral

information of H and S (see Table 4.6).
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In our test, the eigenvalues of a matrix are solved by the function eig and the root of π(x) = 0

is solved by the function root in Matlab(7.4 ed).

We report the results of our numerical experiments with a Fortran 77 implementation of

the HSS method based on the iteration (1.2). Two shifted sub-systems are solved by exact

factorization method. The right-hand side of the linear system (1.1) is formed by f = Ax,

where

x = (1− i, 1− i, · · · , 1− i)T . (4.1)

The initial value is x(0) = 0, and the stopping criterion is based on the residual of system (1.1)

‖f −Ax(k)‖ < 10−6.

Experiment 1. Consider a differential equation with complex coefficient which forms a non-

Hermitian complex matrix,

−uxx + iδxux + γu = g, x ∈ [0, 1],

where δ ∈ R, γ ∈ C, i =
√
−1. This equation is modified to the model problem

−uxx + δxux + γu = g, δ, γ ∈ R.

When the centered difference to uxx and centered differences or the forward difference to ux
are applied to the above model, we get the linear system (1.1) with the tridiagonal complex

coefficient matrices, denoted by Ac and Af respectively. The kth rows of Ac and Af are:

(Ac)k = tridiag(−1− ikP, 2 + γh2,−1 + ikP ),

or

(Af )k = tridiag(−1, 2 + (γ − ikδ)h2,−1 + ikδh2),

where h = 1
n+1 is the step-size and P = δh2

2 . In our numerical tests, we set n = 100 (since we

want to seek the experimental ′optimal′ parameter αexp on 100× 100 mesh points, it will take

too much time if n is large) and γ = 2000+ i20000. The numerical results with Ac and Af are

listed in Table 4.1 and Table 4.2 respectively.

In these tables, the experimental ′optimal′ parameter αexp, the estimated parameter αest,

the upper-bound minimizer α̃ for real parameter, and the corresponding spectral radii ρ(α) ≡
ρ(T (α)) of the HSS iteration matrix T (α) are presented; moreover the number of iterations

(denoted by IT) for the convergence of the HSS iteration method are also listed with different

parameter δ.

Table 4.1: α, ρ(α) and iteration number(IT) of HSS with Ac for Ex. 1.

δ 5 10 100

αexp 0.0000 + 1.9608i 0.0000 + 1.9611i 0.0000 + 1.9655i

ρ(αexp) 1.1549 × 10−4 2.5441 × 10−4 2.4646 × 10−3

IT 3 3 4

αest 6.3362 × 10−9 + 1.9605i 2.5280 × 10−8 + 1.9606i 3.3174 × 10−7 + 1.9606i

ρ(αest) 8.5953 × 10−5 1.2693 × 10−4 1.2431 × 10−3

IT 3 3 4

α̃ 0.9087 0.9075 0.3406

ρ(α̃) 0.6439 0.6443 0.8553

IT 39 39 ×
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From Table 4.1 we see that the numerical results produced with αest coincide with those

using αexp, but it does not for α̃.

Remark 4.1. (1) The situation ρ(αexp) > ρ(αest) occurs. This is because the mesh 100× 100

over [0, λ1; 0, τ1] is rough, e.g., for δ = 5, λ1 = 4.1953, τ1 = 1.9608, and the mesh size is

0.04195× 0.01961, which cannot reach the precision O(10−3). Therefore it is possible that αexp
is not an exact optimal parameter.

(2) The symbol ′ × ′ in Table 4.1 (also in Table 4.2) means that the HSS method could not

meet the stopping criterion after 200 iteration steps.

Table 4.2: α, ρ(α) and iteration number(IT) of HSS with Af for Ex. 1.

δ 5 10 100

αexp 0.0000 + 1.9211i 0.0000 + 1.8817i 1.9200 + 1.9556i

ρ(αexp) 0.0139 0.0288 0.4373

IT 5 6 19

αest 0.2246 × 10−3 + 1.9138i 0.9409 × 10−3 + 1.8659i 0.0957 + 0.4701i

ρ(αest) 0.0120 0.0246 0.5855

IT 5 6 49

α̃ 0.9087 0.9075 0.3528

ρ(α̃) 0.6439 0.6444 0.8501

IT 39 39 ×

The results in Table 4.2 indicate that that αest is a good approximation to αexp for small

δ, and the iteration number for convergence with αest is the same as that with αexp. On the

other hand for large δ, αest is not close to αexp, but is still better than α̃.

Experiment 2. (See [1,3]) The linear systems (1.1) is of the form

(W + iZ)x = f, (4.2)

where W = K̃ + w1I, Z = K̃ + w2I and w1 = 3+
√
3

τ
, w2 = 3−

√
3

τ
, τ is the time step-size and

K̃ is the five-point centered difference matrix approximating the negative Laplacian operator

L = −∆ with homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit square

[0, 1] × [0, 1] with the mesh-size h = 1
m+1 . Thus, the systems is a complex symmetric system

with the n × n coefficient matrix A = W + iZ and n = m ×m. For the complex symmetric

systems, the modified HSS method [3] has the considerable advantage.

In our experiment, in order to show the advantage of the HSS with a complex parameter,

we modify the above so that the resulting system is a complex non-symmetric system, but

satisfying with the convergence condition of Theorem 2.1.

First, the matrix K̃ is changed to K, which is the five-point centered difference matrix

approximating the operator L = −∆+ γ(∂x + ∂y), γ ∈ R. Let

W = K + w1I and Z = K + w2I. (4.3)

Thus, the matrix A =W + iZ is complex non-symmetric. In our tests, we also take τ = h and

normalize the coefficient matrix and the right-hand side by multiplying both by h2; see [3].

Let H = 1
2 (A + AH) and S = 1

2 (A − AH). We use the function eig in Matlab to solve the

eigenvalues of the matrices H and S: λ1 = λmax(H) = 8.2119, λn = λmin(H) = 0.3448; τ1 =
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τmax(S) = 8.0082, τn = τmin(S) = 0.1410. Our estimated parameter αest can be derived by

(2.11), (2.12). The experimental result for Ex. 2 with (4.2), (4.3) and m = 16, γ = 1 is listed in

Table 4.3. Fig.1 shows the spectral radii ρ(α) with all α = a+ ib on the 100× 100 mesh points

in [0, λ1; 0, τ1].
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Fig. 4.1. ρ(α) with all α = a + ib on 100 × 100 mesh points in [0, λ1; 0, τ1] for Ex. 2 with (4.2), (4.3)

and m = 16, γ = 1.

Table 4.3: α, ρ(α), ω(α) or σ(α) and iteration number(IT) of HSS for Ex. 2 with (4.2), (4.3) and

m = 16, γ = 1.

parameter αest = 1.5799 + 0.5792i α̃ = 1.6827 αexp = 1.3139 + 0.7207i

spectral radius ρ(αest) = 0.6375 ρ(α̃) = 0.6598 ρ(αexp) = 0.6089

upper bound ω(αest) = 0.6409 σ(α̃) = 0.6599 -

IT 37 39 33

From Table 4.3 we see that αest yields a better approximation to αexp than α̃ does; however

αest makes improvement on the spectral radius a little bit on α̃. We note that α̃ is close to the

real part of αexp (or αest) and this real part is ′dominant′ to the imaginary part.

Now we exchange w1 with w2 in (4.3), such that

W = K + w2I and Z = K + w1I. (4.4)

Note that w1 > w2, which means that the imaginary part Z of the matrix A is ′dominant′ to

the real part W . In this case, the eigenvalues of the matrices H and S are λ1 = 8.0082, λn =

0.1410; τ1 = 8.2119, τn = 0.3448. The experimental result for Ex. 2 with (4.2), (4.4) and

m = 16, γ = 1 is listed in Table 4.4.

Fig. 2 shows that the optimal parameter is complex indeed, and ρ(α) can not reach its

minimum on the real axis.
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The results in Table 4.4 show that αest yields a good approximation to αexp, and a consid-

erable improvement on the spectral radius, as well as the iteration number for convergence on

the parameter α̃. Also, We note that the imaginary part of αexp is ′dominant′ to the real part.
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Fig. 4.2. ρ(α) with all α = a + ib on 100 × 100 mesh points in [0, λ1; 0, τ1] for Ex.2 with (4.2), (4.4)

and m = 16, γ = 1.

Next we make the imaginary part Z more ′dominant′ to the real part W by setting

W = K +
w2

2
I and Z = K + 2w1I. (4.5)

The eigenvalues of the matrices H and S are λ1 = 7.9709, λn = 0.1037; τ1 = 8.4903, τn =

0.6231. The experimental results for Ex. 2 with (4.2), (4.5) and m = 16, γ = 1 are also shown

in Table 4.4. Our estimated parameter αest makes more improvement.

Other mesh-sizem and the parameter γ are also tested; see the following Table 4.5. However

we do not seek αexp, since it will take much time for large m. Our estimated parameter αest
makes the HSS iteration a considerable improvement on the parameter α̃.

Table 4.4: α, ρ(α), ω(α) or σ(α) and iteration number(IT) of HSS for Ex. 2 with (4.2), (4.4), (4.5) and

m = 16, γ = 1.

Ex.2 with (4.2), (4.4)

parameter αest = 0.5792 + 1.5799i α̃ = 1.0626 αexp = 0.7207 + 1.3139i

spectral radius ρ(αest) = 0.6375 ρ(α̃) = 0.7656 ρ(αexp) = 0.6089

upper bound ω(αest) = 0.6409 σ(α̃) = 0.7657 -

IT 37 61 33

Ex.2 with (4.2), (4.5)

parameter αest = 0.2088 + 2.2906i α̃ = 0.9092 αexp = 0.8768 + 1.7830i

spectral radius ρ(αest) = 0.5683 ρ(α̃) = 0.7952 ρ(αexp) = 0.5395

upper bound ω(αest) = 0.5703 σ(α̃) = 0.7952 -

IT 30 74 28
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Table 4.5: α, ρ(α), ω(α) or σ(α), and iteration number(IT) of HSS,GMRES, PGMRES(α) for Ex. 2

with (4.2), (4.4) and different m,γ.

m = 32 m = 48

γ = 2 γ = 8 γ = 3 γ = 12

αest 0.3520 + 1.0835i 0.2012 + 1.0194i 0.2640 + 0.8734i 0.0436 + 0.7791i

ρ(αest) 0.7368 0.7389 0.7809 0.8148

ω(αest) 0.7428 0.7700 0.7891 0.8244

IT 55 47 68 59

α̃ 0.6624 0.4696 0.5082 0.1860

ρ(α̃) 0.8474 0.8890 0.8808 0.9545

σ(α̃) 0.8474 0.8897 0.8808 0.9548

IT 97 100 123 192

GMRES 54 62 71 90

PGMRES(αest) 14 17 17 23

PGMRES(α̃) 21 23 26 30

With these parameters, in Table 4.5 we also report results for full GMRES method and full

preconditioned GMRES with an HSS(α) preconditioner (1.6), denoted by PGMRES(α). The

code of GMRES we use is from the function gmres in Mablab(7.4 ed) and the preconditioning

systems with respect to αI +H and αI + S are solved by the exact factorization method. We

test the real parameter α̃ as well as the complex parameter αest. From these results, we observe

that the preconditioner HSS(αest) performs much better than the preconditioner HSS(α̃).

Since our estimated parameter αest depends on the extreme eigenvalues ofH and S, one may

ask how sensitive is the performance of the HSS iteration with respect to the spectrum of H and

S. We last use an ′approximation′, denoted by α̃est, to our estimated parameter αest to test the

HSS iteration. The ′approximation′ α̃est is derived by our approach from the approximating

eigenvalues ofH and S containing 10% noise of the exact eigenvalues. We test the HSS iteration

and PGMRES(α̃est) for Ex. 2 with (4.2), (4.4) and m = 32, γ = 2; m = 48, γ = 3.

For m = 32, γ = 2, the exact eigenvalues are λ1 = 8.0221, λn = 0.0547, τ1 = 8.1271, τn =

0.1597. The approximating eigenvalues are derived by putting +10% error: λ̃1 = 8.8243, λ̃n =

0.0602, τ̃1 = 8.9398, τ̃n = 0.1757. By these approximating eigenvalues, we can derive the

approximation α̃est = 0.3545 + 1.2021i. The detailed numerical results are listed in Table

4.6. Also we put −10% error of the exact eigenvalues to derive an approximation α̃est =

0.3167 + 0.9751i.

The results for this example show that the estimated parameter αest has a normal sensitivity

(about 10% error) to the eigenvalues, while the spectral radius ρ(αest) is less sensitive (about

2%).

Table 4.6: α̃est, ρ(α̃est) and iteration number(IT) of HSS(α̃est), PGMRES(α̃est) for Ex. 2 with (4.2),

(4.4) and m = 32, γ = 2, m = 48, γ = 3.

m = 32, γ = 2 m = 48, γ = 3

+10% −10% +10% −10%

α̃est 0.3874 + 1.1919i 0.3167 + 0.9751i 0.2902 + 0.9608i 0.2377 + 0.7860i

ρ(α̃est) 0.7577 0.7271 0.7988 0.7760

IT 60 50 75 62

PGMRES(α̃est) 15 13 18 16



456 G. D. GU

Achnowledgments. We would like to thank Professor Zhong-Zhi Bai for his careful reading

of the manuscript and the comment on the NSS method [7] and on the optimal parameter of

the HSS method [2]; and also we are grateful to Dr. Lei-Hong Zhang for polishing the English

of the manuscript. This work is supported by the Cultivation Fund of the Key Scientific and

Technical Innovation Project, Ministry of Education of China [No708040], and the Leading

Academic Discipline Program, 211 Project for Shanghai University of Finance and Economics

(the 3rd phase).

References

[1] O. Axelsson and A. Kucherov, Real valued iterative methods for solving complex symmetric linear

systems, Numer. Linear Algebra Appl., 7 (2000), 197-218.

[2] Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear

Algebr., 16 (2009), 447-479.

[3] Z.-Z. Bai, M. Benzi and F. Chen, Modified HSS iteration methods for a class of complex symmetric

linear systems, Computing, 87 (2010), 93-111.

[4] Z.-Z. Bai and G.H. Golub, Accelerated Hermitian and skew-Hermitian splitting methods for

saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1-23.

[5] Z.-Z. Bai, G.H. Golub and C.-K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting

method for certain two-by-two block matrices, SIAM J. Sci. Comput., 28 (2006), 583-603.

[6] Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-

Hermitian positive definite linear systems, SIAM J. Matrix Anal. A., 24 (2003), 603-626.

[7] Z.-Z. Bai, G.H. Golub and M.K. Ng, On successive-overrelaxation acceleration of the Hermitian

and skew-Hermitian splitting iterations, Numer. Linear Algebr., 14 (2007), 319-335.

[8] Z.-Z. Bai, G.H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting

methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32.

[9] M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J.

Matrix Anal. A., 31 (2009), 360-374.

[10] M. Benzi, M.J. Gander and G.H. Golub, Optimization of the Hermitian and skew-Hermitian

splitting iteration for saddle-point problems, BIT Numer. Math., 43 (2003), 881-900.

[11] D. Bertaccini, G.H. Golub, S. Serra-Capizzano and C. Tablino Possio, Preconditioned HSS method

for the solution of non-Hermitian positive definite linear systems and applications to the discrete

convection-diffusion equation, Numer. Math., 99 (2005), 441-484.

[12] C. Cabos and F. Ihlenburg, Vibrational analysis of ships with coupled finite and boundary ele-

ments, J. Comput. Acoust., 11 (2003), 91-114.

[13] A. Frommer, BiCGStab(l) for families of shifted linear systems, Preprint, BUGHW-SC 02/04,

November (2002).

[14] C. Greif and J.M. Varah, Iterative solution of skew-symmetric linear systems, SIAM J. Matrix

Anal. A., 31 (2009), 584-601.

[15] C. Gu and H. Qian, Skew-symmetric methods for nonsymmetric linear systems with multiple

right-hand sides, J. Comput. Appl. Math., 23 (2009), 567-577.

[16] G.-D. Gu, Restarted GMRES augmented with Harmonic-Ritz vectors for shifted linear systems,

Intern. J. Comput. Math., 82 (2005), 837-849.

[17] G.-D. Gu and V. Simoncini, Numerical solution of parameter-dependent linear systems, Numer.

Linear Algebr., 12 (2005), 923-940.

[18] G.-D. Gu, X.-L. Zhou and L. Lin, A flexible preconditioned Arnoldi method for shifted linear

systems, J. Comput. Math., 25 (2007), 522-530.

[19] R. Idema and C. Vuik, A minimal residual method for shifted skew-symmetric systems, Tech.

report 07-09, Delft Univ. Technology, Delft, The Netherlands, (2007).



HSS Method with a Complex Parameter for Complex Linear System 457

[20] E. Jiang, Algorithm for solving shifted skew-symmetric linear system, Front. Math. China, 2

(2007), 227-242.

[21] M. Kuzuoglu and R. Mittra, Finite element solution of electromagnetic problem over a wide

frequency range via the Pade approximation, Comput. Method. Appl. M., 169 (1999), 263-277.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Co.: Boston, 1996.

[23] V. Simoncini and M. Benzi, Spectral properties of the Hermitian and skew-Hermitian splitting

preconditioner for saddle point problems, SIAM J. Matrix Anal. A., 26 (2004), 377-389.


