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Abstract

In this paper, we present the theory and numerical implementation for a 2-D thermal

inhomogeneity through the dynamical probe method. The main idea of the dynamical

probe method is to construct an indicator function associated with some probe such that

when the probe touch the boundary of the inclusion the indicator function will blow up.

From this property, we can get the shape of the inclusion. We will give the numerical

reconstruction algorithm to identify the inclusion from the simulated Neumann-to-Dirichlet

map.
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1. Introduction

Let Ω be a bounded domain in R2 with C2 boundary ∂Ω. We consider a heat conductor Ω
with an inclusion D such that D ⊂ Ω, Ω \D is connected and the boundary ∂D of D is of class
C1,α (0 < α ≤ 1). Let the heat conductivity γ(x) in Ω be given as follows:

γ(x) =

{
1 for x ∈ Ω \D

k for x ∈ D

with a positive constant k which is not 1. That is, by using the characteristic function χD of
D, γ(x) is given as γ(x) = 1 + (k − 1)χD.

Here Ω could be a cross section of a heat conductive bar which contains an unknown inclusion
with a uniform cross section D. We are concerned with a thermographic nondestructive testing
to identify D. This testing is to identify D from the measurements which apply heat flux
(sometime called thermal load) to ∂Ω many times and measure the corresponding temperature
on ∂Ω. For more details, the readers can refer to [15], [16] and the references therein. In this
paper, we will provide both theoretical and numerical schemes for this testing.
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First of all, we will give some notations which will be used throughout this paper. For a
set B, B × (T1, T2) and B × (0, T ) are denoted by B(T1,T2) and BT , respectively. Also, for
p, q ∈ Z+ := N ∪ {0} or p = 1

2 , Hp(Ω),Hp(∂Ω) and Hp,q(ΩT ) denote the usual Sobolev spaces,
where p and q in Hp,q(ΩT ) denote the regularity with respect to x and t, respectively (cf. [12]).
Further, for an open set U ⊂ R3 with Lipschitz boundary ∂U and p, q ∈ Z+, Hp,q(U) is defined
similar to Hp,q(ΩT ). That is g ∈ Hp,q(U) if and only if there exists g ∈ Hp,q(R3) with g = g
in U . The norm ||g||Hp,q(U) of g defined by

||g||Hp,q(U) := inf
{||g||Hp,q(R3);g ∈ Hp,q(R3) and g|U = g

}
.

Moreover, a function f(x, t) is in L2((0, T ); X) if f(·, t) ∈ X for almost all t ∈ (0, T ) and

||f ||2L2((0,T );X) =
∫ T

0

||f(·, t)||2Xdt < ∞.

The forward problem for the thermographic nondestructive testing is to find a unique weak
solution u = u(f) ∈ H1,0(ΩT ) which satisfies

{
PDu(x, t) := ∂tu(x, t)− divx(γ(x)∇xu(x, t)) = 0 in ΩT

∂νu(x, t) = f(x, t) in ∂ΩT , u(x, 0) = 0 for x ∈ Ω
(1.1)

for a given f ∈ L2((0, T ); (H1/2(∂Ω))∗). Namely, by assuming the initial temperature of a heat
conductive medium Ω is 0, determine the temperature u = u(f) induced in ΩT after applying
the heat flux f on ∂ΩT .

By a weak solution u = u(f) ∈ H1,0(ΩT ) of Problem (1.1), we mean a function u = u(f)
which satisfies ∫

ΩT

(−u∂tϕ + γ(x)∇xu · ∇xϕ)dxdt =
∫

∂ΩT

fϕ|∂ΩT
dσdt

for all
ϕ ∈ W (ΩT ) :=

{
v ∈ H1,0(ΩT ); ∂tv ∈ L2((0, T ); (H1(Ω))∗)

}

with ϕ(x, T ) = 0 for all x ∈ Ω.

It is well known that the boundary value problem (1.1) is well posed (see [17]). That is
there exists a unique solution u = u(f) ∈ H1,0(ΩT ) to (1.1) and u(f) depends continuously
on f ∈ L2((0, T ); (H1/2(∂Ω))∗). Based on this, we define the Neumann-to-Dirichlet map ΛD :
L2((0, T ); (H1/2(∂Ω))∗) → L2((0, T ); H1/2(∂Ω)) by ΛD(f) = u(f)|∂ΩT

.
Now, we take the Neumann-to-Dirichlet map ΛD as measured data for our nondestructive

testing. Then, our inverse problem is to reconstruct the unknown inclusion D from ΛD.
In [3], authors gave a reconstruction procedure for one space dimensional case. It is an

analogue of the probe method which was introduced by Ikehata [7] to identify the shape of
unknown inclusion in a stationary heat conductive medium. They gave a theory on how to
adapt the probe method for the stationary heat conductive case and provided a reconstruction
scheme identifying an inclusion which can depend on time for one space dimensional case.
Below, we will refer this kind of dynamical version of the probe method by dynamical probe
method. Further, Isakov, Kim, and Nakamura [8] extended this argument and established the
foundation for dynamical probe method.

Isakov, Kim, and Nakamura gave the proof of probe method for the three dimensional case
in [8]. As the proof is quite different for the two space dimensional case, in this work we will
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provide not only some numerical results but also the proof of the dynamical probe method for
the two space dimensional case.

The rest of this paper is organized as follows. In Sections 2 and 3, we define the indicator
function which will be proved to be the right one for the reconstruction of inhomogeneity. In
Sections 4 and 5, we give the numerical reconstruction algorithm to identify the inclusion from
the simulated Neumann-to-Dirichlet map.

2. Preliminary Results on Dynamical Probe Method

For (y, s), (y, s′) ∈ (Ω\D)T such that s 6= s′, let Γ(x, t; y, s) and Γ∗(x, t; y, s′) for (x, t) ∈ ΩT

be

Γ(x, t; y, s) =





1
4π(t− s)

exp
[
− |x− y|2

4(t− s)

]
, t > s,

0, t ≤ s,

Γ∗(x, t; y, s′) =





0, t ≥ s′,
1

4π(s′ − t)
exp

[
− |x− y|2

4(s′ − t)

]
, t < s′.

Then,
P∅Γ(x, t; y, s) := (∂t −4x)Γ(x, t; y, s) = 0 if (x, t) 6= (y, s)

and
P∗∅Γ∗(x, t; y, s′) := (−∂t −4x)Γ∗(x, t; y, s′) = 0 if (x, t) 6= (y, s′).

By Runge’s approximation theorem proved in [3] and the interior regularity estimate (see,
e.g., [6]), we have the following result.

Proposition 2.1. Let f ∈ L2((0, T ); (H1/2(∂Ω))∗). We can select two sequences of functions
{vj

(y,s)} and {ϕj
(y,s′)} in H2,1(Ω(−η,T+η)) for arbitrary constant η > 0 such that





P∅vj
(y,s) = 0 in Ω(−η,T+η),

vj
(y,s)(x, t) = 0 if − η < t ≤ 0,

vj
(y,s) → Γ(·, ·; y, s) in H2,1(UT ) as j →∞,

(2.1)

and 



P∗∅ϕj
(y,s′) = 0 in Ω(−η,T+η),

ϕj
(y,s′)(x, t) = 0 if T ≤ t < T + η,

ϕj
(y,s′) → Γ∗(·, ·; y, s′) in H2,1(UT ) as j →∞

(2.2)

for each open set UT in Ω(−η,T+η) such that UT ⊂ Ω(−η,T+η), Ω(−η,T+η) \ UT is connected,
UT has a Lipschitz boundary ∂UT , and UT does not contain (y, s) and (y, s′). We call these
functions in sequences {vj

(y,s)} and {ϕj
(y,s′)} Runge’s approximation functions.

We now define the pre-indicator function, which will be used later to define an indicator
function which is a mathematical testing machine to identify the unknown inclusion.
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Definition 2.2. ([3]) Let (y, s), (y, s′) ∈ ΩT be such that s 6= s′, and {vj
(y,s)}, {ϕj

(y,s′)} ⊂
H2,1(Ω(−η,T+η)) be Runge’s approximation functions given by (2.1) and (2.2). Then, we define
the pre-indicator function I(y, s′; y, s) as follows.

I(y, s′; y, s) = lim
j→∞

∫

∂ΩT

(
∂νvj

(y,s)|∂ΩT
ϕj

(y,s′)|∂ΩT
− ΛD(∂νvj

(y,s)|∂ΩT
) ∂νϕj

(ys′)|∂ΩT

)
(2.3)

whenever the limit exists.

For Runge’s approximation functions {vj
(y,s)} ⊂ H2,1(Ω(−η,T+η)) used in the definition

above, let
uj

(y,s) := u(∂νvj
(y,s)|∂ΩT

) and wj
(y,s) := uj

(y,s) − vj
(y,s).

Then, wj
(y,s) satisfies the following mixed boundary value problem

{
PDwj

(y,s) = (k − 1)divx(χD∇xvj
(y,s)) in ΩT ,

∂νwj
(y,s) = 0 on ∂ΩT , wj

(y,s)(x, 0) = 0 for x ∈ Ω.

Then, for the limit of wj
(y,s), we have the following lemma.

Lemma 2.3. ([3]) wj
(y,s) has a limit w(y,s) ∈ W (ΩT ) satisfying

{
PDw(y,s) = (k − 1)divx(χD∇xΓ(·, ·; y, s)) in ΩT ,

∂νw(y,s) = 0 on ∂ΩT , w(y,s)(x, 0) = 0 for x ∈ Ω.

We call w(y,s) the reflected solution. From the theorems and propositions proved in [3], we have
the following representation formula for the pre-indicator function in terms of the reflected
solution.

Theorem 2.4. For (y, s), (y, s′) ∈ ΩT with s 6= s′, we have

I(y, s′; y, s) = −w(y,s)(y, s′)−
∫

∂ΩT

w(y,s)(x, t)∂νΓ∗(x, t; y, s′)dσ(x)dt.

D

Ω

c

c(0)

c(λ− δ)

c(1)

c(λ)

Fig. 2.1. Domains Ω, D, and a curve C(λ)
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We defined the indicator function as follows.

Definition 2.5. Let C := {c(λ) ; 0 ≤ λ ≤ 1} be a non-selfintersecting C1 curve in Ω which
joins c(0), c(1) ∈ ∂Ω. Then, for each c(λ) ∈ ΩT and each fixed s ∈ (0, T ), we define the
indicator function J(c(λ), s) by

J(c(λ), s) := lim
ε→0

lim inf
δ↓0

|I(c(λ− δ), s + ε2; c(λ− δ), s)|

whenever the limit exists.

By using this indicator function, we can recover D as follows.

Theorem 2.6. Let C be given as in Definition 2.5 above. Then, for a fixed s ∈ (0, T ), we have
the followings.

(i) If the curve C is in Ω \D except c(0) and c(1), then J(c(λ), s) < ∞ for all λ, 0 ≤ λ ≤ 1.

(ii) Let C ∩D 6= ∅ and λs (0 < λs < 1) be such that c(λs) ∈ ∂D, c(λ) ∈ Ω \D (0 < λ < λs).
Then,

λs = sup{ 0 < λ < 1 ; J(c(λ′), s) < ∞ for any 0 < λ′ < λ }.

Remark 2.7. This result itself is exactly the same as that in [8]. However, for the two dimen-
sional case, the proof needs some changes. The details will be given in next section.

3. Proof of Theorem 2.6

By Theorem 2.4, we can see that the behavior of the indicator function J(c(λ), s) is deter-
mined by the behavior of the reflected solution w(y,s). When y is not on the boundary of D,
w(y,s) is bounded due to the interior regularity estimate. So we only need to know the behavior
of w(y,s) when y approaches the boundary of D along the curve.

To begin with let E(x, t; y, s) := w(y,s)(x, t)+Γ(x, t; y, s). Then, E is obviously a fundamen-
tal solution for the operator PD. Further, let C be as in Definition 2.5. Now let P = c(λ0) ∈ ∂D

for some λ0.
Since ∂D is C1,α (0 < α ≤ 1), there is a C1,α diffeomorphism Φ : R2 → R2 which transforms

P to the origin O in R2, Φ(D) ⊂ R2
− = {x = (x1, x2) ∈ R2; x2 < 0}, and DΦ(P ) = I ( 2 × 2

identity matrix). This Φ is the same as that in the paper. Alessandrini and Di Cristo [1]. For
the details we refer the reader to [8].

Let us proceed with our proof. Let Γ− be the fundamental solution for the operator ∂τ −
div((1 + (k− 1)χ−)∇) in R2×R with the characteristic function χ− of the space R2

− such that
Γ−(·, τ ; ·, µ) = 0 for τ ≤ µ. Let ξ = Φ(x) and η = Φ(y). We decompose w(y,s) as follows:

w(y,s)(x, t) = E(x, t; y, s)− Γ(x, t; y, s)

=
{
E(x, t; y, s)− Γ−(Φ(x), t; Φ(y), s)

}
+

{
Γ−(Φ(x), t; Φ(y), s)

− Γ(Φ(x), t; Φ(y), s)
}

+
{
Γ(Φ(x), t; Φ(y), s)− Γ(x, t; y, s)

}
.

Let ε > 0 be given. We take x = y = y(δ) = c(λ0 − δ) ∈ C \D so that y(δ) → P (δ ↓ 0). Then,
as δ ↓ 0, ξ = η → Φ(P ) = O.
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Remark 3.1. When t > s, the definition of Γ gives us the fact

Γ(y, t; y, s) =
1

4π(t− s)
.

So, the third parenthesis is zero if we take x = y and t = s + ε2.

Next, we will estimate the remaining differences in the forthcoming lemmas:

E(Φ−1(ξ), t; Φ−1(η), s)− Γ−(ξ, t; η, s) in Lemma 3.2,

Γ−(ξ, t; η, s)− Γ(ξ, t; η, s) in Lemma3.3.

To begin with we put Ẽ(ξ, t; η, s) := E(Φ−1(ξ), t; Φ−1(η), s). Then, we have the following result.

Lemma 3.2. If y approaches the boundary of D, then we have

lim sup
δ↓0

(Ẽ − Γ−)(η, s + ε2; η, s) = O(εα−2) as ε → 0.

Proof. Note that Ẽ satisfies

[∂t −∇ξ · ((1 + (k − 1)χ−)M(ξ)∇ξ)]Ẽ(ξ, t; η, s) = δ(ξ − η)δ(t− s)

in R2 × R1,where

M(ξ) = JJT with J =
∂ξ

∂x
(Φ−1(ξ)) and Ẽ(ξ, t; η, s) = 0 for t ≤ s.

Then R̃(ξ, t; η, s) := Ẽ(ξ, t; η, s)− Γ−(ξ, t; η, s) satisfies

[∂t −∇ξ · ((1 + (k − 1)χ−)∇ξ)]R̃(ξ, t; η, s)

=∇ξ · ((1 + (k − 1)χ−)(M − I)∇ξ)Ẽ(ξ, t; η, s)

in R2 × R1.
Now, let Γ∗− be the fundamental solution for −∂t − divξ((1 + (k − 1)χ−)∇ξ) such that

Γ∗−(ξ, t; z, τ) = 0 for t ≥ τ.

Choose a ball Br(O) with a radius r centered at the origin, so that Φ(Ω) ⊂ Br(O). Then, we
have the following representation:

R̃(ξ, t; η, s) =
∫ t

s

∫

Br(O)

(1 + (k − 1)χ−)(I −M)∇zẼ(z, τ ; η, s) · ∇zΓ∗−(z, τ ; ξ, t)dzdτ

+
∫ t

s

∫

∂Br(O)

(1 + (k − 1)χ−)[
∂

∂νz
R̃(z, τ ; η, s)Γ∗−(z, τ ; ξ, t)

− R̃(z, τ ; η, s)
∂

∂νz
Γ∗−(z, τ ; ξ, t)]dσ(z)dτ. (3.1)

Note that the integration (3.1) is finite by the choice of Br(O). From the known bounds of
fundamental solutions of parabolic equations ([13]), we get

|∇zẼ(z, τ ; η, s)| ≤ c1(τ − s)−
3
2 exp

(
− |z − η|2

c2(τ − s)

)
, (3.2)

|∇zΓ∗−(z, τ ; ξ, t)| ≤ c3(t− τ)−
3
2 exp

(
− |z − ξ|2

c4(t− τ)

)
(3.3)
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for some positive constants ci, 1 ≤ i ≤ 4. To proceed further, we use the estimate

|M(z)− I| ≤ c5|z|α (|z| < r)

for some constant c5 > 0, because ∂D is C1,α. From now on, we use c for some generic constants
which do not depend on ε and they do not need to be same. By using the Fatou lemma, the
lim supδ↓0 of the absolute value of the integration (??) can be bounded from above by a constant
multiple of the following:

∫ s+ε2

s

∫

|z|<r

|z|α|∇zẼ(z, τ ; O, s)||∇zΓ∗−(z, τ ; O, s + ε2)|dzdτ =: F.

From the inequalities (3.2)-(3.3), we have

F ≤ c

∫ s+ε2

s

∫

|z|<r

|z|α
(τ − s)3/2(s + ε2 − τ)3/2

exp
(
− |z|2

c(τ − s)
− |z|2

c(s + ε2 − τ)

)
dzdτ

= cεα−2

∫ 1

0

∫

|ζ|<rε−1
|ζ|α(µ(1− µ))−

3
2 exp

(
−|ζ|

2

cµ
− |ζ|2

c(1− µ)

)
dζdµ

≤ cεα−2

∫ 1

0

∫

R2
|ζ|α(µ(1− µ))−

3
2 exp

(
− |ζ|2

cµ(1− µ)

)
dζdµ.

Using polar coordinates, we have

F ≤ cεα−2

∫ 1

0

∫ ∞

0

rα+1(µ(1− µ))−
3
2 exp

[
− r2

cµ(1− µ)

]
drdµ

≤ cεα−2

∫ 1

0

[µ(1− µ)]
α−1

2 dµ

∫ ∞

0

sα+1e−s2
ds ≤ cεα−2.

Therefore we have
lim sup

δ↓0
|R̃(η, s + ε2; η, s)| ≤ cεα−2,

which is the desired result. ¤

Now fix (η, s) and put
W (ξ, t) := Γ−(ξ, t; η, s)− Γ(ξ, t; η, s).

Let W±(ξ, t) for ±ξ2 > 0. Then, we have the following lemma.

Lemma 3.3. If y approaches the boundary of D, then there is a constant C which does not
depend on ε such that

lim
δ↓0

W+(ξ, s + ε2) = Cε−2 as ε → 0.

Proof. Since Γ and Γ− satisfy the following equations
{

∂tΓ−(ξ, t; η, s)−∇ξ · (1 + (k − 1)χ−)∇ξΓ−(ξ, t; η, s) = δ(ξ − η)δ(t− s)
∂tΓ(ξ, t; η, s)−4ξΓ(ξ, t; η, s) = δ(ξ − η)δ(t− s)

in R2 × R1, we can see that W satisfies

∂tW (ξ, t)−∇ξ ·
(
(1 + (k − 1)χ−)∇ξW (ξ, t)

)
= (k − 1)∇ξ ·

(
χ−∇ξΓ(ξ, t; η, s)

)
.
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As in [8], by using the Laplace transform and the Fourier transform, we get the representation
of W+(ξ, t) as follows:

W+(ξ, t) =
√

k − 1
8π2

∫ 1

0

√
r + i

√
k(1− r)√

r(
√

r − i
√

k(1− r))
F (r)dr,

where

F (r) =
∫

R
|ζ|ei(ξ1−η1)ζ

[
exp{−(t− s)ζ2(kr − r + 1)− i(ξ2 + η2)

√
k − 1|ζ|√r}

+ exp{−(t− s)ζ2(kr − r + 1) + i(ξ2 + η2)
√

k − 1|ζ|√r}
]
dζ.

Now let δ ↓ 0 and set t = s + ε2. Then, ξ = η → O and (t− s)(kr − r + 1) > 0. Consequently,

lim
δ↓0

F (r) = 2
∫

R
|ζ| exp[−ε2(kr − r + 1)ζ2]dζ

= 4
∫ ∞

0

ζ exp[−ε2(kr − r + 1)ζ2]dζ =
2ε−2

kr − r + 1
.

Therefore we have

lim
δ↓0

W+(ξ, s + ε2)

=
√

k − 1
4π2

ε−2

∫ 1

0

√
r + i

√
k(1− r)√

r(
√

r − i
√

k(1− r))
1

kr − r + 1
dr =

√
k − 1
4π2

ε−2H.

In order to estimate |H| from above and below, we note the following estimates:

∣∣∣∣∣
√

r + i
√

k(1− r)√
r − i

√
k(1− r)

∣∣∣∣∣ = 1, , 1 ≤ kr − r + 1 ≤ k, 1 ≤ r + k(1− r) ≤ k.

Then we have

|H| ≤
∫ 1

0

1√
r
dr = 2 < ∞,

and the imaginary part of H, =H, becomes

=H = 2
√

k

∫ 1

0

√
1− r

(kr − r + 1)(r + k(1− r))
dr ≥ 2

k
√

k

∫ 1

0

√
1− rdr =

4
3k
√

k
> 0.

This completes the proof. ¤

By combining results in this section, we conclude that

lim inf
δ↓0

|w(y(δ),s)(y(δ), s + ε2)| ≥ Cε−2,

as ε → 0 for some positive constant C independent of ε. That is, the reflected solution blows
up as the point approaches the boundary of the inhomogeneity. Furthermore, to get the blow
up property we only use the perturbation in time.
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4. Runge’s Approximation Functions in Dynamical Probe Method

In this section, we present the mathematic framework which is necessary for the numerical
realization of Runge’s approximation. Let

vg(x, t) = H(g)(x, t) =
∫ t

0

∫

∂Ω

Γ(x, t; ξ, τ)g(ξ, τ)dσ(ξ)dτ, (4.1)

with a density function g(ξ, τ) ∈ L2(∂ΩT ). Then it is easy to verify H(g) satisfies

P∅H(g)(x, t) = 0, (x, t) ∈ ΩT .

Let U be as in the Proposition 2.1 and V be similar to U such that U ⊂ V . For (y, s) ∈ (Ω\V )T ,
we consider the integral equation

∫ t

0

∫

∂Ω

Γ(x, t; ξ, τ)g(ξ, τ)dσ(ξ)dτ ≈ Γ(x, t; y, s) for (x, t) ∈ ∂VT+η, (4.2)

where the notation ≈ means that the right hand side of (4.2) is approximately equal to the left
hand side of (4.2). We call this equation Volterra-Fredholm integral equation.

For the existence g(ξ, τ) in (4.2), we have following theorem.

Theorem 4.1. For each bounded domain V ⊂ Ω with C2 boundary, the operator H : L2(∂ΩT ) →
L2(∂VT ) defined by (4.1) has dense range in L2(∂VT )

The proof of this theorem was given in [4] based on the argument provided by the third
author of the present paper. Since [4] is a thesis, which is not easy to access, we give the proof
for reader’s convenience.

Proof. Let V ⊂ Ω, and VT ⊂ Ω(−∞,T ) be a approximate domain with C2 lateral boundary
∂VT . The operator S is same with operator H in ∂VT .

Since L2(∂VT ) = R(S) ⊕ N(S∗) with N(S∗) = {ψ ∈ L2(∂VT ; S∗ψ = 0}, it is sufficient to
prove Γ(x, t; ξ, τ) ∈ N(S∗)⊥. First of all, we note that S∗ is given by

Ψ(ξ, τ) := S∗(ψ)(ξ, τ) =
∫

∂VT

Γ(x, t; ξ, τ)ψ(x, t)dσ(x)dt.

Let ψ = ψ(x, t) ∈ N(S∗) be such that ψ ∈ C0(∂VT ) and ψ
∣∣
t=0

= 0. Note that such ψ is dense
in N(S∗) and S∗ : L2(∂VT ) → L2(Ω(−∞,T )) is bounded operator. We continuously extend ψ

to t < 0 and use the same ψ for the extended ψ. (Of course for this, we need to extend VT to
t < 0 without destroying the regularity of its lateral boundary). Then, we have

{
P∗φΨ = 0 in (R2 \ Ω)(−∞,T ),

Ψ = 0 on ∂Ω(−∞,T ), Ψ
∣∣
τ=T

= 0 on R2 \ Ω.

For t > τ, x 6= ξ

Γ(x, t; ξ, τ) =
1

4π(t− τ)
exp

(
− |x− ξ|2

4(t− τ)

)

≤ π−1|x− ξ|−2

( |x− ξ|2
4(t− τ)

)α

(1− α)1−αe−(1−α)

≤ M(t− τ)−α|x− ξ|−2+2α
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for some M > 0 with 0 < α < 1(cf. (9.15) in [10]). Similarly

|∇ξΓ(x, t; ξ, τ)| ≤ M
′
(t− τ)−β |x− ξ|−2+2β

for some M
′
> 0 with 0 < β < 2. Take 0 < α < 1

2 < β < 1, α + β < 1, we have

|Ψ(ξ, τ)| ≤ M ||ψ||L∞(∂VT )

(
dist(∂VT , ∂ΩT )

)−2+2α|Ω|(1− α)−1(T − τ)1−α,

which gives O(|τ |−α)(s → −∞).
Therefore, summing up all the behaviors, we have

Ψ(ξ, τ) =
{ O((T − τ)1−α) (τ → T ); O((T − τ)1−α)O(|ξ|−2+2α) (τ → T, |ξ| À 1);
O(|τ |−α)(τ → −∞); O((τ)−α) O(|ξ|−2+2α) (τ → −∞, |ξ| À 1).

Similarly, we have the same estimate for ∇ξΨ by replacing α by β. Now, let KR := (R2\Ω)∩BR

with BR := {|ξ| < R} for large R > 0. Then

0 =
∫

KR(−∞,T )

ΨP∗φΨdξdτ =
∫

KR(−∞,T )

|∇ξΨ|2dξdτ −
∫

∂BR(−∞,T )

Ψ∂νΨdσ(ξ)dτ

because
||Ψ(·, T )2||L2(KR) = ||Ψ(·,−∞)2||L2(KR) = 0

and
Ψ = 0 on Ω(−∞,T ).

Therefore
lim

R→∞

∫

KR

|∇ξΨ|2dξdτ = 0. (4.3)

Observe that
∣∣∣∣∣
∫

∂BR(−∞,T )

Ψ∂νΨdσ(ξ)dτ

∣∣∣∣∣

≤L

(∫ T

T
2

(T − τ)2−(α+β)dτ +
∫ T

2

−∞
|τ | 12−βdτ

) ∫

S

R−3+2(α+β)dS

=L
′
R−3+2(α+β)|S| → 0(R →∞).

From (4.3) and Ψ = 0 on Ω(−∞,T ), we obtain

Ψ = 0 in (R2\Ω)(−∞,T ).

Therefore, by the unique continuation,

Ψ(ξ, τ) =
∫

∂VT

Γ(x, t; ξ, τ)ψ(x, t)dσ(x)dt = 0

for ψ ∈ N(S∗). This completes the proof of the theorem ¤

By Theorem 4.1, there exist a density function gj(ξ, τ) ∈ L2(∂ΩT+η) satisfying

gj(ξ, τ) = inf
{
g(ξ, τ) : ||H(g)(·)− Γ(·; y, s)||L2(∂VT+η) ≤ ε(j)

}
, (4.4)
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where limj→∞ ε(j) = 0. Thus, together with the interior regularity estimate, we have Runge’s
approximation vj in an approximated domain UT for Pφ.

On the other hand, it is obvious that

Γ∗(x, t; y, s′) = Γ(x, T − t; y, T − s′). (4.5)

So, we can get
ϕj

(y,s′)(x, t) = vj
(y,T−s′)(x, T − t). (4.6)

The numerical realization of Runge’s approximation ϕj for P∗φ in the same approximated domain
can be given by vj , if we observe (4.5) due to (4.6).

5. Numerical Implementation of Dynamical Probe Method

Let ξj ∈ ∂Ω, j = 1, · · · ,m, xi ∈ ∂Ω, i = 1, · · · ,m and tn = n(T + η)/N , n = 1, . . . , N .
Also, let g(ξj , τ) =

∑N
n=1 cjnχn(t), where χn(t) is the characteristic function of (tn−1, tn]. We

approximate g(ξ, τ)dσdτ in (4.2) along ∂Ω between ξj and ξj+1 by g(ξj , τ)ljjdτ , where ljj is
the distance between ξj and ξj+1. Then, we have

Ac = b (5.1)

with A = (Ai,j)mN×mN , c = (cj)mN×1 and b = (bi)mN×1 given by

Ai,j =




∆i,j
1 0 0 · · · 0

∆i,j
2 ∆i,j

1 0 · · · 0
∆i,j

3 ∆i,j
2 ∆i,j

1 · · · 0
...

. . . . . . . . .
...

∆i,j
N · · · ∆i,j

3 ∆i,j
2 ∆i,j

1




cj = (cj1, cj2, · · · , cjN )T bi = (bi1, bi2, · · · , biN )T
,

where

∆i,j
n =

∫ t1

0

Γ(xi, tn; ξj , τ)ljjdτ,

which can be calculated using the Gauss-Legendre formula, and bin = Γ(xi, tn; y, s). The linear
system (5.1) can be solved using Hansen’s Regularization Tools [5].

Once g(ξ, τ) is known, we can calculate v(y,s)(x, t)|∂ΩT by using the formula.

v(y,s)(x, t) =
∫ t

0

∫

∂Ω

Γ(x, t; ξ, τ)g(ξ, τ)dσ(ξ)dτ for (x, t) ∈ ∂ΩT . (5.2)

On the other hand, we can also calculate ∂νv(y,s)(x, t)|∂ΩT by using the following jump formula

∂νv(y,s)(x, t) =
1
2
g(x, t) +

∫ t

0

∫

∂Ω

∂Γ(x, t; ξ, τ)
∂ν

g(ξ, τ)dσ(ξ)dτ for (x, t) ∈ ∂ΩT . (5.3)

Let Ω be an open disk with radius 1 and center (0, 0). An approximate domain VT+η defined
via V with the boundary ∂V is given as the union of

{
x = (x1, x2) : x2 = ax6

1 + bx4
1 + cx2

1 + d, |x1| ≤ x∗1, x2 > 0
}
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and

{
x = (x1, x2) : x2

1 + x2
2 = r, 0 < x∗1 ≤ |x1| ≤ 1, x2 > 0 or |x1| ≤ 1, x2 ≤ 0

}
.

This V was used in [2] for the numerical testing of the probe method for the inverse scattering
problem. We took the parameters a, b, c, d appropriately so that the C2 smoothness of ∂V is
satisfied.

Let gθ(ξ, τ) be a solution of Eq. (4.2) for ∂VT+η(θ) and rotate V (0) to V (θ) with θ ∈ (0, 2π].
Then, it is easy to see that

∂V (θ) = M(θ)∂V (0)

(see Figs. 5.1 and 5.2), where M(θ) is an orthogonal matrix

M(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

By the definition of gθ(ξ, τ), we have

∫ t

0

∫

∂Ω

Γ(x0, t; ξ, τ)g0(ξ, τ)dσ(ξ)dτ ≈ Γ(x0, t; y0, s) x0 ∈ ∂V (0), (5.4)
∫ t

0

∫

∂Ω

Γ(M(θ)x0, t; ξ, τ)gθ(ξ, τ)dσ(ξ)dτ ≈ Γ(M(θ)x0, t;M(θ)y0, s) x0 ∈ ∂V (0). (5.5)

By using the facts that

|M(θ)x0 − ξ| = |x0 − (M(θ))−1ξ|, |M(θ)x0 −M(θ)y0| = |x0 − y0|

and the definition of Γ, the right hand side of Eq. (5.5) becomes Γ(x0, t; y0, s), which is same
as the right hand side of Eq. (5.4), and the left hand side of Eq. (5.5) becomes

∫ t

0

∫

∂Ω

Γ(x0, t; (M(θ))−1ξ, τ) gθ(ξ, τ)dσ(ξ)dτ.

Also, since Ω is axis-symmetric, the left hand side of Eq. (5.4) becomes

∫ t

0

∫

∂Ω

Γ(x0, t; (M(θ))−1ξ, τ)g0((M(θ))−1ξ, τ)dσ(ξ)dτ.

Hence, the minimum norm solution gθ(ξ, τ) corresponding to domain ∂VT+η(θ) is

gθ(ξ, τ) = g0((M(θ))−1ξ, τ)

This property is useful for us to reduce the computational time.
Now we give the algorithm as follows:

1. For given (y, s) and (y, s
′
), we construct the approximate domain VT+η satisfying the

conditions: D ⊂⊂ V and (y, s), (y, s
′
) ∈ ΩT \ VT .

2. We calculate g by solving the integral equation (4.2) with the Hansen regularization
tools.
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3. Compute v(y,s)(x, t)|∂ΩT
and ∂νv(y,s)(x, t)|∂ΩT

by using (5.2) and (5.3), respectively.
Based on equation (4.6), we compute ϕ(y,s)(x, t)|∂ΩT

and ∂νϕ(y,s)(x, t)|∂ΩT
.

4. Simulate ΛD(∂νv(y,s)(x, t)|∂ΩT ), using the finite element method.

5. Calculate indicator function (2.3) and choose the suitable cutoff constant Cθ to deter-
mine the boundary of inclusion.
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Fig. 5.1. Approximated domain V (0)
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Through the analysis of numerical results, we give a rule to choose the cutoff constant Cθ

as following:

(1) Obviously, |I| is different due to the different distances between the boundary of inclusion
D and Ω. Comparing the value of |I| for θ = 0 and θ = π/2 in Table 5.1, we find that the ratio
of |I| for θ = 0 to |I| for θ = π/2 is about 1, which is approximately the ratio of radius in the
two directions for the circle case, and in Table 5.2, we also find that the ratio of |I| for θ = 0
to |I| for θ = π/2 is 0.66, which is approximate to the ratio of radius in the two directions for
the ellipse case. So Cθ is related to this growth rate, and we define this rate as k(θ):

k(θ) = AVERAGE
(

Indicator(i, θ = 0)
Indicator(i, θ)

)
. (5.6)

(2) On the other hand, we find the change of |I| is larger than that of |y|. If we choose Cθ as
constant, the fluctuation of |I| can not reflect the change of |y|, it will lose much information,
which is called ”reduction effect”. For this effect, we define h(θ) as following:

h(θ) =
∑

Indicator(i, θ = 0)∑
Indicator(i, θ)

. (5.7)

Based on the above arguments, we define Cθ as

Cθ = C0 ∗ k(θ) ∗ h(θ), (5.8)

where C0 is the value of Cθ when θ = 0.
Now, we will give some examples to test our algorithm. Firstly, we take the parameters as

following:

m = 34, N = 12, T = 1, η = 0.1, d = |y| − 0.05, s = 0.3, s′ = 0.5, k = 3.

Example 1. We consider inclusion with boundary

∂D =
{
x = (x1, x2) = (0.4 cos t, 0.4 sin t), t ∈ [0, 2π]

}
.

We list the values of |I(y, s′; y, s)| in table 5.1.

Table 5.1: Behavior of indicator function as y approaches the boundary

|y| θ = 0 θ = π/2

0.70 0.4236 0.4490

0.68 0.5689 0.6034

0.66 0.7797 0.8265

0.64 1.0826 1.1455

0.62 1.5118 1.5960

0.60 2.1106 2.2221

0.58 2.9378 3.0843

0.56 4.0594 4.2499

0.54 5.5678 5.8132

0.52 7.5624 7.8757

0.50 10.1941 10.5907

0.48 13.5732 14.0698

0.46 17.9467 18.5638
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Fig. 5.3. Reconstruction of D for Example 1

If we take the different cutoff constant C = 1, 8, 17, we have Figure 5.3.

Example 2. We consider the inclusion with boundary

∂D = {x = (x1, x2) = (0.5 cos t, 0.3 sin t), t ∈ [0, 2π]}

We list the values of |I(y, s′; y, s)| in Table 5.2.

When we take cutoff constant C0 = 1, 10, 40, we have Figure 5.4.
Figures 5.3 and 5.4 show the numerical results for reconstructing the boundary of inclusion

with different shapes. The first example is about circular inclusion. We can get the approximate
domain of inclusion when C0 = 1, 8, 17, shown in Figure 5.3. The pink line (a circle with radius
0.55) is approximation of green line in Figure 5.3. The second example is about elliptic inclusion.
We can also get the approximate domain of inclusion when C0 = 1, 10, 40, shown in Figure 5.4.
The pink line (a ellipse with semi-major axis 0.6 and semi-minor axis 0.5) is approximation of
green line in Figure 5.4. The numerical results show our algorithm is successful in identifying
the shape of unknown inclusion. But in practice, we can not know the center of unknown
inclusion. In order to test the effect of our algorithm for general cases, we take the following
example. Clearly, if we can estimate the center of the inclusion, the non-center case can be
considered as same as the center case.

Example 3. We consider the heart-shaped inclusion with boundary

∂D =
{
x = (0.1(2 + cos(t)5) cos(t), 0.1(2 + cos(t)5) sin(t)), t ∈ [0, 2π]

}

with the center (0.5, 0.2), and Ω is a circle with radius 1.5. We list the values of |I(y, s′; y, s)|
in Table 5.3.

If we take the different cutoff constant C = 0.7, 3, 8, we have Figure 5.5.
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Table 5.2: Behavior of indicator function as y approaches the boundary

|y| θ = 0 θ = π/2

0.70 0.4472 0.6430

0.68 0.6069 0.8979

0.65 0.9942 1.5124

0.62 1.6557 2.5507

0.60 2.3199 3.5840

0.58 3.2333 4.9949

0.56 4.4619 6.8793

0.54 6.0968 9.3706

0.52 8.2332 12.6063

0.50 11.0098 16.7892

0.48 14.5606 22.1117

0.46 19.0720 28.8440

0.44 24.6900 37.1925

0.42 31.7241 47.6038

0.40 40.4213 60.4244
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Fig. 5.4. Reconstruction of D for Example 2

In Figure 5.5, we get the reconstruction of heart-shaped inclusion. In Table 5.3, we clearly
find the values of indicator function grow quickly in the side where inclusion is close to the
boundary of Ω. While in the other side, the values of indicator function grow so slowly that we
can not reconstruct the boundary, which can be estimated using the reconstructed boundary,
shown in pink line. Especially, base on the approximate domain, we can estimate the center of
the inclusion, which is close to the center of inclusion shown in Figure 5.5.
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Table 5.3: Behavior of indicator function as y approaches the boundary

|y| θ1 θ2

1.30 0.0099 0.0087

1.28 0.0099 0.0102

1.26 0.0099 0.0122

1.24 0.0099 0.0149

1.22 0.0099 0.0186

1.20 0.0099 0.0244

1.18 0.0099 0.0342

1.16 0.0099 0.0533

1.14 0.0099 0.0935

1.12 0.0099 0.1819

1.10 0.0099 0.3768

1.08 0.0099 0.8029

1.06 0.0099 1.7077

1.04 0.0100 3.5778

1.02 0.0100 7.2855
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Fig. 5.5. Reconstruction of D for Example 3

6. Conclusions and Discussions

In above figures, it is observed from Figs. 5.3-5.5 that we can get the approximate boundaries
of the inclusion D, and numerical results show that our algorithm is effective. In our algorithm,
it is important to choose Cθ to simulate the Neumann-to-Dirichlet map. So in the future works,
it is expected that more suitable rules for choosing Cθ will be proposed and tested. Although we
can minimize the error of the Neumann-to-Dirichlet map using refined meshes, it will increase
the error in solving the integral equation (4.2), because we solve (4.2) (which is ill-posed) by
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using regular methods. Consequently, a suitable mesh should be chosen to balance the two
errors.
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