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Abstract

Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff

ordinary differential equations. Making use of special properties of Chebyshev-like poly-

nomials, these methods have favorable stability properties compared to standard explicit

methods while remaining explicit. A new class of such methods, called ROCK, introduced

in [Numer. Math., 90, 1-18, 2001] has recently been extended to stiff stochastic differential

equations under the name S-ROCK [C. R. Acad. Sci. Paris, 345(10), 2007 and Commun.

Math. Sci, 6(4), 2008]. In this paper we discuss the extension of the S-ROCK methods

to systems with discrete noise and propose a new class of methods for such problems, the

τ -ROCK methods. One motivation for such methods is the simulation of multi-scale or

stiff chemical kinetic systems and such systems are the focus of this paper, but our new

methods could potentially be interesting for other stiff systems with discrete noise. Two

versions of the τ -ROCK methods are discussed and their stability behavior is analyzed on

a test problem. Compared to the τ -leaping method, a significant speed-up can be achieved

for some stiff kinetic systems. The behavior of the proposed methods are tested on several

numerical experiments.

Mathematics subject classification: 60G55; 65C30; 80A30

Key words: Stiff stochastic differential equations; Runge-Kutta Chebyshev methods; Chem-
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1. Introduction

The kinetic modeling of many complex chemical processes often involves reactions over a
wide range of time scale and multiple chemical species with a very heterogeneous population size.
Such processes arise for example in reaction and diffusion mechanisms in living cells, where the
traditional modeling of the chemical reactions based on ordinary differential equations (ODEs)
fails to capture the correct dynamics [1–3]. Indeed, when a small number of molecules are
involved in a reaction, the stochasticity of the molecular collisions and the discreet behavior of
the dynamics cannot be neglected.

Using first principle physical arguments (assuming proper mixing and thermal equilibrium)
one can derive a discrete dynamics in the form of a Markov process with its accompanying
master equation for the transition probability. Computing trajectories reproducing the statistics

* Received March 14, 2009 / Revised version received May 22, 2009 / Accepted June 6, 2009 /

Published online December 21, 2009 /



196 A. ABDULLE, Y. HU AND T. LI

of this master equation is at the heart of the so-called stochastic simulation algorithm (SSA)
introduced by Gillespie in the late seventies [4,5]. Several coarse-graining procedure linking the
Markov description to the ODE description of a chemical kinetic system have been derived. By
lumping together several reactions in the SSA before updating the state vector one obtains a
coarse-grained algorithm, known under the name of τ -leaping [6]. Coarse graining further leads
to the so-called chemical Langevin equation (CLE), a system of stochastic differential equations
(SDEs) and finally, neglecting the fluctuations through large volume approximation leads to the
reaction rate equations, a system of ordinary differential equations.

The choice of the model and in turn of the algorithm, to describe and solve the chemical
kinetic system is dictated by the specific properties of the considered system. A small number
of molecules makes for example a description based on concentration unrealistic and would
lead to favor a discrete description. But a discrete algorithm as SSA can be very expensive
when many reactions occur leading to a huge number of updates of the state vector. Both the
τ -leaping method and the Chemical Langevin description are good compromises between the
SSA and the ODE model and have attracted increasingly growing attention.

A common issue for all of the above algorithms is the wide range of temporal scales of
the chemical kinetic system. This multiscale nature is called stiffness in the ODE setting
and numerical methods for stiff ODEs have been extensively studied [7]. Roughly speaking,
stiffness in the ODE context leads to stability issues for traditional explicit methods (as the well-
known forward-Euler method). The usual remedy to that problem is to use implicit methods
which have favorable stability properties. But this comes with a cost, the cost of solving
nonlinear problems at each time-step. An intermediate approach, between classical explicit
methods and implicit methods, is known under the name of Chebyshev methods. These methods
are explicit, but possess extended stability domains for dissipative problems. The extended
stability domains can be tuned by varying the stage number of the methods [8–11]. A class of
such Chebyshev methods, called ROCK (for Orthogonal Runge-Kutta Chebyshev) introduced
in [8, 9], has recently be extended to stiff stochastic differential equations [12–14]. Mainly
developed for problem arising from the method of lines discretization of stochastic partial
differential equations (SPDE) [12,13], these methods have proved successful for solving certain
type of SDEs arising from CLE [14].

In this paper we further extend the (multi-stage) S-ROCK methods for discrete stochastic
processes and derive several algorithms for processes with discrete Poisson noise. We study
the application of such methods to discrete stochastic processes modeling chemical reactions
usually solved by the so-called τ -leaping method. As explained above, the idea of lumping
together several reactions in the SSA and updating the state space vector after a lumped time
τ , led Gillespie to introduce the (explicit) τ -leaping method. It was soon recognized that in
many situations, the timestep τ is dictated by the fastest reaction and can be prohibitively
small. This triggered the development of other numerical schemes as the implicit τ -leaping
methods [15]. But unlike stiff ODEs, stability is not the only issue for stochastic problems.
Recovering the correct statistics of the stochastic process is not necessarily guaranteed by
stable method. This has been discussed in [16] for SDEs and in [17] for the τ -leaping method.
Roughly speaking, if a fast process of a dynamical system has a non trivial (e.g., non Dirac)
invariant measure, explicit or implicit methods fail to capture the correct statistics unless the
fast process is resolved. The damping properties of implicit methods and the amplification
properties of explicit methods prevent to capture correctly these statistics 1) . To overcome this

1) A particular algorithm, the so-called trapezoidal rule, is capable of recovering the limit behavior of a fast
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issue, an adaptive explicit-implicit τ -leaping method has been introduced in [18]. Alternatively,
multiscale techniques [20,21] aiming at capturing the slow (macro) process of a chemical kinetic
system have been developed. Our new algorithm, the τ -ROCK methods, can be seen as a
generalization of the explicit τ -leaping method and an explicit alternative of the explicit-implicit
τ -leaping method. If restricted to one-stage, we recover the explicit τ -leaping method. Similarly
as the S-ROCK methods, τ -ROCK methods are explicit and by increasing the stage number
of the methods, we can increase their stability properties. By varying another parameter, the
so-called damping parameter, we can vary the damping of the fastest scales.

We study several classes of chemical kinetic systems. The first-class, has similar dynamical
properties as systems which are called mean-square stable in the theory of SDEs. For this
class of problems, the τ -ROCK method show significant improvement compared to the explicit
τ -leaping method. The second class of problems arise from reversible isomerization. The
damping (or lack of damping) of the implicit or explicit τ -leaping methods reduce or increases
the variance of the numerical solution. By tuning the damping of the τ -ROCK method, we show
that we can obtain a more efficient method than the explicit τ -leaping method. The capability
of the τ -ROCK method to be tuned for various situation makes this method attractive. But
some issues are not yet fully addressed and need further developments. The tuning of our new
method to the various scenarios is done by hand. An adaptive version, where the stage number,
step-size and damping parameters can vary according to the behavior of the chemical kinetic
system is currently under investigation.

This paper is organized as follows. In Sec. 2 we briefly review the SSA method, the τ -leaping
method, and the Chebyshev and ROCK methods. In Sec. 3 we introduce several versions of the
τ -ROCK methods corresponding to various treatments of the noise term. In Sec. 4 we study
the convergence and stability properties of the τ -ROCK methods for the isomerization test
equation. Finally, in Sec. 5 we present several numerical experiments to illustrate the behavior
of the new methods.

2. SSA and τ-leaping

Assume that a well-stirred chemical reaction system has N chemical species {S1, . . . , SN}
interacting through M reaction channels {R1, . . . , RM}. The state of the system is specified
by the vector Xt = (X1t, . . . , XNt)T , where Xit denotes the number of molecules for the
specie Si at time t. Each reaction Rj is characterized by its propensity function aj(x) and
its state-change vector νj = (ν1j , . . . , νNj)T (j = 1, . . . , M). The propensity function aj(x)
gives the “stochastic rates” of the reaction channel j and involves the product of the number
of molecules participating in the given reaction, while the state-change vector νj is a integer
valued vector describing the change of the state Xt when the reaction j fires (see [4,5]). In what
follows, we denote the vector of the propensity functions as a(x) = (a1(x), . . . , aM (x))T , and
the stoichiometry matrix as ν = (ν1, . . . , νM ). The rules governing the change in the species
populations is given by the following stochastic evolution system.

1. Given the current state Xt, during an infinitesimal time interval dt, the reaction Rj will
fire with probability of aj(Xt)dt, and the reactions are independent of each other.

2. If Rj fires, the state of the system is updated as Xt + νj .

process without resolving the fastest scale, but this characteristic seems to be limited to linear problems [16].
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An exact simulation method for the above chemical kinetic system is the stochastic simula-
tion algorithm [4,5]. This method can be summarized as follows.

Algorithm 2.1 Stochastic simulation algorithm (SSA).

Step 1 Sample the waiting time τ as an exponentially distributed random variable with rate
a0(Xt) =

∑M
j=1 aj(Xt);

Step 2 Sample an M point random variable k with probability aj(Xt)/a0(Xt) for the j-th
reaction;

Step 3 Update Xt+τ = Xt + νk and return to Step 1.

Despite its simplicity and accuracy, the SSA is extremely slow for realistic simulations when the
reactions fire very frequently. Instead of updating one reaction at a time, one could also fix a
time-step τ and count all the reaction firing in this given interval. This lead to an approximate
but much faster simulation procedure, the τ -leaping algorithm [6].

Algorithm 2.2 τ -leaping algorithm.

Step 1 Given the state Xn at time tn, determine a leap time τ ;

Step 2 Generate r = (r1, . . . , rM )T , where rj = P(aj(Xn)τ) are Poisson random variables
with rate aj(Xn)τ ;

Step 3 Update time to tn + τ and Xn+1 = Xn + ν · r.

For such an approximation of the SSA to be valid, τ should be chosen small enough so that in
(t, t + τ ] the propensity functions aj(Xt) do not change appreciably [6] (this is called the leap
condition). Strategy to choose the value of τ automatically and adaptively have been addressed
by a few authors (see [18] and the references therein).

It was pointed out in [22] that the chemical kinetic system can be described by SDEs driven
by state-dependent discrete Poisson noise. A rigorous description involving Poisson random
measures is described in [22]. With a less-rigorous but more transparent statement, we may
denote the SDE form of the chemical kinetic system as

dXt =
M∑

j=1

νjP(aj(Xt−)dt).

Actually, the τ -leaping method is just the forward-Euler scheme for this SDE:

Xn+1 = Xn +
M∑

j=1

νjP(aj(Xn)τ) = Xn + ν · r.

Now we make the decomposition

dXt =
M∑

j=1

νjaj(Xt−)dt +
M∑

j=1

νj

(
P(aj(Xt−)dt)− aj(Xt−)dt

)

= f(Xt−)dt + dQt. (2.1)
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Here

f(x) =
M∑

j=1

νjaj(x)

and

dQt =
M∑

j=1

νj

(
P(aj(Xt−)dt)− aj(Xt−)dt

)

are called the drift part and jump part in [22], respectively. This form is similar with SDEs
driven by Brownian noise, except for the different noise.

The issue of stiffness. In chemical reaction systems, stiffness is a quite common phenomenon.
For stiff SDEs, the forward-Euler scheme will suffer from stability issues. Similar issues arise
for the τ -leaping method when solving stiff chemical kinetic systems. One possible remedy to
this problem is to use a semi-implicit method to approximate (2.1), which was reported by M.
Rathinam et al. in [15].

Algorithm 2.3 Implicit-τ -leaping algorithm.

Step 1 Given the state Xn at time tn, determine a leap time τ ;

Step 2 Generate Poisson random variables P(aj(Xn)τ), j = 1, 2, · · · ,M and use them to
compute

Q(Xn, τ) =
M∑

j=1

νj

(
P(aj(Xn)τ)− aj(Xn)τ

)

Step 3 Solve the implicit equation

Xn+1 = Xn + f(Xn+1)τ + Q(Xn, τ).

As pointed out in [15], although attractive for some chemical kinetic systems, the damping
property of the above implicit method prevent to capture the right statistics for several chemical
kinetic systems with multiple time scales. An alternative algorithm also proposed in [15], the
so-called trapezoidal τ -leaping algorithm shows better behavior for linear problems due to the
fact, well-known in numerical ODE theory, that the trapezoidal rule has no “damping property
at infinity” [7]. For the general case, an algorithm combining explicit and implicit τ -leaping
method has been investigated in [18].

Remark 2.1. The τ -leaping method as the τ -ROCK methods that will be proposed in the
following, have the property that the state change Xn+1 − Xn is generally not an integer
vector. Rounding every component of Xn to their nearest integer is a simple remedy. Here, for
simplicity in our numerical experiments, we will follow [15] and focus on the “unrounded” form.
Another issue is that the component of X may become negative because of the unboundedness
of the Poisson random variables. Negativity problem is more likely to happen for species with
small population (as for example the species X3 in the example 1 of Section 5). Our remedy is
to take the absolute value of X if it becomes negative. One should be careful about this trick
since it may bias some systems, but for the simple examples considered in this article this seems
not to be an issue. We note that a τ -ROCK method based on binomial random variable could
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be derived following the ideas developed below. The boundedness of theses random variable
could be used to avoid negative population [19].

3. The τ-ROCK and Reversed-τ-ROCK Methods

The new methods that will be tested in this article are based on Chebyshev methods
originally proposed for stiff ODEs and introduced by Saul’ev, Franklin & Guillou and Lago
(see [7] and the references therein). Such methods rely on stability functions given by shifted
Chebyshev-like polynomials Rm(z) = Tm(1 + z/m2), where Tm(z) is the Chebyshev polyno-
mial of degree m. The polynomials Rm(z) (the stability functions of the underlying numer-
ical methods) equi-oscillate between −1 and 1 and have the property that |Rm(z)| ≤ 1 for
z ∈ [0, 2m2]. The related stability domains are therefore extended along the negative real axis
and they increase quadratically with the degree m of Rm(z). The degree m of the stability
functions indicates the stage number of the associated Runge-Kutta method, while the prop-
erty Rm(z) = 1 + z +O(z2) ensure the first order convergence of the numerical method. These
methods, further developed and generalized to higher orders in [8–11] have proved to be very
efficient for large stiff ODEs.

The Chebyshev methods was successfully generalized to SDE [12–14] under the name S-
ROCK, for stochastic orthogonal Runge-Kutta Chebyshev methods. They can efficiently solve
a class of stiff SDEs that are called mean-square stable. In this article, we will extend the S-
ROCK methods to chemical kinetic system of the form (2.1), driven by discrete Poisson noises.
Following [12–14], we propose the so-called τ -ROCK methods for the numerical solution of
(2.1).

Algorithm 3.1 m-stage τ -ROCK method.

Step 1 Given the state Xn at time tn, determine a leap time τ ;

Step 2 Using a three-term recurrence relation compute Km as

K0 =Xn, K1 = K0 + τ
ω1

ω0
f(K0),

Kj =2τω1
Tj−1(ω0)
Tj(ω0)

f(Kj−1) + 2ω0
Tj−1(ω0)
Tj(ω0)

Kj−1 − Tj−2(ω0)
Tj(ω0)

Kj−2,

j = 2, . . . , m− 1,

Km =2τω1
Tm−1(ω0)
Tm(ω0)

f(Km−1) + 2ω0
Tm−1(ω0)
Tm(ω0)

Km−1 − Tm−2(ω0)
Tm(ω0)

Km−2

+
M∑

j=1

νννj

(
P(aj(Km−1)τ)− aj(Km−1)τ

)
; (3.1)

Step 3 Update the time to tn + τ and Xn+1 = Km.

In (3.1) Tj(x) is the classical Chebyshev polynomial which satisfies the recurrence relation

T0(x) = 1, T1(x) = x,

Tj(x) = 2xTj−1(x)− Tj−2(x), j ≥ 2,
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ω0 = 1 + η/m2, η > 0 is a preselected constant called the damping parameter and ω1 =
Tm(ω0)/T ′m(ω0). P(aj(Km−1)τ) are independent Poisson random variables with parameters
aj(Km−1)τ .

The difference between the τ -ROCK and the S-ROCK methods is merely in the noise term:
the Gaussian noise in the S-ROCK method is replaced by the discrete noise

Q(Km−1, τ) =
M∑

j=1

νννj

(
P(aj(Km−1)τ)− aj(Km−1)τ

)

in the τ -ROCK method. Here

Ñj(Km−1, τ) ≡
(
P(aj(Km−1)τ)− aj(Km−1)τ

)

is the compensated-Poisson random variables satisfying

EÑj(Km−1, τ) = 0,

and
VarÑj(Km−1, τ) = aj(Km−1)τ.

The τ -ROCK method can be viewed as a generalization of the τ -leaping method: in the
case of m = 1, the τ -ROCK is exactly the τ -leaping. m can be chosen from one to several
hundreds depending on the stiffness of the system. The advantage of using large m is that the
quadratic growth of the stability domain along the negative real axis (suitable for stiff ODEs
or SDEs) also enhance the stability properties of the ROCK version for discrete noise (as will
be discussed in Section 4). However, as we mentioned before, stability is not the only concern
in simulating stochastic processes. Like other explicit methods such as the τ -leaping method,
the τ -ROCK methods also amplify the variance, sometimes even more severely as we aim at
using large τ in our method. An alternative treatment of the noise term can damp this too
large variance. The idea is to put the noise term at the beginning of the m−stage process. This
“reversed” τ -ROCK method is given by the following process.

Algorithm 3.2 m-stage reversed-τ -ROCK method.

Step 1 Given the state Xn at time tn, determine a leap time τ ;

Step 2 Compute the noise term

Q(Xn, τ) =
M∑

j=1

νj (P(aj(Xn)τ)− aj(Xn)τ) ,

with Xn first, and then compute Km iteratively as

K0 = Xn + Q(Xn, τ), K1 = K0 + τ
ω1

ω0
f(K0),

Kj = 2τω1
Tj−1(ω0)
Tj(ω0)

f(Kj−1) + 2ω0
Tj−1(ω0)
Tj(ω0)

Kj−1 − Tj−2(ω0)
Tj(ω0)

Kj−2,

j = 2, . . . , m. (3.2)

Step 3 Update time to tn + τ and Xn+1 = Km.
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This treatment of the noise term share some similarity with the implicit-τ -leaping method,
where the noise term Q(Xn, τ) is added to Xn (but in this latter case, an implicit equation has
to be solved for Xn+1 while here, the explicit Chebyshev iterations ensure favorable stability
properties for the above reversed-τ -ROCK method). It was shown in [17] that the implicit-τ -
leaping method has damping properties and that the variance of Xn is reduced. Later we will
show that the reversed-τ -ROCK method has a similar behavior.

So far, we have not discussed the choice of the stage number m, of the time-step τ and the
damping parameter η, which is crucial for the overall performance of the τ -ROCK methods.
Here we will use the selection procedure for m and η developed in [12–14] based on optimal
stability domains for the numerical method when applied to linear scalar mean-square stable
SDEs. For stiff chemical kinetic systems for which the variances of the fast components approach
zero as t → ∞ the above procedure works fine. However, as we will be seen in the numerical
tests of Sec. 5, for stiff chemical kinetic system whose fast components do not satisfy the above
variance property, the variance of the noise term Ñj(Xn, τ) can be very large (recall also that
we aim at selecting large τ in our method). In such case we must choose a larger damping in
the τ -ROCK methods than predicted by the strategy given in [12–14]. Currently this tuning is
done by hand and a more automatic adaptive procedure including the adaptive determination
of τ will be developed in a future work.

4. Stability Analysis

The simplest model problem to be considered is

S
λ−→ ∅. (4.1)

For such a reaction we have E(X∞) = E(X2
∞) = 0. The chemical Langevin equation corre-

sponding to the above test equation is

dXt = −λXtdt +
√

λXtdWt, (4.2)

where Wt is a standard Wiener process. This trivial test problem belongs to the class of so-
called mean-square stable problems [14]. This is a special case of the test problem considered
below (with c2 = 0) and the stability condition |Rm(z)| < 1, z = λτ (see (4.10) below) for the
τ -ROCK method ensure that the long term behavior is correctly captured.
Notice that if this problem represents a fast reaction in a chemical reaction, small step-sizes
for the usual τ -leaping method will be required as the condition |1− λτ | < 1 must be satisfied
which represents a severe restriction if λ is large.

To understand why the new methods work for some other stiff chemical kinetic systems, let
us consider a model problem, the reversible isomerization reaction proposed in [17]

S1
c1−⇀↽−
c2

S2, (4.3)

which plays the role of “test equation” in the numerical solution of ODEs here.
For this reversible reaction system, we always have the conservation for the total number of

molecules. Let us define X1t + X2t = XT and c1 + c2 = λ. Since the total number of molecules
XT is constant, we will only consider on species X1t (and two reactions) denoted by Xt in what
follows. The propensity functions for this this system are given by

a1(x) = c1x, a2(x) = c2(XT − x). (4.4)



Chebyshev Methods with Discrete Noise: the τ -ROCK Methods 203

We will assume the total rate λ À 1 to take into account the stiffness. Analytically the system
(4.3) has a stationary state X∞ which follows the binomial distribution B(n, p), where n = XT

and p = c2/λ. This stationary distribution can be obtained by computing the stationary
distribution of the CME. We thus have

EX∗ ≡ E(X∞) =
c2X

T

λ
, Var(X∗) ≡ Var(X∞) =

c1c2X
T

λ2
. (4.5)

Remark 4.1. The direct integration of the chemical master equation associated with the re-
action (4.3) with respect to x and x2 gives

EXt =
c2X

T

λ
(1− e−λt) + e−λtEX0, (4.6)

Var(Xt) =
c1c2X

T

λ2
(1− e−2λt)

+ e−2λtVar(X0) +
c1 − c2

λ
(e−λt − e−2λt)

(
EX0 − c2X

T

λ

)
. (4.7)

We see, as t goes to infinity, that the mean and the variance of Xt approaches the values (4.5)
obtained for the CME.

To investigate the numerical stability of the new methods, we follow a procedure similar to [17].
Applying the τ -ROCK method to the test problem (4.3) gives a difference equation (indexed
by n) for the mean and variance of the stochastic process.

Definition 4.1. Let {Xn}n≥0 be the sequence obtained by τ -leaping method applied to the
test problem (4.3). We will say that the mean and the variance of {Xn}n≥0 are absolutely
stable if and only if for each component Xin, |E(Xin)| and |Var(Xin)| are bounded for n →∞,

respectively.

In what follows we will need the following formulas for the conditional expectation, known
as the “law of total variance”

EX = E(E(X|Y )), Var(X) = E(Var(X|Y )) + Var(E(X|Y )), (4.8)

where X and Y are two random variables.

4.1. Stability analysis for the τ-ROCK method

To study the stability behavior of the τ -ROCK method, we apply the method to the problem
(4.3) with propensity functions given by (4.4). In order to simplify the derivation below, we
define the following new variables

Yn = Xn − c2X
T

λ
, K̃j = Kj − c2X

T

λ
, f̃(y) = λy, z = λτ, (4.9)

where λ = c1 + c2. The main result of this subsection is contained in the following lemma.

Lemma 4.1 (Stability and numerical limit analysis of the τ-ROCK) The mean and the
variance of the τ -ROCK scheme (Algorithm 3.1) are absolutely stable if and only if

|Rm(z)| ≤ 1, (4.10)
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where Rm(z) is given by

Rm(z) =
Tm(ω0 − ω1z)

Tm(ω0)
. (4.11)

Furthermore, we have for the limit

lim
n→∞

EXn = EX∗, lim
n→∞

Var(Xn) =
2z

1−R2
m(z)

Var(X∗), (4.12)

where EX∗ and Var(X∗) are given by (4.5).

Proof. Applying the τ -ROCK method (Algorithm 3) to (4.3) and using the notations (4.9)
we obtain

K̃0 =Yn, K̃1 = Yn + τ
ω1

ω0
f̃(K̃0),

K̃j =2τω1
Tj−1(ω0)
Tj(ω0)

f̃(K̃j−1) + 2ω0
Tj−1(ω0)
Tj(ω0)

K̃j−1 − Tj−2(ω0)
Tj(ω0)

K̃j−2,

j = 2, . . . , m− 1,

K̃m =2τω1
Tm−1(ω0)
Tm(ω0)

f̃(K̃m−1) + 2ω0
Tm−1(ω0)
Tm(ω0)

K̃m−1 − Tm−2(ω0)
Tm(ω0)

K̃m−2

− Ñ1(Km−1, τ) + Ñ2(Km−1, τ),

where Ñ1(Km−1, τ) and Ñ2(Km−1, τ) are compensated-Poisson random variables

Ñ1(Km−1, τ) = P(c1Km−1τ)− c1Km−1τ,

Ñ2(Km−1, τ) = P(c2(XT −Km−1)τ)− c2(XT −Km−1)τ.

Using the three-term recurrence relation of the Chebyshev polynomials, we obtain

K̃j =
Tj(ω0 − ω1z)

Tj(ω0)
Yn, j = 0, 1, . . . ,m− 1, (4.13)

K̃m =
Tm(ω0 − ω1z)

Tm(ω0)
Yn − Ñ1(Km−1, τ) + Ñ2(Km−1, τ). (4.14)

We have

E(Ñ1(Km−1, τ)|Yn) = E(Ñ2(Km−1, τ)|Yn) = 0,

Var(Ñ1(Km−1, τ)|Yn) = c1Km−1τ, Var(Ñ2(Km−1, τ)|Yn) = c2(XT −Km−1)τ.

Using (4.14) and (4.9) we obtain

EXn+1 = EKm =
c2X

T

λ
+ EK̃m =

c2X
T

λ
+ Rm(z)EYn

= Rm(z)
(
EXn − c2X

T

λ

)
+

c2X
T

λ
, (4.15)

where Rm(z) is given by (4.11). Now if |Rm(z)| ≤ 1, then the mean is absolutely stable and a
simple calculation gives

EXn+1 =
n∑

j=0

(1−Rm(z))Rj
m(z)c2X

T + Rn
m(z)EX0 (4.16)
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from which we obtain the first equality of (4.12).
We consider next the difference equation for the variance. We have

Var(Xn+1) =R2
m(z)Var(Yn) + E(Var(Ñ1(Km−1, τ)|Yn))

+ E(Var(Ñ2(Km−1, τ)|Yn)) (4.17)

by (4.8). For the last two terms, a direct calculation gives

E(Var(Ñ1(Km−1, τ)|Yn)) =
c1c2X

T

λ
τ
(
1−Rm−1(z)

)
+ c1τRm−1(z)EXn, (4.18)

E(Var(Ñ2(Km−1, τ)|Yn)) =
c1c2X

T

λ
τ +

c2
2X

T

λ
τRm−1(z)− c2τRm−1(z)EXn. (4.19)

Combining equations (4.17), (4.18) and (4.19), we obtain

Var(Xn+1) =R2
m(z)Var(Xn) + (c1 − c2)τRm−1(z)EXn

+
2c1c2X

T

λ
τ − (c1 − c2)c2X

T

λ
τRm−1(z). (4.20)

Substituting (4.16) in the above equation, we obtain a difference equation for the variance. It
can be seen that the variance is absolutely stable if |Rm(z)| ≤ 1 holds. Under this condition,
one can solve this difference equation and we obtain the second equality of (4.12). ¤
Comparison with the (explicit) τ-leaping method. A similar stability analysis for the
explicit τ -leaping method shows that the step-size (that we denote by τe for this method) must
satisfy

|1− λτe| ≤ 1

for the mean and the variance to be stable for the test problem (4.3). This restriction is the
same as the usual restriction for the forward Euler method applied to the Dahlquist test problem
dy/dt = −λy in ODE theory, namely

τe ≤ 2
λ

,

which is a severe restriction if λ is large. For the τ -ROCK method, taking advantage of the
quadratic increase of the stability region along the real axis

|Rm(z)| ≤ 1 for z ∈ [0, cst(η) ·m2],

i.e.,

τ ≤ cst(η) ·m2

λ
.

where cst(η) is a decreasing function depending on η. Note that cst(0) = 2 and limη→∞ cst(η) =
2/m [12,13]. In each time-step, the τ -ROCK method needs m times the number of propensity
functions evaluation compared with the τ -leaping method while it needs the same number
of random variable generation. We thus define the (theoretical) effective deterministic and
stochastic time-step, τeff,d and τeff,s, respectively by

τeff,d =
τ

m
=

cst(η) ·m
λ

, τeff,s =
cst(η) ·m2

λ
, (4.21)

and compared to the τ -leaping method, we have the following theoretical gain in efficiency

τeff,d =
cst(η) ·m

2
τe, τeff,s =

cst(η) ·m2

2
τe. (4.22)
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Numerical examples in Section 5 will show the practical gain in efficiency. As seen in the
equation above, it depends on the damping coefficient η whose tuning will depend on the
problem.

Remark 4.2. It is interesting to note that the stability condition (4.10) is formally the same
as that of the ROCK methods for deterministic ODEs [8, 9], but different from the stability
condition to ensure mean square stability for the S-ROCK methods (applied to stiff SDEs)
[12–14]. Despite this formal similarity, the difference between stability properties of the the
current scheme and the ROCK methods for ODEs is reflected in the variance term in (4.12).
Usually, by selecting a large damping parameter η (see Section 3), we will obtain an amplifying
factor such that Rm(z) ¿ 1. As z is usually large for stiff systems, the results of the above lemma
show that for τ -ROCK methods, the numerical variance will be enlarged. This phenomenon,
due to the non-trivial invariant distribution for chemical kinetic systems as (4.3) was noted
in [17] and well as in [16] for SDEs.

4.2. Stability analysis of the reversed-τ-ROCK method

Similar procedures as in the last subsection can be applied to the m-stage reversed-τ -ROCK
scheme. We summarize the results in the following lemma.

Lemma 4.2 (Stability and numerical limit analysis of the reversed-τ-ROCK) The
mean and the variance of the reversed-τ -ROCK scheme (Algorithm 3.2) are absolutely stable if
and only if

|Rm(z)| ≤ 1, (4.23)

where the Rm(z) is given by (4.11). Furthermore, we have for the limit

lim
n→∞

EXn = EX∗, lim
n→∞

Var(Xn) =
2zR2

m(z)
1−R2

m(z)
VarX∗, (4.24)

where EX∗ and Var(X∗) are given by (4.5).

Remark 4.3. Let us note the difference between the equations (4.12) and (4.24). To obtain
the correct limit for the variance, one can adjust the amplifying factor 2zR2

m(z)/(1 − R2
m(z))

by choosing a suitable damping parameter η, which is analyzed in the next subsection.

Proof. Applying the modified τ -ROCK method (Algorithm 3) to (4.3) and using the nota-
tions (4.9) we obtain

K̃0 =Yn − Ñ1(Xn, τ) + Ñ2(Xn, τ),

K̃1 =K̃0 + τ
ω1

ω0
f̃(K̃0),

K̃j =2τω1
Tj−1(ω0)
Tj(ω0)

f̃(K̃j−1) + 2ω0
Tj−1(ω0)
Tj(ω0)

K̃j−1 − Tj−2(ω0)
Tj(ω0)

K̃j−2,

j = 2, . . . , m, (4.25)

where

Ñ1(Xn, τ) = P(c1Xnτ)− c1Xnτ,

Ñ2(Xn, τ) = P(c2(XT −Xn)τ)− c2(XT −Xn)τ. (4.26)
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Similarly as in the Lemma 4.1 we obtain

Xn+1 − c2X
T

λ
= Yn+1 = Rm(z)

(
Yn − Ñ1(Xn, τ) + Ñ2(Xn, τ)

)
. (4.27)

For the mean, we obtain the same difference equation as for the τ -ROCK method

EXn+1 = EKm =
c2X

T

λ
+ EK̃m =

c2X
T

λ
+ Rm(z)EYn

= Rm(z)
(
EXn − c2X

T

λ

)
+

c2X
T

λ
. (4.28)

Hence, the absolute stability of the mean holds under the condition (4.23) and we have the first
equality of (4.24). For the variance, we have

Var(Xn+1) = R2
m(z)

(
Var(Xn) + (c1 − c2)τEXn + c2τXT

)
.

The absolute stability of the variance is guaranteed if (4.23) and similar calculation as in Lemma
4.1 give the second equality of (4.24).

4.3. Damping effect in the reversed-τ-ROCK method

Consider (4.24) and define r̃(m, η, z) = 2zR2
m(z)/(1− R2

m(z)) to be the damping function
of the reversed-τ -ROCK method. It depends on m, η and z. Define D = [−lmη , 0] the (real)
stability domain of Rm. With the assumption of a large damping, we have R2

m(z) ¿ 1 in the
interior of the stability domain and we can study

r(m, η, z) = 2zR2
m(z) = 2z

T 2
m(ω0 − ω1z)

T 2
m(ω0)

. (4.29)

We note that T 2
m(ω0−ω1z) oscillates between 0 and 1 in D while the term T 2

m(ω0) makes R2
m(z)

oscillates between 0 and 1/T 2
m(ω0). Our goal is to control the amplification factor r(m, η, z),

say

ρ(m, η, z) =
2z

Tm(ω0)2
= α, (4.30)

where α is not too large (note that η = η(m, z)). The following formula is well-known for
Chebyshev polynomials

Tm(x) =
(x +

√
x2 − 1)m + (x−√x2 − 1)m

2
=

I1 + I2

2
.

For x = ω0, we have

I1 = ωm
0

(
1 +

√
1− ω−2

0

)m

,

and for ω0 > 1 and m large

Tm(ω0) ' ωm
0

2

(
1 +

√
1− ω−2

0

)m

. (4.31)
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Fig. 4.1. Behavior of the damping coefficient r (solid line) and ρ (dashed line). The star symbol in

the right plot corresponds to the η∗ predicted by (4.32) with α = 1. We can see the position of ‘*’ is

approximately at the intersection of ρ and the straight line α = 1.

Using this approximation for Tm(ω0)2 in (4.30) we have

ω2m
0

4

(
1 +

√
1− ω−2

0

)2m

=
2z

α

and after some calculations

ω0 =
1 + β2

2β
,

where β = (8z/α)1/(2m)
. Finally, as ω0 = 1 + η/m2, we obtain

η =
(1− β)2

2β
m2. (4.32)

Below is a numerical study of the damping functions r and ρ, defined in (4.29) and (4.30)
respectively. We fix m = 100, z = λτ = 2000×0.25 = 500 and let η vary. We can see in Fig. 4.1
that the oscillations of r are damped as η increases and the function ρ gives a reasonable bound
for r for sufficient large η. We denote by η∗ the value of η predicted by (4.32) for α = 1. We can
see in Fig. 4.1 that r(m, η∗, z) ≤ ρ(m, η∗, z) ≈ α = 1. For some stiff chemical kinetic systems a
smaller value for α is requested, in order to have a smaller damping function. Indeed, the noise
term Q(Xn, τ) in the τ -ROCK method may become much larger than the real fluctuation of
the system for large τ and we need smaller values of α say α = 0.01, 0.001 in order to control
the growth of the variance.

5. Numerical Experiments

In this section, we test our methods on some stiff chemical kinetic systems. Numerical
results show that our methods correctly capture the mean with much larger time-steps than
the τ -leaping method. We will also see that the τ -ROCK method usually amplifies the variances
of the fast variables of the system, while the reversed-τ -ROCK method usually damps theses
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variances. These numerical observations are in agreement with our theoretical analysis in Sec. 4.
The amplifying or damping effects on the variances of the fast variables are not an issue for
chemical systems with trivial invariant measure for the fast variables. This is the case in the
Example 1 below. Indeed for such problems, the stability of the moments of the system is
sufficient to capture the right effective slow process [14–16]. For this kind of systems, both the
τ -ROCK and the reversed-τ -ROCK methods can use much larger effective step-size than the
τ -leaping method.

However, when the fast variables of the chemical system have non-trivial invariant measures,
the damping or amplifying effects of the variances of these variables will induce large errors in
the effective system [14–16]. Such a system is studied in Example 2. We find in our numerical
experiments that for linear propensity function (as studied in this example) the effective step-
size of τ -ROCK and the reversed-τ -ROCK methods is still larger than the step-size needed for
the τ -leaping method, although the variance of the fast variable is amplified (resp. damped)
significantly. For non-linear propensity function, such as in Example 3, there seems to be no
gain in the effective step-size of the new methods.

Finally, let us mention that besides using larger time-step, the new methods also needs much
less random variable generations than the τ -leaping method. Indeed, we need only to draw the
Poisson random variables once in each (large) time-step ∆t. To illustrate this fact, we will also
in what follows compare the number of random variable generation needed for the simulation
of a chemical system.

5.1. Example 1

We consider the so-called Michaelis-Menten system describing the kinetics of many enzymes.
The reaction involves four species: S1 (a substrate), S2 (an enzyme), S3 (an enzyme-substrate
complex) and S4 (a product). It can be described as follows: the enzyme binds to the sub-
strate to form an enzyme-substrate complex which is then transformed into the product or can
dissociate back into enzyme and substrate i.e.,

S1 + S2
c1−→ S3,

S3
c2−→ S1 + S2,

S3
c3−→ S2 + S4.

The mathematical description of this process can be found in [23]. The state-change vectors

are ν1 = (−1,−1, 1, 0)T , ν2 = (1, 1,−1, 0)T and ν3 = (0, 1,−1, 1)T . The propensity functions

Table 5.1: Comparison of the deterministic and the stochastic effective step-size needed for Example

1, using the τ -leaping and the τ -ROCK methods. We used the values c3 = 10, 100, 103, and 104. The

step-size for the τ -ROCK method is chosen as τ = 0.25 and we denote by δt the step-size for the

τ -leaping method.

τ -leaping τ -ROCK

δt # of random variables τeff,d τeff,s # of random variables

c3 = 10 0.15 300 0.0833 0.25 180

c3 = 100 0.05 9000 0.0313 0.25 180

c3 = 103 10−5 4.5× 106 0.0086 0.25 180

c3 = 104 2.5× 10−6 1.8× 107 0.0024 0.25 180
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Table 5.2: Mean of X at t = 15 in Example 1 (sample size n = 10000, c3 = 1000).

SSA τ -ROCK reversed-τ -ROCK

X1(15) 151.0 150.1 150.2

X2(15) 119.0 120.0 120.0

X3(15) 1.0 0.04 0.03

X4(15) 2848.0 2850.0 2849.8

Table 5.3: Sample standard deviation of X at t = 15 in Example 1 (sample size n = 10000, c3 = 1000).

SSA τ -ROCK reversed-τ -ROCK

X1(15) 11.9 12.0 11.8

X2(15) 0.2 3.9 0.05

X3(15) 0.2 3.9 0.05

X4(15) 12.0 12.1 11.8

are given by a1(x) = c1x1x2, a2(x) = c2x3 and a3(x) = c3x3. The initial value and rate
constants are set as X1(0) = 3000, X2(0) = 120, X3(0) = X4(0) = 0 and c1 = 1.66 × 10−3,
c2 = 10−4. c3 is tuned to control the stiffness of the system. We simulate the system in the
time interval [0, 15].

To test the efficiency of the methods, we increase the value of c3, corresponding to an
increasingly fast production rate. The effective step-size and number of random variables needed
in each simulation by using different methods are given in Table 5.1. We can see that as the
system become stiff, the explicit-τ -leaping method become inefficient. For c3 = 1000, the
step-size reduction due to stiffness forces the explicit τ -leaping method to take step-size close
to 10−5 in order to perform a stable integration and in turn to generate, for each trajectory,
(1.5 × 106) × 3 = 4.5 × 106 Poisson random variables (here the factor 3 comes from the three
reactions of the system as each reaction needs one random variable generation for each step-
size). In contrast, for the τ -ROCK or reversed-τ -ROCK methods, we can fix τ = 0.25 and tune
the stage number m = 29 and we only need to generate 60× 3 = 180 Poisson random variables
for each trajectory. Hence the (deterministic and stochastic) effective step-sizes (see (4.21)) are
given by τeff,d = 0.25/29 = 0.0086 and τeff,s = 0.25. We see that, by taking advantage of the
extended stability properties, the τ -ROCK and reversed-τ -ROCK methods are several order of
magnitude more efficient compared with the explicit-τ -leaping method.

0 5 10 15
−500

0

500
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1500

2000

2500

3000

t

X
4

X
1

Fig. 5.1. A trajectory of Example 2 for c3 = 1000 simulated by SSA (blue line), τ -ROCK (green square)

and reversed-τ -ROCK (red circle) methods.
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Fig. 5.2. Histogram (sample size n = 10000, c3 = 1000) for X1 at t = 15 in Example 1, computed by

the SSA (solid-square), the τ -ROCK method (dashed-star) and the reversed-τ -ROCK method (dotted-

circle).
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Fig. 5.3. Histogram (sample size n = 10000, c3 = 1000) for X2 at t = 15 in Example 1, computed by

the SSA (solid-square), the τ -ROCK method (dashed-star) and the reversed-τ -ROCK method (dotted-

circle).

Next we let c3 = 1000 fixed and test the accuracy of the τ -ROCK and reversed-τ -ROCK
methods by comparing them with the SSA. Fig. 5.1 depicts a trajectory of X simulated using
the SSA, τ -ROCK and reversed-τ -ROCK. Table 5.2 and Table 5.3 give the mean and standard
deviation of X1, . . . , X4 at t = 15 for the different methods. From these results, we can see that
for the slow variables X1 and X4 both the mean and variance are well-captured by the new
methods; for the fast variable X2 and X3, however, the variances are amplified by the τ -ROCK
method and damped by the reversed-τ -ROCK method. From the histograms of X1 and X2 at
t = 15 in Fig. 5.2 and Fig. 5.3 it can also be seen that the statistics are well-captured for the
slow variable X1 (or X4) but not for fast variable X2 (or X3).

For this system, the SDEs in the form of (2.1) can be written as

dX1 = −c1X1X2dt + c2X3dt− Ñ1(X, dt) + Ñ2(X, dt),

dX2 = −c1X1X2dt + c2X3dt + c3X3dt− Ñ1(X, dt) + Ñ2(X, dt) + Ñ3(X, dt),

dX3 = c1X1X2dt− c2X3 − c3X3 + Ñ1(X, dt)− Ñ2(X, dt)− Ñ3(X, dt),

dX4 = c3X3dt + Ñ3(X, dt). (5.1)
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The noises Ñj(X, dt), j = 1, 2, 3 are compensated Poisson random variables with mean equal to
zero and variance Var(Ñ1(X, dt)) = c1X1X2dt, Var(Ñ2(X, dt)) = c2X3dt and Var(Ñ3(X, dt)) =
c3X3dt. The stiffness in this system come from the third equation. From the system (5.1) one
can see that as c3 increases, the value of X3 will tend to the slow manifold at X3 = 0 so that
the product c3X3 will remain small and the variance of the noise Var(Ñ3(X, τ)) will approach
zero as X3 goes to zero. This behavior is related to the mean-square stability of SDEs discussed
in [14].

5.2. Example 2

For our second example, we consider the chemical reaction system given by

S1
c1−⇀↽−
c2

S3,

S1 + S2
c3−→ S1 + S4.

Observe that the total number of S1 and S3 molecules is constant (denoted by XT ), and if we do
not care about the by-product S4, the system can be described by two variables X = (X1, X2)
(numbers of S1 and S2 molecules, respectively) and three reactions. The propensity functions
are

a1(x) = c1x1,

a2(x) = c2(XT − x1),

a3(x) = c3x1x2.

Following [15], we choose c1 = c2 = 105, c3 = 0.0005, and XT = 20000 and the initial conditions
X(0) = (10000, 100). We solve the system in the time interval [0, 0.01].

The reversible reaction is the fast reaction of this system. If we consider this reaction only,
and denote X1 as X and c1 = c2 = λ/2, then it is easy to verify that X satisfy the (Poisson
noise driven) SDE (2.1) given by

dX = −λXdt +
λ

2
XT dt + Ñ(X, dt), (5.2)

where Ñ(X, dt) is a random variable with mean zero and variance equal to λXT dt/2. When
λ À 1, the system becomes stiff and the deterministic part of (5.2) forces an explicit method
(as the Euler method) to take a step-size τ whose size is dictated by the the fastest reaction

λτ < 2,

which is a severe restriction if λ À 1. Numerically, we find that as the step size approaches
1× 10−5, the explicit-τ -leaping method will become unstable.

Let us apply the new methods to that problem. We set the time-step to τ = 0.001 and
adapt the stage number and the damping parameter according to the procedure given in [14].
This gives m = 26 and η = 20, which is seen to give a stable integration. The effective step-size
τ/m = 3.8 × 10−5 is approximately 4 times larger than the step-size of the explicit-τ -leaping.
Let us briefly discuss the random variable generation issue. With the explicit τ -leaping method,
taking a step-size of 5 × 10−6 leads to the generation of2000 × 3 = 6000 random variables for
each simulation of a trajectory. For the new methods with τ = 0.001, we only need to generate



Chebyshev Methods with Discrete Noise: the τ -ROCK Methods 213

10 × 3 = 30 random variables for each simulation trajectory. There is thus a significant speed
up for the new methods.

We now test the accuracy of the new methods for this system. Fig. 5.4 depicts sample
trajectories of the fast variable X1, simulated by the SSA, τ -ROCK and the reversed-τ -ROCK
methods, respectively. Compared with the SSA, the τ -ROCK method predicts larger fluctuation
for X1, while the reversed-τ -ROCK method predicts smaller fluctuation for X1, as can be seen
in Table 5.5. This observation (consistent with our analysis of Section 4) seems to indicate that
a suitable combination of the τ -ROCK and the reversed-τ -ROCK methods could lead to better
capture the variance. This need further investigation and will be reported elsewhere. Table 5.4
shows that both methods capture adequately the mean of X1 and X2. For the slow variable X2,
the variance is also well captured. The histograms for X1 and X2, computed by the SSA, the
τ -ROCK and the reversed-τ -ROCK methods, are given in Fig. 5.5 and Fig. 5.6, respectively.

From the numerical results of Example 2 (as well as from our theoretical analysis)

5.3. Example 3

Our last example is the decaying-dimerizing reaction equation studied in [6]. It consists of
three species S1, S2, and S3 and four reaction channels

S1
c1−→ ∅,

S1 + S1
c2−→ S2,

S2
c3−→ S1 + S1,

S2
c4−→ S3.

We choose the same values of the parameters as given in [15], that is, c1 = 1, c2 = 10, c3 = 1000,
and c4 = 0.1. For the initial conditions, X1(0) = 400, X2(0) = 798, and X3(0) = 0 were chosen
in [15] to lie on the slow manifold

X2 =
5

1000
X1(X1 − 1),

which is an approximate slow manifold for the above system. The propensity functions are
given by a1(x) = c1x1, a2(x) = c2x1(x1 − 1)/2, a3(x) = c3x2, and a4(x) = c4x2. The problem
is solved on the time interval [0, 0.2].

We plot in Fig. 5.7 a trajectory, computed with the SSA, of the decaying-dimerizing re-
actions. We see that X1 a X2 exhibit significant fluctuations due to the non-linear reversible
reaction

2S1
c2−⇀↽−
c3

S2. (5.3)

Table 5.4: Sample mean of X at t = 0.01 in Example 2 (sample size n = 10000).

SSA τ -ROCK reversed-τ -ROCK

X1(0.01) 10001.00 9987.90 9999.90

X2(0.01) 95.00 95.13 95.11

Table 5.5: Sample standard deviation of X at t = 0.01 in Example 2 (sample size n = 10000).

SSA τ -ROCK reversed-τ -ROCK

X1(0.01) 72.95 1422.20 23.70

X2(0.01) 2.22 2.18 2.19
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Fig. 5.4. A trajectory of X1 for Example 2 simulated by SSA (blue line), τ -ROCK (green square) and

reversed-τ -ROCK (red circle) methods.
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Fig. 5.5. Histogram (sample size n = 10000) for X1 at t = 0.01 for Example 2 computed by the SSA

(solid-square), the τ -ROCK method (dashed-star) and the reversed-τ -ROCK method (dotted-circle).
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Fig. 5.6. Histogram (sample size n = 10000) for X2 at t = 0.01 for Example 2 computed by the SSA

(solid-square), the τ -ROCK method (dashed-star) and the reversed-τ -ROCK method (dotted-circle).

For simplicity we neglect the other two reactions and focus on the system (5.3). By the conser-
vation law X1 + 2X2 = XT will be constant. We can thus focus on one species, say X1, which
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Fig. 5.7. A trajectory for Example 3 simulated by SSA. The upper curve is X2, the middle curve is

X1, and the lower curve is X3.

satisfies the (Poisson noise driven) SDE given by

dX1 = −c2X
2
1dt + c3(XT −X1)dt− 2Ñ1(X, dt) + 2Ñ2(X, dt). (5.4)

The compensated-Poisson random variables satisfy

EÑ1(X, dt) = EÑ2(X, dt) = 0,

VarÑ2(X, dt) = c3(XT −X1)dt/2,VarÑ1(X, dt) = c2X1(X1 − 1)dt/2 ∼ O(X2
1 )dt.

Near equilibrium,
c2X1(X1 − 1)/2 ≈ c3(XT −X1)/2,

so that VarÑ2(X, dt) ∼ O(X2
1 )dt, also. We see from this analysis that the noise terms

Ñ1(X, dt), Ñ2(X, dt) have quite a large variance at equilibrium if dt is not too small. We
are thus not in the situation of trivial invariant measure or mean-square stable systems (for the
corresponding Chemical Langevin model). Numerically we found that the strategy developed
in [14] (for the choice of m and η) does not work for this system for both the τ -ROCK or the
reversed-τ -ROCK method. In order to test the methods, we manually set τ = 0.0008, m = 3
and η = 0.7, and find in this setting the effective step-size is 2.67× 10−4, which is only slightly
larger than the maximum step-size allowed for the explicit-τ -leaping which is 2.4 × 10−4. If
we want to use large τ , very large m and η are needed. For example for τ = 0.01 the choice
of m = 1000, and η = 700 gives a stable integration. But in this case, the effective step-size
τ/m = 10−5 is even smaller than step-size allowed for the explicit-τ -leaping method (but the
number of random variable generation is significantly smaller for the new methods). Thus,
while there is a significant gain for the stochastic effective step-size τeff,s, there is no gain for
the deterministic effective step-size τeff,d (see (4.22)).

For this system, the implicit τ -leaping method can give a stable integration even for large
τ [15]. But as we mentioned before, important statistical properties such as the variance is
not captured for the implicit method. A multiscale explicit-implicit τ -leaping method has
been introduced in [15]. Here we mention an alternative strategy that is efficient for such a
problem, which is related to the so-called boosting strategy formalized for SDEs in [24] (see
also the references therein). In the context of chemical reaction with a fast-slow system as in
the Example 3 this strategy works as follows. In a first step we divide the fast and the slow
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reactions (here the reactions one and four are slow, while the reactions two and three are fast).
Then, first we solve the system keeping the fast forces only (micro-steps); second we solve the
system keeping the slow forces only (with initial values given by the result of the micro steps.
This procedure is consistent with a modified system where the large variance have been reduced
and can be implemented with the τ -leaping method (or τ -ROCK with m = 1). Alternatively
one could also use the τ -ROCK or the reversed τ -ROCK with reduced noise. More details on
this strategy and comparison with existing work will be discussed in a future paper.

6. Conclusion

We discussed new numerical methods for stiff chemical systems driven by Poisson noise.
These methods are explicit but nevertheless able to handle efficiently a class of stiff chemical
system. They are built upon the ROCK and S-ROCK methods, recently introduced for the
numerical solution of stiff ODEs and SDEs. Two different versions of the new methods, the
τ -ROCK and the reversed-τ -ROCK have been discussed. The numerical stability and the
limit behavior of the new methods have been analyzed on a model problem, the reversible
isomerization reaction. We found that both the τ -ROCK and reversed-τ -ROCK methods can
capture the mean of the species correctly. While the former method enlarge the variance of the
fast species, the latter reduce this variance. This reduction depends on the the step-size ∆t, the
stage number m and a parameter of the method called the damping coefficient η. These findings
seem to suggest that an appropriate combination of the τ -ROCK and the reversed-τ -ROCK
methods could lead to better capture the variance. This has to be further explored.

The proposed methods have been tested on three different stiff problems, with different
limiting (effective) behavior. The results of the numerical experiments, in accordance with
the analysis presented in this paper, show that for systems that are mean square stable, both
the τ -ROCK and the modified τ -ROCK methods can use very large step-size while accurately
capturing the dynamics of interest. For systems that are not mean square stable, stability is not
enough to capture the correct dynamics of the variances of the fast systems which have a non
trivial effect on the effective dynamics. This has already been noticed for the S-ROCK methods
applied to non-mean square stable stiff SDEs. For such problems, by exploiting the damping
property of the reversed-τ -method we show that some stiff non-mean square stable problem
can be handled. Finally for non-mean square systems with too large variance, both proposed
methods show no improvement compared to the explicit τ -leaping method (which is embedded
as a special case in the τ -ROCK or in the modified τ -ROCK methods). The capability of the
τ -ROCK and the reversed τ -ROCK methods to be tuned for various situations while keeping
the τ -leaping scheme as a special case of the multi-stage schemes, makes these new methods
attractive. However, adaptive versions of our methods need to be developed to fully exploit the
versatility of the proposed algorithms. This will be addressed in a future work.
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