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Abstract

An optimal control problem governed by the Stokes equations with L2-norm state con-

straints is studied. Finite element approximation is constructed. The optimality conditions

of both the exact and discretized problems are discussed, and the a priori error estimates

of the optimal order accuracy in L2-norm and H1-norm are given. Some numerical exper-

iments are presented to verify the theoretical results.
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1. Introduction

In many engineering applications, the control problems of various flow are very important.

One can find lots of useful models for optimal control problems of flow motion with purposes

of achieving some desired objectives in real-life applications. Many of those problems come

from the fluids flow, aeronautical, chemical engineering, magnetic field and heat sources using

radiation or the laser technology, see, for instance, [14, 15, 19, 21, 22, 31] and the references

cited therein. There have been extensive research carried out on various theoretical aspects

of optimal control problems governed by flow, for example, see [1, 15–18, 24], where control-

constrained problems are studied. The state constrained control problems are also frequently

met in practical applications, which have aroused many researchers’ interests, for example,

see [6, 7, 11, 35] for state constrained elliptic control problems. Besides the pointwise state

constrained cases as in the above references [6, 11], the integral or the energy of the state are

worth concerning in many control problems. For example, one probably wishes to constrain the

concentration, the temperature in the average sense in some domain, or the kinetic energy of

the flow, etc. In [7], Casas discussed the numerical approximation of optimal control problems

governed by a second order semi-linear elliptic partial differential equation associated with

finitely many state constraints and gave a priori error estimates in H1-norm. In [25], Liu,

Yang and Yuan studied the integral state-constrained control problems governed by an elliptic

PDE, proposed a gradient projection algorithm and derived the a priori error estimates of the
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optimal order accuracy in L2- and L∞-norms. Furthermore, Yuan and Yang analyzed the finite

element approximation of L2-norm state-constrained elliptic control problems and constructed

the Uzawa type iterative method in [35]. However, up to now, there has no systematical

analysis in the literature for optimal control problems governed by the Stokes equations with

state constraints. It is more complicated to study the finite element approximation of the flow

control since one has to handle the mixed element.

The purpose of this article is to study the optimal control problems governed by the Stokes

equations with L2-norm constraints for the velocity, where the control is distributed in Ω without

constraint. We construct the finite element approximation and analyze optimality conditions

for both the exact and the discretized problems. We study a priori error estimates between the

exact solution and its finite element approximation in L2-norm and H1-norm.

The outline of the article is as follows. In Section 2, we state the model problem and

construct its finite element approximation. In Section 3, we derive the a priori error estimates

for the finite element approximation. Finally, in Section 4, we give the Arrow-Hurwicz algorithm

and perform some numerical experiments to verify the theoretical results given in Section 3.

2. Control Problem and Finite Element Approximation

Throughout the article, we use the standard definitions and notations of the Sobolev spaces

as in [2]. Let Ω be a bounded and open connected domains in R
d for d = 2 or 3. Denote

by v = (v1, · · · , vd) the d-dimensional vector-valued function, Lp(Ω) =
(

Lp(Ω)
)d
, Hm(Ω) =

(

Hm(Ω)
)d

and Wm,p(Ω) =
(

Wm,p(Ω)
)d

the usual vector-valued Sobolev spaces with norms

‖ · ‖m;Ω = ‖ · ‖Hm(Ω) and ‖ · ‖m,p;Ω = ‖ · ‖Wm,p(Ω), respectively. We use (·, ·)G to denote the

inner product defined on the bounded and open set G, and if the G = Ω we omit the subscript,

e.g., (·, ·) . Introduce some function spaces

U = L2(Ω), H =
(

H1
0 (Ω)

)d
, Q =

{

q ∈ L2(Ω);

∫

Ω

q = 0
}

,

which stand for the control space, the velocity sate space and the pressure state space, respec-

tively.

2.1. Optimal control problem

We first state the model problem and its weak form. Let α be a positive constant and the

objective functional J : L2(Ω)× L2(Ω) be defined as:

J (y,u) =
1

2

∫

Ω

|y − yd|
2 +

α

2

∫

Ω

|u− u0|
2.

For a positive integer M, the constraint set is given by K =
M
⋂

i=1

Ki, where

Ki =
{

w ∈ L2(Ω); ‖w‖0;Ωi
≤ γi

}

, 1 ≤ i ≤ M, (2.1)

and {Ωi}Mi=1 are nonempty subsets of Ω such that Ωj

⋂

Ωk = ∅ for all 1 ≤ j < k ≤ M , and the

real number γi satisfies γi > 0 for all 1 ≤ i ≤ M .

We investigate the following state-constrained optimal control problem:

min
y(u)∈K

J (y(u),u) (2.2)
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subject to the Stokes equations:






−ν∆y(u) +∇p(u) = f +Bu, in Ω,

∇ · y(u) = 0, in Ω,

y(u) = 0, on ∂Ω,

(2.3)

where the constant number ν > 0 and B is a continuous linear operator from L2(Ω) to itself.

To derive the weak form of the problem, define some bi-linear forms:

(w, z) =

d
∑

i=1

∫

Ω

wizi, a(w, z) = ν

d
∑

i=1

(∇wi,∇zi), b(z, q) = −(q,∇ · z).

It is clear that the bi-linear form a( · , · ) is continuous and elliptic in H, i.e., there exist

constants al > 0 and au > 0 such that

al‖z‖
2
1;Ω ≤ a(z, z),

∣

∣a(w, z)
∣

∣ ≤ au‖w‖1;Ω‖z‖1;Ω, ∀ w, z ∈ H. (2.4)

On the other hand, it can be seen from [8, 12, 33] that the bi-linear form b( · , · ) satisfies

LBB-condition and the continuous condition, i.e., there exist constants bl > 0 and bu > 0 such

that

bl ≤ inf
q∈Q

sup
z∈H

b(z, q)

‖z‖1;Ω‖q‖0;Ω
, b(z, q) ≤ bu‖z‖1;Ω||q||0;Ω, ∀ z ∈ H, q ∈ Q. (2.5)

Hence the weak form of the optimal control problem (2.2) reads:

(P) min
y(u)∈K

J
(

y(u),u
)

(2.6)

subject to
{

a
(

y(u),w
)

+ b
(

w, p(u)
)

=
(

f +Bu,w
)

, ∀ w ∈ H,

b
(

y(u), q
)

= 0, ∀ q ∈ Q.

It is obvious that Ki is closed and convex in L2-topology for 1 ≤ i ≤ M , and so is the set

K. The existence and uniqueness of the solution of problem (2.6) can be obtained by the usual

way, see e.g. [24].

2.2. Optimality conditions

To get the optimality condition, we introduce the Lagrange functional L(u, s) : U×R
M → R

associated with problem (2.6) such that

L(u, s) = J (y(u),u) +

M
∑

i=1

siFi(u), (2.7)

where

Fi(u) =
1

2

(

‖y(u)‖20;Ωi
− γ2

i

)

, ∀ u ∈ U, 1 ≤ i ≤ M,

and si denotes the i-th component of real vector s. Then the optimality conditions can be

stated as the following lemma, for the details of the proof the readers may refer to [10, Clarke].

Lemma 2.1. Let u be the solution of problem (2.6), then there exists a real vector s =

(s1, · · · , sM ) such that

(1) si ≥ 0, siFi(u) = 0, 1 ≤ i ≤ M,

(2)
∂L

∂u

(

u, s
)

= 0.
(2.8)
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Observing that the operator y(·) is linear, we know that the second equation of (2.8) is equiv-

alent to
(

y − yd,y
′(u) ◦ v) +

M
∑

i=1

(

siy,y
′(u) ◦ v

)

Ωi
+ α

(

u− u0,v
)

= 0,

or

B∗y∗ + α(u− u0) = 0, in Ω,

where the co-state y∗ is defined by

y∗ =
(

y′(u)
)∗

(

y − yd +

M
∑

i=1

tiy

)

associated with ti being defined by

ti =

{

si, if x ∈ Ωi,

0, otherwise,

for 1 ≤ i ≤ M . Define the piecewise constant function space T as:

T =
{

t = (t1, · · · , tM ); ti ∈ R in Ωi; ti = 0 in Ω\Ωi; 1 ≤ i ≤ M
}

.

Therefore, we can obtain another form of the optimality conditions for problem (2.6).

Theorem 2.1. The triplet (y, p,u) ∈ H×Q×U is the solution of the problem (2.6) if and only

if there exists a triplet (y∗, p∗, t) ∈ H×Q×T such that (y, p,u,y∗, p∗, t) ∈ H×Q×U×H×Q×T

satisfies

(Q)











































a(y,w) + b(w, p) = (f +Bu,w), ∀ w ∈ H,

b(y, q) = 0, ∀ q ∈ Q,

a(y∗,w) + b(w, p∗) =

((

1 +
∑M

i=1
ti

)

y − yd,w

)

, ∀ w ∈ H,

b(y∗, q) = 0, ∀ q ∈ Q,

B∗y∗ + α(u − u0) = 0, in Ω,

(2.9)

where the components of vector t satisfy

ti =

{

constant ≥ 0, ‖y‖0,2;Ωi
= γi, in Ωi,

0, otherwise,
(2.10)

for 1 ≤ i ≤ M .

2.3. Finite element approximation

We only consider n-simply elements, which are widely used in engineering applications.

For the sake of simplicity, we assume that Ω is a polygon in R
2 or polyhedron in R

3. Let

T h =
⋃

T be a family of quasi-regular triangulations of Ω with maximum mesh size h :=

maxτ∈T h{diam(T )} and T h
U =

⋃

TU be a family of quasi-regular triangulations of Ω with

maximum mesh size hU := maxTU∈T h
U

{

diam(TU )
}

, in which each element has at most one face

on ∂Ω, and T and T
′
( or TU and T

′

U ) have either only one common vertex or a whole edge

in 2-d case if T and T
′
∈ T h ( or TU and T

′

U ∈ T h
U ).
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Associated with T h are two finite element spaces Hh ⊂ H and Qh ⊂ Q such that the finite

element spaces Hh×Qh satisfies the discrete LBB-condition, i.e., there exists a constant b′l > 0

such that

inf
qh∈Qh

sup
zh∈Hh

b(zh, qh)

‖zh‖1;Ω‖qh‖0;Ω
≥ b′l. (2.11)

And there exist two integers m ≥ 1 and n ≥ 1 such that

inf
zh∈Hh

‖z− zh‖0;Ω + h‖z− zh‖1;Ω ≤ Chm+1‖z‖m+1;Ω, ∀ z ∈ H ∩Hm+1(Ω),

inf
qh∈Qh

‖q − qh‖0;Ω ≤ Chn+1‖q‖n+1;Ω, ∀ q ∈ Q ∩Hn+1(Ω). (2.12)

The above assumptions are satisfied for Hood-Taylor (Pn+1, Pn ) finite elements whenm = n+1

and for Mini (P1

⊕

Bubble, P1) finite elements when m = n = 1, see, e.g., [5, 9, 12, 20],.

Associated with T h
U is another finite dimensional subspace Uh :=

{

vh ∈ U : vh|TU
are

polynomials of degree less than or equal to k ( 0 ≤ k ≤ m) for each TU ∈ T h
U

}

such that

inf
vh∈Uh

‖v− vh‖0;Ω ≤ Chk+1
U ‖v‖k+1;Ω, ∀ v ∈ U ∩Hk+1(Ω). (2.13)

Introduce the discretized constraint set Kh = Hh ∩K. So the finite element approximation

of problem (2.6) reads:

(Ph) min
yh∈Kh

J (yh,uh) (2.14)

subject to
{

a(yh,wh) + b(wh, ph) = (f +Buh,wh), ∀ wh ∈ Hh,

b(yh, qh) = 0, ∀ qh ∈ Qh.

Similarly, we obtain the optimality conditions of problem (2.14), which is stated in the following

theorem.

Theorem 2.2. The triplet (yh, ph,uh) ∈ Hh×Qh×Uh is the solution of the problem (2.14) if

and only if there exists a triplet (y∗
h, p

∗
h, th) ∈ Hh ×Qh ×T such that (yh, ph,uh,y

∗
h, p

∗
h, th) ∈

Hh ×Qh ×Uh ×Hh ×Qh ×T satisfies the following optimality conditions:

(Qh)











































a(yh,wh) + b(wh, ph) = (f +Buh,wh), ∀ wh ∈ Hh,

b(yh, qh) = 0, ∀ qh ∈ Qh,

a(y∗
h,wh) + b(wh, p

∗
h) =

((

1 +
∑M

i=1
th,i

)

yh − yd,wh

)

, ∀ wh ∈ Hh,

b(y∗
h, qh) = 0 ∀ qh ∈ Qh,

αuh + Ph
UB

∗(y∗
h − αu0) = 0, in Ω,

(2.15)

where the components {th,i}Mi=1 of vector t satisfy

th,i =

{

constant ≥ 0 ‖yh‖0,2;Ωi
= γi, in Ωi,

0 otherwise,
(2.16)

and Ph
U is the L2-projection operator from U to Uh such that

(Ph
Uϕ,vh) = (ϕ,vh), ∀ ϕ ∈ U, vh ∈ Uh.
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It is obvious that Ph
U is a linear operator since Uh is a linear subspace of the Banach space U.

Here the first order optimality conditions (2.15) are also sufficient since the state equations are

linear and the object functional J ( · · ) is convex, so problem (2.14) is equivalent to problem

(2.15).

3. A Priori Estimates

In this section, we analyze the convergent rates of the algorithm. We assume that the

operator B is reversible from L2(Ω) to itself and from H1(Ω) to itself. It is easy to be proved

there exits the constant independent of h and hU such that

‖uh‖0;Ω + ‖yh‖1;Ω + ‖ph‖0;Ω + ‖y∗
h‖1;Ω + ‖p∗h‖0;Ω + max

1≤i≤M
‖ti‖L∞(Ω) ≤ C.

So there there exists a subsequence which weakly converges to one of solutions of the problem

(2.9) as h → 0. Since the solution of the problem (2.9) is unique, the sequence (uh,yh, ph,y
∗
h, p

∗
h,

th) weakly converges to the exact solution (u,y, p,y∗, p∗, t). Now we are ready to study the

a priori error estimates between the exact solution and the finite element solution. In this

article, we consider finite element methods including Hood-Taylor element (Pl+1, Pl; l ≥ 1)

and Mini-element (Pl+1

⊕

Bubble, Pl+1; l = 0), so we assume the solution of the optimality

conditions has the following regularity properties (see [8] for more details):

y, y∗ ∈ Hl+2(Ω), p, p∗ ∈ H l+1(Ω). (3.1)

We first state the H1-norm error estimates and the L2-norm error estimates in the next two

theorems, respectively. The constant number l is defined in above (3.1) and k ≤ l+1 is described

in (2.13).

Theorem 3.1. Let (y, p,y∗, p∗, t,u) and (yh, ph,p
∗
h, p

∗
h, th,uh) be the solutions of (2.9) and

(2.15), respectively. Then there hold the H1 × H0-norm error estimates for the velocity field

and the pressure field as follows:

‖y − yh‖1;Ω + ‖y∗ − y∗
h‖1;Ω + ‖p− ph‖0;Ω + ‖p∗ − p∗h‖0;Ω ≤ C

(

hl+1 + hk+2
U

)

, (3.2)

and L2-norm error estimate for the control as follows:

‖u− uh‖0;Ω ≤ C
(

hl+2 + hk+1
U

)

. (3.3)

In the following theorem, we denote the infinite-norm of the real vector by ‖ · ‖∞.

Theorem 3.2. Let (y, p,y∗, p∗, t,u) and (yh, ph,p
∗
h, p

∗
h, th,uh) be the solutions of (2.9) and

(2.15), respectively. Then there hold the following L2-norm error estimates:

‖y − yh‖0;Ω + ‖y∗ − y∗
h‖0;Ω + ||t− th||∞ + ‖Ph

Uu− uh‖0;Ω ≤ C
(

hl+2 + hk+2
U

)

. (3.4)

The proofs of Theorem 3.1 and 3.2 follow from the following five lemmas. Introduce the

following auxiliary equations:


















a(yh(u),wh) + b(wh, ph(u)) = (f +Bu,wh), ∀ wh ∈ Hh,

b(yh(u), qh) = 0, ∀ qh ∈ Qh,

a(y∗
h(u),wh) + b(wh, p

∗
h(u)) =

((

1 +
∑M

i=1 ti

)

y − yd,wh

)

, ∀ wh ∈ Hh,

b(y∗
h(u), qh) = 0, ∀ qh ∈ Qh.

(3.5)
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Firstly, we estimate the terms ‖yh(u)− yh‖1;Ω + ‖ph(u)− ph‖0;Ω, ||t− th||∞ and ‖y∗
h(u)−

y∗
h‖1;Ω + ‖p∗h(u)− p∗h‖0;Ω.

Lemma 3.1. Let
(

yh(u), ph(u)
)

and
(

yh, ph
)

be the solutions of Eqs. (3.5) and (2.15), respec-

tively. Then there holds the following inequality

‖yh(u)− yh‖1;Ω + ‖ph(u) − ph‖0;Ω ≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖P

h
Uu− u‖0;Ω

)

. (3.6)

Proof. From Eqs. (2.15) and (3.5), we have

{

a
(

yh(u)− yh,wh

)

+ b(wh, ph(u)− ph) =
(

B(u− uh),wh

)

, ∀ wh ∈ Hh,

b(yh(u)− yh, qh) = 0, ∀ qh ∈ Qh.
(3.7)

Observing that

|(u− uh, B
∗wh) ≤ |(u− Ph

Uu, B
∗wh − Ph

UB
∗wh) + |(Ph

Uu− uh, B
∗wh)|

≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

‖B∗wh‖1;Ω

≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

‖wh‖1;Ω,

and by taking wh = yh(u)− yh and using (2.4), we have

‖yh(u)− yh‖1;Ω ≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖P

h
Uu− u‖0;Ω

)

.

With LBB-condition (2.11), we can obtain

b′l‖ph(u)− ph‖0;Ω ≤ sup
wh∈Hh

1

‖wh‖1;Ω

(

|(u− uh, B
∗wh)|+ |a(yh(u)− yh,wh)|

)

≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖P

h
Uu− u‖0;Ω

)

.

Combining the above two inequalities, we have (3.6). Hence Lemma 3.1 is proved. 2

Lemma 3.2. Let t and th be the solutions of Eqs. (2.9) and (2.15), respectively. There exists

h0 > 0 such that for 0 < h, hU ≤ h0,

‖t− th‖∞ ≤ C
(

‖Ph
Uu− uh‖0;Ω + ‖y − yh(u)‖0;Ω

+ (h+ hU )‖∇(y∗ − y∗
h)‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

. (3.8)

Proof. For 1 ≤ i ≤ M , since lim
h→0

th,i = ti and ti = 0 if ‖y‖0;Ωi
< γi, we only need to check

the case ‖y‖0;Ωi
= γi. Let φi ∈ C∞

0 (Ωi) such that 0 ≤ φi ≤ 1 and ‖φiy‖0;Ωi
≥ γi/2. Noting

that

a(y∗ − y∗
h,wh) =

M
∑

i=1

(tiy − th,iyh,wh)Ωi
+ (y − yh,wh)

=
1

2

M
∑

i=1

(ti − th,i)(y + yh,wh)Ωi
+

1

2

M
∑

i=1

(ti + th,i)(y − yh,wh)Ωi
+ (y − yh,wh)
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and taking wh = Ih(φiyh), we have

a(y∗ − y∗
h, Ih(φiyh))

=
1

2
(ti − th,i)(y + yh, Ih(φiyh))Ωi

+ (ti + th,i)(y − yh, Ih(φiyh))Ωi
+ (y − yh, Ih(φiyh))

such that

(ti − th,i)(y, φiy)Ωi

=a(y∗ − y∗
h, Ih(φiyh))− (ti + th,i)(y − yh, Ih(φiyh))Ωi

− (y − yh, Ih(φiyh))

− (ti − th,i)(y, (Ih − I)(φiy))Ωi
− (ti − th,i)(y, Ih(φi(yh − y)))Ωi

−
1

2
(ti − th,i)(yh − y, Ih(φiyh))Ωi

.

On the other hand, we have

a(y∗ − y∗
h, Ih(φiyh))

=a(y∗ − y∗
h, (Ih − I)(φiyh)) + ν(y∗ − y∗

h,yh∆φi)− 2ν((y∗ − y∗
h)∇φi,∇yh)

+ ν(∇(φi(y
∗ − y∗

h)),∇(yh − y)) + ν(∇(φi(y
∗ − y∗

h)),∇y)

and

ν(∇(φi(y
∗ − y∗

h)),∇y) =(f + Bu, φi(y
∗ − y∗

h)) + (p,∇ · (φi(y
∗ − y∗

h)))

=(φi(f +Bu−∇p),y∗ − y∗
h).

So we get

γi
2
|ti − th,i| ≤ (1 + ti + th,i)‖y − yh‖Ωi

‖Ih(φiyh)‖L2(Ωi)

+ |ti − th,i|γi
(

‖(Ih − I)(φiy)‖0;Ωi
+ ‖Ih(φi(yh − y))‖0;Ωi

)

+
1

2
|ti − th,i|‖yh − y‖0;Ωi

‖Ih(φiyh)‖0;Ωi

+ ν‖∇(y∗ − y∗
h)‖0;Ωi

(

‖∇(Ih − I)(φiyh)‖0;Ωi
+ ‖∇φi‖0,∞;Ωi

‖∇(yh − y)‖0,2;Ωi

)

+ ν‖y∗ − y∗
h‖0;Ωi

(

‖yh‖0,Ω‖∆φi‖0,∞;Ωi
+ 2‖∇φi‖0,∞;Ωi

‖∇yh‖0,2;Ωi

)

+ ‖y∗ − y∗
h‖0;Ωi

‖f +Bu−∇p‖0;Ωi

such that

|ti − th,i| ≤ C
(

h|ti − th,i|+ ‖y − yh‖0;Ωi
+ ‖B∗(y∗ − y∗

h)‖0;Ωi
+ h‖∇(y∗ − y∗

h)‖0;Ωi

)

. (3.9)

Applying B∗(y∗−y∗
h) = (I−Ph

U )(B
∗(y∗−y∗

h))+α(Ph
Uu−uh) and Lemma 3.3 and the standard

finite element error estimates ( as listed later in (3.15) ) to (3.9), we have

|ti − th,i|

≤ C
(

‖uh − Ph
Uu‖0;Ω + ‖y − yh(u)‖0;Ω +

(

h+ hU

)

‖∇(y∗ − y∗
h)‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

for sufficiently small h. Then Lemma 3.2 is proved. 2

Secondly, we estimate the term ‖y∗
h(u)− yh‖1;Ω and ‖p∗h(u)− ph‖0;Ω.
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Lemma 3.3. Let
(

y∗
h(u), p

∗
h(u)

)

and
(

y∗
h, p

∗
h

)

be the solutions of Eqs. (3.5) and (2.15), respec-

tively. Then there holds the following inequality

‖y∗
h(u)− y∗

h‖1;Ω + ‖p∗h(u)− p∗h‖0;Ω ≤ C
(

‖Ph
Uu− uh‖0;Ω + hU‖P

h
Uu− u‖0;Ω

+ ‖y− yh(u)‖0;Ω + (h+ hU )‖∇(y∗ − y∗
h(u))‖0;Ω

)

. (3.10)

Proof. From Eqs. (2.15) and (3.5), we have







a(y∗
h(u)−y∗

h,wh) + b(wh, p
∗
h(u)−p∗h)=

M
∑

i=1

(tiy−th,iyh,wh)Ωi
+ (y − yh,wh), ∀ wh ∈ Hh,

b(y∗
h(u)− y∗

h, qh) = 0, ∀ qh ∈ Qh.

By taking wh = y∗
h(u)− y∗

h, we get

a(y∗
h(u)− y∗

h,y
∗
h(u)− y∗

h) =
M
∑

i=1

(tiy − th,iyh,y
∗
h(u)− y∗

h)Ωi
+ (y − yh,y

∗
h(u)− y∗

h),

such that

‖y∗
h(u)− y∗

h‖
2
0;Ω ≤ C

(

‖t− th‖
2
∞ + ‖y − yh‖

2
0;Ω

)

. (3.11)

Applying (3.8) to (3.11) and letting h and hU suitably small lead to (3.10) for y∗
h(u)− y∗

h.

Further, by LBB-condition (2.11), we can obtain

b′l‖p
∗
h(u)− p∗h‖0;Ω

≤ sup
wh∈Hh

1

‖wh‖1;Ω

(

M
∑

i=1

|(tiy − th,iyh,wh)Ωi
|+ |(y − yh,wh)|+ |a(y∗

h(u)− y∗
h,wh)|

)

≤C
(

‖t− th‖∞ + ‖y− yh‖0;Ω + ‖∇(y∗
h(u) − y∗

h)‖0;Ω
)

.

This leads (3.10) for p∗
h(u)− p∗

h. Hence Lemma 3.3 is proved. 2

Thirdly, we estimate the term ‖Phu− uh‖0;Ω.

Lemma 3.4. Let u and uh be the solutions of Eqs. (2.9) and (2.15), respectively. Then there

holds the estimate:

‖Ph
Uu− uh‖0;Ω ≤ C

(

‖y− yh(u)‖0;Ω + ‖y∗ − y∗
h(u)‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

. (3.12)

Proof. It follows from (2.10), (2.16), ‖y‖0;Ωi
≤ γi and ‖yh‖0;Ωi

≤ γi that

(tiy−th,iyh,yh(u)− y)Ωi
− (tiy − th,iyh,yh(u)−yh)Ωi

= (tiy,yh − y)+th,i(yh,y−yh)Ωi
≤ 0,

which implies that

−(tiy − th,iyh,yh(u)− yh)Ωi
≤ −(tiy − th,iyh,yh(u)− y)Ωi

.



598 H. F. NIU AND D. P. YANG

Then from equations (2.9), (2.15) and (3.5) we have

α
(

Ph
Uu− uh,P

h
Uu− uh

)

= α
(

Ph
Uu− uh,u− uh

)

= −(Ph
Uu− uh, B

∗y∗ − Ph
UB

∗y∗
h

)

=− (B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

− (Ph
Uu− uh, B

∗y∗
h(u) + α(uh − u0)

)

= −
(

B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

−
(

B(u− uh),y
∗
h(u)− y∗

h

)

−
(

B(Ph
Uu− u),y∗

h(u)− y∗
h

)

=−
(

B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

− a
(

yh(u)− yh,y
∗
h(u)− y∗

h

)

−
(

B(Ph
Uu− u),y∗

h(u)− y∗
h

)

=−
(

B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

−

((

1 +

M
∑

i=1

ti

)

y −

(

1 +

M
∑

i=1

th,i

)

yh,yh(u)− yh

)

−
(

B(Ph
Uu− u),y∗

h(u)− y∗
h

)

≤−
(

B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

−
(

y − yh,yh(u)− yh

)

−

(

M
∑

i=1

tiy −
M
∑

i=1

th,iyh,yh(u)− y

)

−
(

B(Ph
Uu− u),y∗

h(u)− y∗
h

)

.

So for 0 < ǫ ≪ 1, there holds

α
(

Ph
Uu− uh,P

h
Uu− uh

)

Ω
+ (yh(u) − yh,yh(u)− yh)

≤−
(

B(Ph
Uu− uh),y

∗ − y∗
h(u)

)

−
(

y − yh(u),yh(u)− yh

)

−
(

M
∑

i=1

ti(y − yh) +
M
∑

i=1

(ti − th,i)yh,yh(u)− y
)

−
(

B(Ph
Uu− u),y∗

h(u)− y∗
h

)

≤ǫ
(

α‖Ph
Uu− uh‖

2
0;Ω + ‖yh(u)− yh‖

2
0;Ω + ‖∇(y∗

h(u)− y∗
h)‖

2
0;Ω + ‖t− th‖

2
∞

)

+ Cǫ−1
(

‖y− yh(u)‖
2
0;Ω + ‖y∗ − y∗

h(u)‖
2
0;Ω + h2

U‖u− Ph
Uu‖

2
0;Ω

)

. (3.13)

Applying (3.6)–(3.10) in (3.13), we obtain (3.12). Thus Lemma 3.4 is proved. 2

Next, combining the results in Lemma 3.1-3.4, we have the following conclusion:

Lemma 3.5. There holds the estimate

‖Ph
Uu− uh‖0;Ω + ‖yh(u)− yh‖1;Ω + ‖y∗

h(u)− y∗
h‖1;Ω

+ ‖ph(u)− ph‖0;Ω + ‖p∗h(u)− p∗h‖0;Ω + ‖t− th‖∞

≤C
(

‖y − yh(u)‖0;Ω + ‖y∗ − y∗
h(u)‖0;Ω + hU‖u− Ph

Uu‖0;Ω
)

. (3.14)

Finally, we give the proof of Theorems 3.1 and 3.2.

Proof. Using the standard finite element analysis for the Stokes equations (for the proof the

readers may refer to [12]), we have the following H1-norm estimates:

‖y − yh(u)‖1;Ω + ||p− ph(u)||0;Ω ≤ Chl+1
(

‖y‖l+2;Ω + ‖p‖l+1;Ω

)

,

‖y∗ − y∗
h(u)‖1;Ω + ‖p∗ − p∗h(u)‖0;Ω ≤ Chl+1

(

‖y∗‖l+2;Ω + ‖p∗‖l+1;Ω

)

, (3.15)

and the L2-norm estimates:

‖y − yh(u)‖0;Ω ≤ Chl+2
(

‖y‖l+2;Ω + ‖p‖l+1;Ω

)

,

‖y∗ − y∗
h(u)‖0;Ω ≤ Chl+2

(

‖y∗‖l+2;Ω + ‖p∗‖l+1;Ω

)

. (3.16)

Combining these estimates with the results in Lemma 3.5, we derive (3.2)–(3.4). 2
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4. Numerical Experiments

An augmented Lagrangian method was proposed to solve the state and control constrained

optimal control problems by Bergounioux and Kunisch in [3], and they also constructed another

method named a primal-dual strategy to solve these problems, which can be seen in [4]. In

[25], Liu, Yang and Yuan proposed a project gradient algorithm to deal with the integral

state constraint problem. To solve problem (2.6), we use the Arrow-Hurwicz algorithm in

our following experiments, which has been studied in [9], [13] and [35]. The Arrow-Hurwicz

algorithm is described briefly as follows.

Arrow-Hurwicz algorithm

Step 1. Set k = 0 and fix a step length ρ > 0.

Select initial approximations t0 and u0
h.

Step 2. Set l = 0 and u
k,0
h = uk

h.

Step 3. Solve equations:







































a
(

y
k,l
h ,wh

)

+ b(pk,lh ,wh

)

=
(

f +Bu
k,l
h ,wh

)

∀ wh ∈ Hh,

b
(

y
k,l
h , qh) = 0, ∀ qh ∈ Qh,

a
(

y
∗k,l
h ,wh

)

+ b
(

p∗k,lh ,wh

)

−
(

(1 +

M
∑

i=1

tki )y
k,l
h ,wh

)

=
(

− yd,wh

)

∀ wh ∈ Hh,

b
(

y
∗k,l
h , qh) = 0, ∀ qh ∈ Qh.

Step 4. Let u
k,l+1
h = u

k,l
h − Ph

U

(

B∗y
∗k,l
h + α(uk,l

h − u0)
)

.

If ‖uk,l+1
h − u

k,l
h ‖0;Ω > TolU , set l = l + 1 and then go to Step 3.

Step 5. For all i = 1, ...,M , let

tk+1
i =







max
{

0, tki + ρ
(

‖yk,lh ‖0;Ωi
− γi

)

}

in Ωi

0 elsewhere.

Step 6. Stop if ‖tk+1 − tk‖∞ < TolT and output

uh = u
k,l
h , yh = y

k,l
h , ph = pk,lh .

. Otherwise let uk+1
h = u

k,l+1
h , set k := k + 1. Then go to step 2.

For the proof of the convergence of the above algorithm, the readers may refer to [9, 13]

or [35].

In this section, we perform some numerical experiments to verify the theoretical results

derived in Section 3. In these numerical experiments, we use the C++ software package: AFEpack,

the readers may read [30] or browse http://www.acm.caltech.edu/rli/AFEPack for more

details.
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Let Ω = (0, 1)× (0, 1) and K =
{

w; ‖w‖0;Ω ≤ 1
}

, we investigate the problem as follows:

min
y∈K

{1

2

∫

Ω

|y − yd|
2 +

1

2

∫

Ω

|u− u0|
2
}

, (4.1)

subject to














−
1

10
∆y +∇p = f + u, in Ω,

∇ · y = 0, in Ω,

y = 0, on ∂Ω,

(4.2)

which means that d = 2, α = 1, ν = 0.1, M = 1 and γ = 1 in problem (2.6). In the following

experiments, we adopt the exact solution as:















y1 = 1000x2
1(x1 − 1)2(2x2 − 1)(x2

2 − x2)/C0,

y2 = −1000(2x1 − 1)(x2
1 − x1)x

2
2(x2 − 1)2/C0,

p = 1000(x1x2 − 0.25), u1 = u2 = 100 sin(4πx1) sin(4πx2),

y∗ = −0.1y, p∗ = −100(x1x2 − 0.25), t = (C0 − 1),

(4.3)

where C0 = 3.8880789567826111 such that ‖y‖0;Ω = 1. The right-hand term is given by

f = −0.1∆y+∇p− u and yd = 0.1∆y∗ −∇p∗ + C0y, and u0 = y∗ + u.

We perform two groups of numerical experiments, in which we compute all the variables on

one mesh in Experiment 1 and on multi-mesh in Experiment 2, respectively. For abbreviation,

we denote the L2-norm, H1-norm and the L2-norm, H1-norm defined in the domain Ω by

‖ · ‖0, ‖ · ‖1 in below, respectively.

4.1. Numerical experiment 1: on uniform mesh

In the first experiment, we check the convergence rates to verify the a priori error estimates

given in Section 3. We solve the problem in three cases. In these cases we use Hood-Taylor

elements to approximate the Stokes equations, and the piecewise quadratic, linear, constant

elements to approximate the control, respectively. Namely, we want to confirm the convergence

rates with respect to k = 2, 1 and 0 in Theorems 3.1 and 3.2.

Table 4.1: Numerical results of Example 1 ( l = 1, k = 2 ).

Variable - element yh,y
∗

h - P2 element, ph, p
∗

h - P1 element, uh - P2 element

mesh mesh1 mesh2 mesh3 mesh4

h 0.05 0.025 0.0125 0.00625

DOFs: states 8794 34016 134446 534566

‖Ph

Uu− uh‖0 7.38e-05 1.35e-05 8.53e-07 4.45e-08

‖y − yh‖0 2.89e-03 2.47e-04 3.04e-05 2.76e-06

‖y∗ − y∗

h‖0 7.38e-05 1.35e-05 8.53e-07 4.45e-08

|t− th| 3.40e-04 7.18e-05 4.53e-06 2.36e-07

‖u− uh‖0 1.41e-01 1.91e-02 2.44e-03 3.08e-04

‖y − yh‖1 3.94e-01 6.68e-02 1.38e-02 2.52e-03

‖y∗ − y∗

h‖1 1.55e-03 1.53e-04 1.94e-05 3.28e-06

‖p− ph‖0 2.32e-01 5.78e-02 1.44e-02 3.60e-03

‖p∗ − p∗h‖0 2.39e-04 5.80e-05 1.44e-05 3.60e-06
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Example 1. Firstly, we use the piecewise quadratic elements to approximate the control, i.e.,

l = 1 and k = 2. The numerical results are listed in Table 4.1.

From Table 4.1, it is easy to calculate the convergence rates, which are listed in Table 4.2.

‖y− yh‖0 + ‖y∗ − y∗
h‖0 + ‖Ph

Uu− uh‖0 + |t− th| = O(hl+2 + hk+2) = O(h3),

‖y− yh‖1 + ‖y∗ − y∗
h‖1 ≤ O(hl+1 + hk+2) = O(h2),

which are consistent with the a priori error estimates given in Section 3.

Table 4.2: Convergence rates of numerical Example 1.

Mesh ‖Ph

Uu− uh‖0 ‖y − yh‖0 ‖y∗ − y∗

h‖0 |t− th| ‖u− uh‖0 ‖y − yh‖1 ‖y∗ − y∗

h‖1

1 → 2 2.44 3.54 2.44 2.24 2.88 2.56 3.33

2 → 3 3.98 3.02 3.98 3.98 2.96 2.27 2.98

3 → 4 4.26 3.45 4.26 4.25 2.98 2.45 2.56

Example 2. Next, we approximate the control u by the piecewise linear elements. The

numerical results provided in Table 4.3, from which the convergence rates are obtained and

listed in Table 4.4.

Table 4.3: Numerical results of Example 2 (l = 1, k = 1).

Variable - element yh,y
∗

h - P2 element, ph, p
∗

h - P1 element, uh - P1 element

mesh mesh1 mesh2 mesh3 mesh4

h 0.05 0.025 0.0125 0.00625

‖Ph

Uu− uh‖0 7.21e-04 7.09e-05 5.64e-06 5.07e-07

‖y − yh‖0 6.14e-03 4.41e-04 3.96e-05 3.38e-06

‖y∗ − y∗

h‖0 7.25e-04 7.09e-05 5.64e-06 5.07e-07

|t − th| 5.75e-03 2.57e-04 2.19e-05 2.06e-06

‖u− uh‖0 1.70e+0 4.01e-01 9.91e-02 2.46e-02

‖y − yh‖1 4.21e-01 6.82e-02 1.39e-02 2.53e-03

‖y∗ − y∗

h‖1 1.19e-02 9.05e-04 6.85e-05 6.36e-06

‖p− ph‖0 2.33e-01 5.78e-02 1.44e-02 3.60e-03

‖p∗ − p∗h‖0 4.81e-04 6.58e-05 1.46e-05 3.60e-06

Table 4.4: Convergence rates of numerical Example 2.

Mesh ‖Ph

Uu− uh‖0 ‖y − yh‖0 ‖y∗ − y∗

h‖0 |t− th| ‖u− uh‖0 ‖y − yh‖1 ‖y∗ − y∗

h‖1

1 → 2 3.34 3.80 3.35 4.48 2.08 2.62 3.72

2 → 3 3.65 3.47 3.65 3.55 2.01 2.29 3.72

3 → 4 3.47 3.54 3.47 3.41 2.00 2.45 3.43

By the above two examples, it can be seen that ‖u − uh‖0;Ω = O(hk+1), where k = 2 in

Example 1 and k = 1 in Example 2, respectively. At the same time,

‖y − yh‖0;Ω + ‖y∗ − y∗
h‖0;Ω + ‖Ph

Uu− uh‖0;Ω + |t− th| = O(h3)

whatever ‖u − uh‖0;Ω = O(h3) or ‖u − uh‖0;Ω = O(h2), which are consistent with Theorem

3.2.

In these numerical results, it is interesting to see that the convergence order between t

and th is better than the theoretical results obtained in Section 3. That may lead to good
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approximations of ‖y∗−y∗
h‖0;Ω+‖Ph

Uu−uh‖0;Ω in the above two examples. It is not clear that

whether there exist some super-convergence or this is caused by some other reasons. However,

the approximation of t determines the approximation of y∗ directly, because t is the right-hand

side term of of the equation for the co-state equation of y∗. To further examine that, one can

see the next example, where we use the piecewise constant elements to discretize uh.

For abbreviation, the convergence rates of ‖p− ph‖0;Ω and ‖p∗ − p∗h‖0;Ω are omitted in all

tables, it is obvious that they are the same as the orders of ‖y − yh‖1;Ω and ‖y∗ − y∗
h‖1;Ω,

respectively.

Example 3. Finally, let us use the piecewise constant elements to approximate the control

u. The numerical results are given in Table 4.5. From Table 4.5, it is easy to obtain the

convergence rates, see Table 4.6.

Table 4.5: Numerical results of Example 3 (l = 1, k = 0).

variable - element yh,y
∗

h - P2 element, ph, p
∗

h - P1 element, uh - P0 element

mesh mesh1 mesh2 mesh3 mesh4

h 0.05 0.025 0.0125 0.00625

‖Ph

Uu− uh‖0 7.81e-03 2.11e-03 4.91e-04 1.20e-04

‖y − yh‖0 4.38e-02 1.08e-02 2.69e-03 6.73e-04

‖y∗ − y∗

h‖0 7.88e-03 2.12e-03 4.92e-04 1.20e-04

|t− th| 2.95e-02 7.91e-03 1.63e-03 3.88e-04

‖u− uh‖0 1.27e+1 6.42e+0 3.21e+0 1.60e+0

‖y − yh‖1 8.93e-01 2.06e-01 5.04e-02 1.23e-02

‖y∗ − y∗

h‖1 1.06e-01 2.70e-02 6.57e-03 1.63e-03

‖p− ph‖0 2.71e-01 6.68e-02 1.66e-02 4.16e-03

‖p∗ − p∗h‖0 3.89e-03 9.71e-04 2.39e-04 5.94e-05

Table 4.6: Convergence rates of numerical Example 3.

mesh ‖Ph

Uu− uh‖0 ‖y − yh‖0 ‖y∗ − y∗

h‖0 |t− th| ‖u− uh‖0 ‖y − yh‖1 ‖y∗ − y∗

h‖1

1 → 2 1.88 2.01 1.89 1.89 0.99 2.11 1.97

2 → 3 2.10 2.00 2.10 2.27 0.99 2.03 2.03

3 → 4 2.02 2.00 2.02 2.07 0.99 2.02 2.00

From the above three examples, it can be seen that ‖u−uh‖0;Ω = O(hk+1) with respect to

k = 2, 1, 0, respectively. At the same time,

‖y − yh‖1;Ω + ‖p− ph‖0;Ω + ‖y∗ − y∗
h‖1;Ω + ‖p∗ − p∗h‖0;Ω = O(h2)

whatever ‖u− uh‖0;Ω = O(h3), ‖u − uh‖0;Ω = O(h2) or ‖u− uh‖0;Ω = O(h), which coincides

with the theoretical results in Section 3.

4.2. Numerical experiment 2: on multi-mesh

In this experiment we consider the case of using the multi-mesh, on which we use a coarse

mesh to approximate the state and co-state, and another dense mesh to approximate the control.

This strategy can save much computational work since most of the calculation is to solve the

state equations and co-state equations repeatedly. In fact, a precise optimal control arouses

more of our interests in applications, so there is no point to over-compute the state variables.
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Example 4. For the sake of comparison, we compute the same problem as the above, and use

the piecewise quadric elements to approximate the control as in Example 1, but adopt two sets

of meshes. In the meantime, we use the same set of mesh as in Example 1 to approximate the

control, but another set of coarser mesh to approximate the states.

The numerical results are listed in Table 4.7. It is seen from Table 4.7 that the number of

DOFs of the state-mesh reduces substantially in comparison with the data corresponding to

Example 1 (Table 4.1). At the same time, the accuracy of the control is kept (when h ≤ 0.025),

so it is clear that much computational work is saved.

Table 4.7: Numerical results of Example 4 (l = 1, k = 2 on multi-mesh).

variable - element yh,y
∗

h - P2 element, ph, p
∗

h - P1 element, uh - P2 element

mesh multi-mesh1 multi-mesh2 multi-mesh3 multi-mesh4

h 0.2 0.1 0.05 0.025

DOFs: states 664 2330 8794 34016

hU 0.05 0.025 0.0125 0.00625

DOFs: control 2065 7713 30145 118721

‖Ph

Uu− uh‖0 3.63e-01 3.95e-03 7.23e-05 1.15e-05

‖y − yh‖0 3.28e-01 3.35e-02 2.89e-03 2.47e-04

‖y∗ − y∗

h‖0 3.63e-01 3.95e-03 7.23e-05 1.15e-05

|t− th| 2.24e+0 2.25e-02 3.31e-04 6.31e-05

‖u− uh‖0 3.91e-01 2.00e-02 2.42e-03 3.08e-04

‖y − yh‖1 1.14e+1 2.27e+0 3.94e-01 6.68e-02

‖y∗ − y∗

h‖1 2.74e+0 3.85e-02 1.54e-03 1.45e-04

‖p− ph‖0 3.79e+0 9.57e-01 2.32e-01 5.78e-02

‖p∗ − p∗h‖0 9.51e-02 1.86e-03 2.39e-04 5.80e-05
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