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Abstract. In this paper we propose a variant of a binary level set approach

for solving elliptic problems with piecewise constant coefficients. The inverse

problem is solved by a variational augmented Lagrangian approach with a to-

tal variation regularisation. In the binary formulation, the seeked interfaces

between the domains with different values of the coefficient are represented by

discontinuities of the level set functions. The level set functions shall only take

two discrete values, i.e. 1 and -1, but the minimisation functional is smooth.

Our formulation can, under moderate amount of noise in the observations, re-

cover rather complicated geometries without requiring any initial curves of the

geometries, only a reasonable guess of the constant levels is needed. Numerical

results show that our implementation of this formulation has a faster conver-

gence than the traditional level set formulation used on the same problems.
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1. Introduction

Consider the elliptic partial differential equation with Dirichlet boundary condi-
tions:

−O · (q(x)Ou) = f in Ω ⊂ R2 (1)
u = 0 on ∂Ω,

In this paper we will use observations of the function u to recover the coefficient
q(x) by approximating it with a piecewise constant function. The function f is
assumed known, and ∂Ω is the boundary of our domain Ω. This problem is a
model problem for many real applications, for example, reservoir simulations [18],
medical imaging [14, 16] and underground water investigations [11]. Even as a
purely academic problem, this model problem has turned out to be rather difficult
to solve numerically.

The problem of recovering the geometry of the coefficient discontinuities has
motivated a number of approaches in the literature [8, 9, 12, 13]. A proper regular-
isation is often applied to control the jumps and the geometry of the discontinuities,
see for example [8, 9]. Several approaches have also been used to represent the co-
efficient implicitly, especially a number of level set methods have been proposed for
this purpose; see [6, 10, 20, 27, 17, 1, 2, 3].
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For representing q(x) we apply a piecewise constant formulation of the level
set method. The original level set method was proposed by Osher and Sethian
[25] for tracing interfaces between different phases of fluid flow. It has later been
a versatile tool for representing and tracking interfaces separating a domain into
subdomains. The method has been applied in a wide range of applications, i.e.
reservoir simulations, inverse problems, image analysis, and optimal shape design
problems. For recently surveys of level set methods see [30, 7, 24].

The representation of the interfaces in the standard level set formulation is done
implicitly by the zero level set of one or several functions. The corresponding
Euler-Lagrange equations give the evolution equations for the level set functions
and the different constant values of the coefficient. In these methods the level set
functions are forced to be signed distance functions, and are therefore the solution
of Hamilton-Jacobi equations.

The binary level set method, which we apply in this paper, is classified as a
piecewise constant level set approach. For this method, the level set functions are
discontinuous functions at convergence, and should only take a fixed number of
predefined constant values. Hence, they should not be distance functions as in the
continuous formulation. In the binary method, we require the convergence values
of the level set functions to be -1 or 1. When solving the optimisation problem with
this imposed requirement, we need to minimise a smooth convex functional under
a quadratic constraint. The level set method applied in this paper is similar to the
method proposed in [21] used for image segmentation. This idea has also appeared
in some earlier work [19, 29] for image segmentation. The binary level set idea
is in fact very similar to the phase field model applied for many phase transition
problems [5, 26, 4]. In this work, we use a novel way to treat the requirement that
the level set functions should take the values ±1.

Other related works, utilising piecewise constant level set functions, are presented
in [22, 28]. The method in [22] are within a similar type of framework as the method
presented in this paper. A difference is that for the approach in [22] just one level
set function is required to identify an arbitrary number of phases, while in the
binary method a combination of several level set functions is utilised to represent
multiple regions. The method in [28] is based on an optimality condition for the
final curves, and this method does, contrary to the other methods, not require any
solutions of PDEs.

In [10], Chan and Tai have performed a study on the elliptic inverse problem
which is closely related to the work presented in this paper. They use continuous
level set functions in a more standard level set formulation. As in their approach,
we will in this work formulate the method in a variational setting, and apply an
augmented Lagrangian approach for solving the minimisation problem. The Euler-
Lagrange equations give the evolution equations for the level set functions.

Since the minimisation problem is highly ill-posed, we need to regularise the
problem. The regularisation applied here is the total variation norm of the recovered
coefficient. This will indirectly control both the length of the level set curves and
the jumps in the coefficients, see [10, 31].

The contribution in this paper is the use of binary represented level set functions
for solving the elliptic inverse problem. In our implementation, the relation between
the coefficients and the level set functions is constructed such that it to a large
extent can reduce the ill-posedness of the inverse problem, and at the same time
be able to reconstruct rather complicated geometries.
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Both the shape of the regions and the constant values in each region are recovered
as part of the formulation. In comparison to most of the related methods using the
level set approach, we do not need any initial guess of the contours. A reasonable
initial guess of the constant values is though required.

The number of regions with different constant values of the coefficient is not
required a priori, only an upper bound is needed. If the identified coefficient have
n constant values, log2 n level set functions are sufficient. If a higher number of
functions is applied, the unnecessary functions will disappear (take a constant value)
or the superfluous regions will merge with other regions.

This paper is structured as follows: The inverse problem is defined in Section 2,
and in Section 3 the general framework of the binary level set method is given. In
Section 4 we explain how this framework is utilised to solve the inverse problem.
Further the augmented Lagrangian approach and the applied algorithm are given
in Section 5. In Section 6 some remarks about the implementation issues are given,
and in Section 7 we present the numerical results. Conclusions are given in Section
8.

2. The Inverse Problem

To recover the coefficients q(x) we use observations ud ∈ L2(Ω) for the solution
u of Eq. (1). Let Q be the set of admissible coefficients;

Q = {q | q is piecewise constant, 0 < qL(x) ≤ q(x) ≤ qU (x) < ∞},
where qL(x) and qU (x) is the lower and upper bounds of q, respectively, known a
priori.

We define u(q) as the solution of Eq. (1) for a given function q. For the optimi-
sation problem we construct the following functional to be minimised;

F (q) =
1
2

∫

Ω

|u(q)− ud|2 dx + βR(q). (2)

The first term is a measurement of the closeness of ud and u(q), and the second
term is referred to as a regularisation term. The regularisation parameter β > 0
is a predefined constant weighting the regularisation, and R(q) is a functional used
to control the regularity of q. As in [10, 15] we take the total variation norm of q
as the regularisation;

R(q) =
∫

Ω

|Oq| dx. (3)

When q is not differentiable, |Oq| is understood as a measure, see [32] p. 221.
This regularisation will both control the lengths of the interfaces and the jumps of
coefficient values. This differs from standard level set methods where it is common
only to control the lengths of the interfaces.

The inverse problem to solve is to find the optimal coefficient q∗ which is the
solution of the following minimisation problem;

q∗ = arg min
q∈Q

F (q). (4)

Note that in Chan and Tai [10], Eq. (1) was handled differently. In this work, we
are trying to show the performance of the binary level set idea for this ill-posed
inverse problem. The advantage of the binary level set method is that it removes the
connection between the level set functions and the distance functions. In calculating
the distance functions, lower order accuracy schemes may change the sign of the
initial function. In addition, sharp corners may be smeared if the distance function
is re-initialised too frequently. The second purpose to use the binary level set idea
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is to remove the Heaviside function and gain (local) convexity and smoothness for
the minimisation problems.

3. Binary Level Set Approach

In this section we will present the binary level set formulation. We shall follow
the mechanism proposed in [21] where it was applied for segmentation of digital
images. The essential ideas for the binary level set method have appeared earlier
in [19, 29]. It was in [21], a general framework was shown for the binary level set
method and a systematic way was given to treat the constraints. In this work,
we use the method to construct a piecewise constant function to approximate the
coefficient q(x) in Eq. (1).

In standard level set methods, the partition of a domain Ω into a number of
subregions {Ωj} is defined by the sign of the continuous level set functions. For
numerical reasons the level set functions are in these cases forced to be signed
distance functions, where the distance is related to the boundary of the subdomains.
In the binary method, we will instead use discontinuous level set functions which at
convergence should take the values -1 or 1, inside and outside the subregions. The
discontinuities of the functions will represent the boundary of the subdomains.

Let us first assume that Ω need to be divided into two subregions, Ω1 and Ω2,
such that Ω = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. A representation of this domain can be
given by

φ(x) =
{

1 ∀x ∈ Ω1

−1 ∀x ∈ Ω2,
(5)

and the curve separating Ω1 and Ω2 is implicitly given as the discontinuity of φ, see
Figure 1. The properties of φ can be used to construct a scalar function q(x) with
distinct constant values inside these two different subdomains. If we assume that
the value of q(x) is equal to c1 in Ω1 and equal to c2 in Ω2, then q can be written
as

q =
1
2

[ c1(φ + 1)− c2(φ− 1) ]. (6)

As in the continuous level set formulation, multiple level set functions can be
used to represent more than two regions. Following the methodology applied in
[21], a function having four constant regions can be represented by two level set
functions, and expressed as

q =
1
4

[ c1(φ1 + 1)(φ2 + 1)− c2(φ1 + 1)(φ2 − 1)

− c3(φ1 − 1)(φ2 + 1) + c4(φ1 − 1)(φ2 − 1) ].
(7)

To construct the basis functions for a general number of level set functions, N ,
we introduce the following notation: For j ∈ {1, 2, . . . , 2N} let (bj−1

1 , bj−1
2 , . . . , bj−1

N )
be the binary representation of j − 1, that is bj−1

i =−1 or 1. Further we define
s(j) =

∑N
i=1 bj−1

i , and ψj as the product

ψj =
1
N

(−1)s(j)
N∏

i=1

(φi + 1− 2bj−1
i ). (8)

For a given c = (c1, c2, . . . , c2N ) and level set functions φ = {φi}N
i=1, the following

formula gives a general representation for piecewise constant functions;

q(φ, c) =
2N∑

j=1

cjψj(φ). (9)
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Figure 1. Level set representations of a piecewise constant func-
tion q(x). In this example q has two regions with different constant
values, c1 and c2. By continuous level set functions the disconti-
nuity of q can be represented as in Figure b), and by binary level
set functions φ is forced to take the values -1 and 1, as in Figure
c).

Eq. (6) and Eq. (7) are special cases of this formula, but with each ψj expressed
in terms of φ. In the first case, we have ψ1 = 1

2 (φ + 1) and ψ2 = − 1
2 (φ − 1)

in Eq. (6). With two level set functions, we get ψ1 = 1
4 (φ1 + 1)(φ2 + 1), ψ2 =

− 1
4 (φ1 + 1)(φ2 − 1), . . . in Eq. (7).
In the following, we let K(x) = x2 − 1. The level set functions are required to

satisfy
K(φi) = φ2

i − 1 = 0 ∀ i. (10)

This requirement will force the level set functions to take the values -1 or 1 at
convergence. With this constraint fulfilled, the basis functions will be characteristic
functions for the corresponding subdomains, i.e. ψj = 1 in Ωj and zero elsewhere.
That is, the support of the different basis functions are non-overlapping, supp ψi ∩
supp ψj = ∅ ∀ i 6= j, and the total support of all the basisfunctions covers the
complete domain, i.e. Ω = ∪2N

j=1supp ψj .

4. The Binary Level Set Method for the Inverse Problem

From the last section, we see that every piecewise constant function can be
represented as in (9) under the requirement that the level set functions satisfy (10).
In order to find a piecewise constant function, we just need to find the corresponding
values of c and the level set functions φ. If we define the vector K(φ) = {K(φi)}N

i=1,
we can thus reformulate problem (4) as

(φ∗, c∗) = arg {min
φ,c

F (q(φ, c)) subject to K(φ) = 0 }, (11)

where the optimal coefficient can be calculated by q∗ = q(φ∗, c∗). The constraint
K = 0 is applied to control the structure of the level set functions, and will therefore
depend on the choice of basis functions.



A BINARY LEVEL SET MODEL FOR ELLIPTIC INVERSE PROBLEMS 79

Define F̃ (φ, c) = F (q(φ, c)). To evolve the level set functions and update the
constant values such that q(x) will converge to the optimal solution, we need to
calculate the derivatives of F̃ with respect to φ and c. By the chain rule we have,
c.f. [10],

∂F̃

∂φi
=

∂F

∂q

∂q

∂φi
∀ i = 1, 2, . . . , N (12)

and
∂F̃

∂cj
=

∫

Ω

∂F

∂q

∂q

∂cj
dx ∀ j = 1, 2, . . . , 2N . (13)

For a wide number of problems ∂F
∂q is known, and we only need to compute ∂q

∂φi

and ∂q
∂cj

. In this work, ∂F
∂q is calculated by the adjoint method;

∂F

∂q
= −Ou · Oz − βO ·

( Oq

|Oq|
)

, (14)

where z ∈ H1
0 (Ω) is the solution of

−O · (q(x)Oz) = u− ud in Ω ⊂ R2

z = 0 on ∂Ω.
(15)

To compute ∂F̃
∂q once, we need to solve both (1) and (15) once.

5. Augmented Lagrangian Formulation

We apply an augmented Lagrangian method to solve problem (11). The La-
grangian functional involves both F̃ and the constraint K;

L(φ, c,λ) = F̃ (φ, c) +
∑N

i=1

∫
Ω

λiK(φi) dx + µ
∑N

i=1

∫
Ω
|K(φi)|2 dx. (16)

Here µ > 0 is a penalisation parameter which usually is a fixed parameter chosen
a priori, or it can in some cases be increased carefully through the iterations to
improve the convergence. λ = {λi}N

i=1 is the Lagrangian multipliers where λi is a
function defined in the same domain as φi is defined.

We search a saddle point of L and therefore require
∂L

∂φi
= 0 ∀ i ∈ {1, . . . , N},

∂L

∂λi
= 0 ∀ i ∈ {1, . . . , N},

∂L

∂cj
= 0 ∀ j ∈ {1, . . . , 2N}.

(17)

From the definition of L we have that
∂L

∂φi
=

∂F̃

∂φi
+ λiK(φi) + 2µK ′(φi) ∀ i ∈ {1, . . . , N},

∂L

∂λi
= K(φi) ∀ i ∈ {1, . . . , N},

∂L

∂cj
=

∂F̃

∂cj
∀ j ∈ {1, . . . , 2N}.

(18)

To find a saddle point of L, we apply an iterative algorithm. Starting with initial
guesses φ0, c0 and λ0, we iterate towards the better approximations denoted by
φk, ck and λk where k = {1, 2, . . . }. When the change of these variables approach
zero, the iterations can be stopped.
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The minimisation with respect to φ is done by introducing an artificial time
variable t, and then solve the PDE

∂φ

∂t
= −∂L

∂φ
. (19)

When this reaches a steady solution we have ∂φ
∂t = 0 which implies ∂L

∂φi
= 0 ∀ i.

Numerically we discretise Eq. (19) by a forward Euler scheme and get the following
updating scheme for φ;

φk+1 = φk −∆tφ
∂L

∂φ
(φk, ck, λk), (20)

where ∆tφ > 0 is a timestep. The timestep can be chosen as a small fixed number,
or a line search can be applied to find an optimal steplength for each iteration.

A similar approach is applied to update c, but in difference from the updating of
φ, we introduce separate artificial time variables for each of the constants cj . This
results in the following updating scheme for each constant;

ck+1
j = ck

j −∆tcj

∂L

∂cj
(φk+1, ck, λk), (21)

where the most recent values of φ are used in the calculation of the gradients.
The minimisation approach described here, for updating φ and c, is known as the
steepest decent method. In the calculations, we also assume that the constants cj

have lower and upper bounds aj and bj which are known a priori, i.e. cj ∈ [aj , bj ].
To update the Lagrangian multipliers we follow the approach in [23, 21], i.e.

λk+1 = λk + µK(φk+1). (22)

We incorporate the updating in Eq. (20), (21) and (22) into the following algorithm
where line searches are included:

Algorithm 1 (Uzawas Algorithm for Variational Level Set Methods).
Determine how many level set functions, N , to use.

Initialise: φ0, co and λ0 and set k = 0.

(1) Update φ:
(a) Compute q, u and z by Eq. (9), (1) and (15), respectively.
(b) Define: αk

φ = ∂L
∂φ (φk, ck, λk).

(c) Find the optimal time step: ∆tφ = arg min
∆t

L
(
φk −∆tαk

φ, ck, λk
)
.

(d) Evolve the level set functions: φk+1 = φk −∆tφαk
φ.

(2) Update c (after a fixed number of iterations):
For each cj, j = 1, 2, . . . , 2N :
(a) Compute q, u and z by Eq. (9), (1) and (15), respectively.
(b) Define: αk

cj
= ∂L

∂cj
(φk+1, ck, λk).

(c) Define the search interval: Let M ∈ R be all values of ∆t such that
ck
j −∆t αk

cj
∈ [aj , bj ].

(d) Find the optimal timestep: ∆tcj = arg min
∆t∈M

L
(
φk+1, ck −∆t αk

cj
ej , λ

k
)
,

where ej is the j’th unit vector.
(e) Update this constant: ck+1

j = ck
j −∆tcj α

k
cj

.

(3) Update λ (after a fixed number of iterations):
λk = λk + µK(φk+1).
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(4) Iterate again if necessary:
k = k + 1.

Notice that q is updated implicitly using the most recently calculated values of
φ and c. In this algorithm we do not use step 2 and 3 in every iteration. This
is because the algorithm becomes unstable if c and λ are updated too often. In
principle we could have run step 1 to convergence before doing the other steps.
Numerically this is not strictly necessary and it would have been computationally
heavy. We have therefore updated c and λ after a fixed numbers of iterations.

6. Implementation Issues

As is typical for Augmented Lagrangian algorithms, the convergence is fast in
the beginning and it slows down when the solution is getting closer to the true
minimiser. A natural solution to this is to apply larger timesteps when evolving φ,
but this will make the algorithm unstable. Another problem, when solving inverse
problems, is that the sensitivities related to changes in u with respect to q may be
very small in some regions. This will further slow down the speed of convergence.

To speed up the algorithm we have introduced a modification of the level set
function when computing q = q(φ, c). Instead of applying the level set functions φ
directly as in (6) and (7), we replace each φi by the function

φ̃i = sgn(φi) =
{ φi

|φi| for φi 6= 0,

0 else.
(23)

For notational convenience we define the vector φ̃ = {φ̃i}N
i=1. Inserting this into

Eq. (6) will give the following construction of q:

q =





1
2

[
c1

(
φ
|φ| + 1

)
− c2

(
φ
|φ| − 1

) ]
for φi 6= 0,

1
2 (c1 + c2) else.

(24)

Eq. (7) can be modified in exactly the same way, and for general cases we replace
φi by φ̃i when calculating ψj in (8). By the chain rule we have

∂q

∂φi
=

∂q

∂φ̃i

∂φ̃i

∂φi
=

∂q

∂φ̃i

δ(φi), (25)

where δ denotes the delta Dirac function, i.e. δ(0) = 1 and δ(φi) = 0 ∀φi 6= 0.
In numerical implementations, it is desirable to replace φ̃i by a smoothed ap-

proximation. The chosen approximation is

φ̃i ≈ φi√
φ2

i + ε
, (26)

where ε is a small positive number which has to be chosen. As φi is replaced by
φ̃i, the gradient calculation in (12) and (13) also needs to be changed using (25).
However, we have observed from our numerical experiments that good results are
obtained if we just replace δ(φi) in (25) by 1. Thus, the codes used for calculating
the gradients do not need to have any change. The only change we need to have
for the codes, is to replace φi by φ̃i when calculating ψj .

As described earlier, there will in inverse problems typically be some low sensitive
areas where ∂u

∂q is very small. When updating φ, the contribution from ∂F
∂q will be

small in these regions. This produces difficulties in finding the minimum of F̃ , and
in our approach the constraint will often be too dominating in the low sensitive
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regions compared to the other regions. In order to overcome this difficulty, we have
to weight the constraint very low, which in turn will give a slow convergence.

If we apply a small value of ε in (26), a small change in φi will give large changes
in q when φi is close to zero. This will reduce the problem of a too dominating
constraint in the low sensitive regions, but only as long as |φi| has a relative low
value. Another and may be more important fact, is that q will converge faster in
the regions which have larger sensitivity. It seems like this will make the calculated
derivatives more reliable in the rest of the domain. The optimal shape of the level
set functions will then easier be found, even with a higher weight of the constraint.
A higher weight of the constraint will in turn make the method faster.

By numerical experiments we have found it desirable to start with a rather large
value of ε, and then decrease ε during the iterations. In this setting it is also natural
to increase µ during the iterations. This differs from other related works [21, 22, 10],
where a fixed µ has been used to reduce the ill-conditioness of the problem.

The minimisation with respect to c is a highly ill-conditioned process. It should
therefore not be done too early or too frequently during the iterations. To further
stabilise this process, we have applied a predefined search interval [aj , bj ] for each
constant such that there will be no risk of producing values completely out of range.

When updating both φ and c, we have to be aware that these quantities are
dependent of each other. In this work φ and c are updated in an alternating way
(see Algorithm A). Usually we start to update c before |φ| has the unit value for all
points in the domain. A situation which then may occur, is that a combination of
|φi| 6= 1 (for some i) and cj-values not corresponding to the constant values of the
exact q, can in some cases still produce the correct value of q. Equilibrium at this
point should theoretically be avoided by the constraint K(φ) = 0, but numerically
it may cause trouble. In the suggested implementation, where φ is replaced by φ̃,
this problem can be considerably reduced by applying a slightly lower ε-value in
(26) when updating c (Step 2 of Algorithm 1) than the ε-value used when updating
φ (Step 1 of Algorithm 1). An equilibrium where q takes the correct value and |φ̃i|
is not close to 1 will then be impossible.

7. Numerical Results

We will test the proposed algorithm on several two dimensional problems. Our
domain Ω = (0, 1)×(0, 1) is divided into a rectangular mesh with uniform mesh size
h = 1/64 in both directions. The functions f , q, φ and the required derivatives are
approximated by piecewise constants over this mesh. The force function f(x1, x2) =
20π2 sin(πx1) cos(πx2).

For a given function q(x), approximations of u and z can be found by solving
correspondingly Eq. (1) and Eq. (15) by a finite element or a finite difference
method. In our case we have chosen to apply some already developed software
solving this by a finite element method.

To construct the synthetic data we add random noise to the measurements cor-
responding to the true coefficient. Let uex be the numerical solution (with no noise
added) for the true q(x), and let σ be the noise level. We get ũd by calculating
ũd = uex + σRd||uex||L2(Ω)/||Rd||L2(Ω), where Rd is a finite element function with
nodal values being uniform random numbers between -1 and 1, and with zero mean.
Thereafter we apply the total variation denoising technique of Chan and Tai [9] to
smooth ũd. The smoothed version of ũd is used as observations ud.

We start with the initial φ equal to zero, that is equally far from the two searched
values, -1 and 1. This initialisation means that we do not assume anything about the
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shape of φ a priori. In all the examples the constant values of q(x) are assumed
unknown, but we need to specify an interval which defines the lower and upper
bounds for the constants. The initial cj-values are chosen equal to the lower bounds
of the corresponding intervals.

The penalty parameter µ is increased slowly by a fixed factor through the iter-
ations. For the cases with one level set function this factor can be higher than for
cases involving more level set functions. Letting µk be the value of µ for iteration
k, we have used µk=µ0 · 1.01k for one level set function, and µk=µ0 · 1.002k for
two level set functions. We keep µk fixed when it reaches an upper bound. For the
different examples we choose a suitable initial value µ0.

The Lagrangian multiplier λ is initially equal to zero and kept at this value in
the beginning of the optimisation. After a fixed number of iterations we start to
update λ each 10th iteration.

The frequency for updating the constant values, c, will influence the speed of
convergence. A seldom updating of c will give a slow convergence, while a too
frequent updating may cause unstable behaviour. We have chosen to update c
each 5th iteration in the examples involving a circle shaped discontinuity, and each
20th iteration in the examples involving more complicated geometries. In the last
example with three different regions and with noise equal to or larger than 1%
we observed unstable behaviour when applying an updating frequency of 20. In
these cases we therefore increased the interval between each updating to 50, which
stabilised the method.

In the cases where we substitute φi by φ̃i from Eq. (26), we have chosen 0.1 as
the initial ε-value, and decreased it by a factor of 0.98 in each iteration until the
value reaches a lower bound equal to 10−7.

When plotting the level set functions we have in some of the examples plotted
both the curve indicating the sign change of φ and the discontinuity curve of the
true q(x). We have used a dotted line for the discontinuity of the true q(x) and
a solid curve to indicate the sign of each φi. As before the index k will in the
figures denote the estimate at iteration k, and k will be given on the x-axis on the
convergence plots. No superscript on q and ci will indicate the corresponding true
values.

7.1. Example 1: Convergence, Regularisation and Noise. In this example,
we will look into a simple case in order to study some of the basic properties related
to the solution strategy. The true function to recover, q(x), has two subregions with
different constant values. In Figure 2a) the true q(x) is plotted, and in Figure 2b)
the corresponding curve of discontinuity is shown.

We will first test the original binary formulation explained in Section 3, and com-
pare this to the suggested implementation proposed in Section 6. In the further text
we will refer to the ordinary and the novel implementation as the Ordinary Binary
Level Set Method (OBLSM) and the Signed Binary Level Set Method (SBLSM),
respectively. The example will be tested with 5% noise added to the observation
data, and the lower and upper bounds for the constants are 0.5 below and above
the true values.

Independent of the method of choice, the coefficient in this example is relatively
easy to recover with a rather good accuracy. The choice of the control parameters
β and µ0 will though slightly influent the results and the error in the solution.
An optimal choice of the parameters for one of the methods is not necessarily
the optimal choice for the other method. Because of this, we will compare the
convergence of the two methods with three different sets of parameters.



84 L. NIELSEN, X. TAI, S. AANONSEN, AND M. ESPEDAL

1

1.5

2

2.5

3

3.5

4

a) True q(x). b) True discontinuity curve.

Figure 2. True q(x) and the corresponding discontinuity for ex-
ample 1.

The applied parameters for the three tests are given in Table 1. In Test 1, the set
of parameters is equal for the two methods, while in Test 2 and 3, β and µ0 are tuned
such that the error of q is approximately equal for the two different approaches.
In Figure 3, the discontinuity of the converged level set functions are plotted for
both OBLSM and SBLSM. The discontinuity curve is nearly the same for both
methods. This is also the case for the two latter tests, and we therefore omit the
corresponding plots for these tests. The convergence can though be different for
the two methods. Comparisons of the convergence are shown in Figure 4, 5 and 6.

Ex. 1, Test 1. Ex. 1, Test 2. Ex. 1, Test 3.

OBLSM β = 1 · 10−4 β = 1 · 10−3 β = 1 · 10−4

µ0 = 0.05 µ0 = 0.025 µ0 = 0.025

SBLSM β = 1 · 10−4 β = 1 · 10−4 β = 1 · 10−4

φi → φ̃i µ0 = 0.05 µ0 = 0.025 µ0 = 0.05

Table 1. Parameters for Example 1 for the Ordinary Binary Level
Set Method (OBLSM) and the Signed Binary Level Set Method
(SBLSM).

a) Final discontinuity OBLSM. b) Final discontinuity SBLSM.

Figure 3. Example 1, Test 1: The discontinuity curve of the level
set function for the two methods at convergence. The final results
from the two different approaches are very similar. The parameters
are β = 10−4 and µ0 = 0.05 for both methods.
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c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 4. Example 1, Test 1: Convergence of the two methods.
The solid lines are the results for OBLSM and the dashed lines
are the results for SBLSM. The parameters are β = 10−4 and
µ0 = 0.05 for both methods. We observe that the convergence of
SBLSM is slightly quicker than for OBLSM. The final errors (Fig.
a), b) and c)) are also lower for SBLSM.
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c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 5. Example 1, Test 2: Convergence of the two methods.
The solid lines are the results for OBLSM and the dashed lines
are the results for SBLSM. β is tuned such that the error of q∗

is approximately equal for the two methods. The parameters for
OBLSM are β = 10−3 and µ0 = 0.025, and the parameters for
SBLSM are β = 10−4 and µ0 = 0.025. We observe a considerably
faster convergence for SBLSM than for OBLSM.
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c) ||u(x)− uk||L2(Ω). d) ||K(φk)||L2(Ω).

Figure 6. Example 1, Test 3: Convergence of the two methods.
The solid lines are the results for OBLSM and the dashed lines
are the results for SBLSM. µ0 is tuned such that the error of the
recovered coefficient is equal for the two methods. The parameters
for OBLSM are β = 10−4 and µ0 = 0.025, and the parameters for
SBLSM are β = 10−4 and µ0 = 0.05. The measures plotted in Fig.
a), b) and d) give a considerably faster decrease for SBLSM than
for OBLSM. The error of the computed observations, uk, (Fig. c))
is for OBLSM decreasing as quickly as for SBLSM, though, a stable
value for this measure is reached much quicker for SBLSM (after
about 100 iterations) than for OBLSM (after about 300 iterations).

All the three tests show a faster convergence of SBLSM than OBLSM. Espe-
cially the convergence of the cj-values is much faster. Also notice that for SBLSM
||K(φk)||L2(Ω) is approaching zero almost linearly on the semilogarithmic scale be-
fore it starts oscillating at a low value, while OBLSM gives a slower decrease.
Because of the faster convergence, we apply SBLSM in the rest of the examples.

In [10] there are done studies of the same cases as tested in the rest of this
paper. According to the number of requiered iterations, we observe a considerably
faster convergence of the SBLSM implementation than what is the case for the
continious level set formulation applied in [10]. For the remaining numerical studies
not connected to the discussed three tests, we will skip the notation SBLSM as this
always is the applied method.

In Figure 7 the evolvement of the level set function for Test 1 and 3 with SBLSM
is shown. As in all studied cases, the value of φ is initially zero on the entire domain.
That means, we do not assume anything about the shape of the discontinuity of φ
(and hence of q). The initial φ = 0 will produce a function q(x) which is constant
with a value equal to the arithmetic mean of the initial ci-values.

Because of the relative simple contour in this example, the curve indicating the
sign of the level set function (the solid curves in Figure 7) will approximate the
discontinuity of q(x) very quickly. It though takes longer time to get the final
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φ = 0 φ > 0

φ < 0

φ > 0

φ < 0

a) Initial φ = 0. b) 1 iteration. c) 2 iterations.

φ > 0

φ < 0

φ > 0

φ < 0

φ = 1

φ = −1

d) 3 iterations. e) 30 iterations. f) 600 iterations.

Figure 7. Example 1: The sign of the level set function is shown
for different iterations (with SBLSM, Test 1 and 3). The dotted
lines are the discontinuity of the true q(x) and the solid curves in-
dicate the sign of φ. Inside this curve φ < 0, and outside the curve
φ > 0. The discontinuity of q(x) is approximately matched after
about 30 iterations, though it takes much more effort to get a sta-
ble solution where |φ|=1 and both φ and c have stopped changing.
The applied parameters are β = 10−4 and µ0 = 0.05.

piecewise constant solution where φ is equal to 1 or -1. The error plots of q(x)
and c (see dotted lines in Fig. 4a) and 4b)) indicate convergence of the solution
before ||K(φk)||L2(Ω) is close to zero. For practical applications, it may therefore
be reasonable to stop before |φk| is exactly equal to 1.

In Figure 8 we show results corresponding to different levels of noise. We have
applied the same bounds for c as before. The shape of the discontinuity is recovered
very well for low noise, and with slightly less accuracy when the noise increases.
The errors in the recovered constants are increasing more rapidly for larger amount
of noise.

In the next study we investigate the effect of the regularisation parameter. We
have used µ0 = 0.025 and added 5% noise. Except from the β parameter, the rest of
set up for this study is as before. In Figure 9 we have shown the discontinuity curves
for different values of β. As expected, a too low β will give an oscillating curve,
and the larger the value of β is, the smoother will the curve of the discontinuity be.
It seems like a value of β between 10−3 and 10−4 is a good choice for this example.
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a) σ = 0, β = 10−7, b) σ = 0.05, β = 10−4,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.01, |c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.09,

||q(x)− q∗||
L2(Ω) = 0.23. ||q(x)− q∗||

L2(Ω) = 0.40.

c) σ = 0.20, β = 10−4, d) σ = 0.40, β = 10−4,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.22, |c1 − c∗1 | = 0.02, |c2 − c∗2 | = 0.33,

||q(x)− q∗||
L2(Ω) = 0.54. ||q(x)− q∗||

L2(Ω) = 0.57.

Figure 8. Example 1: The identified discontinuity of the level
set function for different amount of noise. The accuracy of the
discontinuity is slightly decreasing when we add more noise, while
the error in the recovered constants is increasing more rapidly for
larger amount of noise. µ0 = 0.025 for all levels of noise.
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a) β = 10−2, b) β = 10−3,

|c1 − c∗1 | = 0.50, |c2 − c∗2 | = 0.08, |c1 − c∗1 | = 0.07, |c2 − c∗2 | = 0.09,

||q(x)− q∗||
L2(Ω) = 0.644. ||q(x)− q∗||

L2(Ω) = 0.298.

c) β = 10−4, d) β = 10−5,

|c1 − c∗1 | = 0.04, |c2 − c∗2 | = 0.09, |c1 − c∗1 | = 0.03, |c2 − c∗2 | = 0.09,

||q(x)− q∗||
L2(Ω) = 0.401. ||q(x)− q∗||

L2(Ω) = 0.491.

Figure 9. Example 1: The discontinuity of the level set function
for different values of β. A too low value of β gives an oscillat-
ing curve of discontinuity, and as expected, an increase in β will
increase the smoothness of this curve. In all cases σ = 0.05 and
µ0 = 0.025.
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7.2. Example 2: Approximation of a Piecewise Smooth Function. We
have in this case considered the problem of approximating a function q(x) which
is a piecewise smooth function, but not a piecewise constant function. The exact
coefficient is constructed by q(x) = c(x) exp(8x1(1 − x1)(1 − x2), where c(x) = 1
inside the circle shown in Figure 10 b) and c(x) = 4 in the rest of the domain. The
noise level is 5%, and the bounds of the cj-values are chosen to be 4 ≤ c1 ≤ 5 and
1 ≤ c2 ≤ 2.

We have restricted the approximation to have two constant levels. A higher
number of allowed levels will produce a more accurate approximation. From the
plots in Figure 10 we can see that the location of the discontinuity is recovered
rather well, and the identified function q∗ is a good approximation of the true
coefficient. The error ||q(x)− qk||L2(Ω) is reduced from 2 to below 0.6.
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a) True q(x). b) True discontinuity curve.
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c) Identified q∗. d) Discontinuity of φ∗.
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e) ||q(x)− qk||L2(Ω). f) ||K(φk)||L2(Ω).

Figure 10. Example 2: Identification of a piecewise smooth func-
tion with σ = 0.05, β = 10−4 and µ0 = 0.025. The approximation
is restricted to have two levels, and the error ||q(x) − qk||L2(Ω) is
reduced from 2 till below 0.6.
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7.3. Example 3: Two Regions with Complicated Geometry. In this exam-
ple we try to recover a function with a more complicated geometry of the locations
of the discontinuities. The true function q(x) and the curve indicating the discon-
tinuity are shown in Figure 11. This function consists of three distinct regions, but
since two of the regions have identical constant values, only one level set function
is needed to represent q(x). For the lower and upper bounds in the line searches
for the constant values we have applied values which are 0.2 below and above the
corresponding true values. We will recover this coefficient with three different levels
of noise; σ = 0.001 (Fig. 12 and 13), σ = 0.01 (Fig. 14) and σ = 0.05 (Fig. 15).
The applied parameters are given in Table 2.

σ = 0.001 σ = 0.01 σ = 0.05
β 5 · 10−5 1 · 10−4 1 · 10−4

µ0 0.005 0.01 0.01
Table 2. Parameters for Example 3. (µ is increased during the
iterations such that µk = µ0 · 1.01k up to a value of 4.)

The recovered coefficient is very accurate for the case with σ = 0.001. Even
the sharp corners are matched with high accuracy. Concerning the noise we can
tolerate about 1% noise. With larger noise than this, both the discontinuity and
the constant values are inaccurate (see Fig. 15).

The applied level set method is not moving the curve in the same way as the
continuous level set formulation, but changing the value of φ at every grid point
according to the gradient information. As in other level set methods it is no problem
to split one region into two separate regions, or in the opposite case, let two separate
regions merge into one region. This property is necessary to let one level set function
represent a function with several distinct regions with equal constant levels.
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a) True q(x). b) True discontinuity curve.

Figure 11. Example 3: True q(x) and the corresponding discontinuity.
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a) 3 iterations. b) 5 iterations. c) 10 iterations.

d) 50 iterations. e) 200 iterations. f) 500 iterations.

Figure 12. Example 3: The curve where the level set function
changes sign (solid lines) at different iterations with σ = 0.001.
The discontinuity of the true coefficient is shown with the dotted
lines.
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a) Computed q∗. b) ||q(x)− qk||L2(Ω).
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c) |ci − ck
i |. d) ||K(φk)||L2(Ω).

Figure 13. Example 3: The computed q∗ and the convergence
of qk, ck and φk with σ = 0.001. At convergence we had
||q(x)− q∗||L2(Ω) = 0.03, |c1 − c∗1| = 0.0005 and |c2 − c∗2| = 0.005.
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a) Computed q∗. b) Discontinuity of φ∗.

Figure 14. Example 3: The computed q∗ and the discontinuity of
φ∗ with σ = 0.01. At convergence we had ||q(x)− q∗||L2(Ω) = 0.15,
|c1 − c∗1| = 0.01 and |c2 − c∗2| = 0.05.
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a) Computed q∗. b) Discontinuity of φ∗.

Figure 15. Example 3: The computed q∗ and the discontinuity of
φ∗ with σ = 0.05. At convergence we had ||q(x)− q∗||L2(Ω) = 0.25,
|c1 − c∗1| = 0.05 and |c2 − c∗2| = 0.1.
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7.4. Example 4: Multiple Level Sets. In this example the same geometry as in
the previous example is used, but the true q(x) has now three regions with different
constant values. q(x) is equal to 1 outside the two curves, and equal to 3 and 2
inside the left and right curve, respectively (see Fig. 16). Because of more than
two different constant levels, we need (at least) two level set functions to represent
this coefficient function.

The lower and upper bounds of the constants are chosen to be 0.2 below and
above the true values. Also in this case we do not assume anything about the
geometries, but start with a zero value of both level set functions.

We have tested to recover this coefficient with three different levels of noise.
With σ = 0.001 we show the evolvement of φ in Figure 17 and the convergence in
Figure 18. In Figure 19 and 20 the final results for the cases with σ = 0.01 and
σ = 0.05 are plotted. The applied parameters for these cases are given in Table 3.

In the plots of the level set functions, φ1 gives the discontinuity between all three
regions, while φ2 only gives the discontinuity between the highest and lowest region.
This is one way to represent this function, other combinations of the different φi

and cj can produce the same q(x). Two level set functions can represent up to four
regions, but in this case we only need three regions. In the used representation, the
fourth and last combination of the signs of φ1 and φ2 is empty. That is the case
for all the tests.

Compared to the previous examples where one level set function is applied, we
have to increase µ more slowly with two level set functions. Because of this we
often need more iterations to achieve convergence. The result from this study is
quite similar to the results from Example 3. Also in this case we can tolerate nose
up to about σ = 0.01. The errors become higher in both the recovered shape and
the constant values when the noise is larger than this level, see Figure 20.

σ = 0.001 σ = 0.01 σ = 0.05
β 5 · 10−6 5 · 10−5 1 · 10−4

µ0 5 · 10−4 0.01 0.05
Table 3. Parameters for Example 4. (µ is increased during the
iterations such that µk = µ0 · 1.002k up to a value of 4.)
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a) True q(x). b) True discontinuity curves.

Figure 16. Example 4: True q(x) and the corresponding discontinuities.
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a) φ1, 10 it. b) φ2, 10 it. c) φ1, 20 it. d) φ2, 20 it.

e) φ1, 50 it. f) φ2, 50 it. g) φ1, 200 it. g) φ2, 200 it.

i) φ1, 500 it. j) φ2, 500 it. k) φ1, 1500 it. l) φ2, 1500 it.

Figure 17. Example 4: The curves where the level set functions
change sign (solid lines) for different iterations with σ = 0.001. The
discontinuities of the true q(x) are shown with the dotted lines.
The function q∗ corresponding to φ1 and φ2 plotted in Figure k)
and l) is shown in Figure 18 a).
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a) Computed q∗. b) ||q(x)− qk||L2(Ω).
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c) |cj − ck
j |. d) ||K(φk)||L2(Ω).

Figure 18. Example 4: The computed q∗ and the convergence
with σ = 0.001. The errors of the computed solution are
||q(x)− q∗||L2(Ω) = 0.25, |c1 − c∗1| = 0.001, |c2 − c∗2| = 0.01 and
|c3 − c∗3| = 0.01.
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a) Computed q∗. b) Final φ ∗
1 . c) Final φ ∗

2 .

Figure 19. Example 4: The computed q∗ and the discontinu-
ities of φ for σ = 0.01. The errors for the computed solution are
||q(x)− q∗||L2(Ω) = 0.27, |c1 − c∗1| = 0.01, |c2 − c∗2| = 0.06 and
|c3 − c∗3| = 0.07.
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a) Computed q∗. b) φ ∗
1 . c) φ ∗

2 .

Figure 20. Example 4: The computed q(x) and the discontinu-
ities of φ for σ = 0.05. The errors for the computed solution are
||q(x)− q∗||L2(Ω) = 0.42, |c1 − c∗1| = 0.04, |c2 − c∗2| = 0.14 and
|c3 − c∗3| = 0.03.

8. Conclusions

In this work we have introduced a binary level set approach for solving ellip-
tic inverse problems. The multi-level set representation is regularised by a total
variational norm.

This method is not moving the interfaces during the iterative process, but mov-
ing the level set functions towards -1 or 1 at every grid point. This gives some
advantages when matching special geometries; sharp corners can be recovered very
accurately, and problems with merging or separating regions will not be an issue.
The reinitialisation of the level set functions used in the continuous formulation is
not needed for the binary level set method.

Numerical results show that rather complicated geometries can be recovered un-
der moderate amount of noise. An initial guess of the geometries is not needed, only
a reasonable guess of the constant levels is required. When applying the suggested
implementation of this method, the number of iterations to achieve convergence
is considerably reduced compared with corresponding results from the continuous
level set method, c.f. [10].
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