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Abstract

We consider the approximation of systems of reaction-diffusion equations, with the

finite element method. The highest derivative in each equation is multiplied by a parameter

ε ∈ (0, 1], and as ε → 0 the solution of the system will contain boundary layers. We extend

the analysis of the corresponding scalar problem from [Melenk, IMA J. Numer. Anal.

17(1997), pp. 577-601], to construct a finite element scheme which includes elements of

size O(εp) near the boundary, where p is the degree of the approximating polynomials.

We show that, under the assumption of analytic input data, the method yields exponential

rates of convergence, independently of ε, when the error is measured in the energy norm

associated with the problem. Numerical computations supporting the theory are also

presented, which also show that the method yields robust exponential convergence rates

when the error in the maximum norm is used.
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1. Introduction

The numerical solution of reaction-diffusion problems whose solution contains boundary
layers has been studied extensively over the last two decades (see, e.g., the books [5, 6, 8] and
the references therein). The presence of boundary layers in the solution cannot be overlooked,
and if one wishes to obtain an accurate and robust approximation, special care must be taken
when constructing the numerical method. In the context of the Finite Element Method (FEM),
the robust approximation of boundary layers requires either the use of the h version on non-
uniform meshes (such as the Shishkin [11] or Bakhvalov [1] mesh), or the use of the high order
p and hp versions on specially designed (variable) meshes [10]. In both cases, the a-priori
knowledge of the position of the layers is taken into account, and mesh-degree combinations
can be chosen for which uniform error estimates can be established [2, 4, 10].

In recent years researchers have turned their attention to systems of reaction-diffusion prob-
lems — see [3] and the references therein for a recent survey. In general, one-dimensional
reaction diffusion systems, like the one considered in the present article, have the following
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form: Find −→u such that

L−→u ≡



−ε2

1
d2

dx2 0
. . .

0 −ε2
m

d2

dx2


−→u + A−→u =

−→
f in Ω = (0, 1), (1.1)

−→u (0) = −→u (1) =
−→
0 , (1.2)

where 0 < ε1 ≤ ε2 ≤ ... ≤ εm ≤ 1,

A =




a11(x) ... a1m(x)
...

...
am1(x) ... amm(x)


 ,

−→
f (x) =




f1(x)
...

fm(x)


 . (1.3)

The data {εi}m
i=1, A and

−→
f are given, and the unknown solution is −→u (x) = [u1(x), ..., um(x)]T .

The functions aij(x) are such that for any x ∈ Ω = [0, 1], the matrix A is invertible (with ‖A−1‖
bounded) and moreover −→

ξ T A
−→
ξ ≥ α2−→ξ T−→ξ ∀ −→ξ ∈ Rm, (1.4)

for some constant α > 0.
We will restrict ourselves to the case εi = ε ∀ i = 1, ..., m, which allows us to express

(1.1)–(1.2) in vector form as: Find −→u such that

L−→u := −ε2−→u ′′ + A−→u =
−→
f in Ω = (0, 1), (1.5)

−→u (0) = −→u (1) =
−→
0 . (1.6)

The presence of the small parameter ε in the above boundary value problem causes the solution
−→u to contain boundary layers of width O(|ε ln ε|) near the endpoints of Ω. To illustrate this,
we consider the case m = 2 with

A =
[

2 −1
−1 2

]
,

−→
f (x) =

[
2
1

]
, ε = 10−2.

Figure 1.1 shows the exact solution corresponding to the above data and clearly shows that
both components contain a boundary layer.

Our goal in the present article is to extend the analysis of [4] for the analogous scalar problem,
to show that under the assumption of analytic input data, the hp version of the FEM on the
variable three element mesh ∆ = {0, κpε, 1− κpε}, κ ∈ R+ converges at an exponential rate (in
the energy norm defined in eq. (2.6) below) as the polynomial degree of the approximating basis
functions p →∞. Strictly speaking, the method is not an hp version, since the location and not
the number of elements changes as the dimension of the approximating subspace is increased;
a more appropriate characterization would be a p version on a variable mesh. In addition to
extending the results of [4] to systems, our proof does not use Gauss-Lobatto interpolants (like
the one in [4]), but rather we achieve the desired result using the approximation theory from [9]
with integrated Legendre polynomials, something that is of interest in its own right. More
importantly, the present approach allows us to define the constant κ used in the mesh in a more
concrete way.

The rest of the paper is organized as follows: In Section 2 we present the model problem and
discuss the properties of its solution. In Section 3 we present the finite element formulation and
the design of the p/hp scheme we will be considering, along with our main result of exponential
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Fig. 1.1. The exact solution with ε = 10−2.

convergence. In Section 4 we present the results of some numerical computations for two model
problems, and in Section 5 we summarize our conclusions.

In what follows, the space of squared integrable functions on an interval Ω ⊂ R will be
denoted by L2 (Ω) , with associated inner product

(u, v)Ω :=
∫

Ω

u(x)v(x)dx.

We will also utilize the usual Sobolev space notation Hk (Ω) to denote the space of functions on
Ω with 0, 1, 2, ..., k generalized derivatives in L2 (Ω) , equipped with norm and seminorm ‖·‖k,Ω

and |·|k,Ω , respectively. For vector functions −→u = [u1(x), ..., um(x)]T , we will write

‖−→u ‖2k,Ω = ‖u1‖2k,Ω + ... + ‖um‖2k,Ω .

We will also use the space

H1
0 (Ω) =

{
u ∈ H1 (Ω) : u|∂Ω = 0

}
,

where ∂Ω denotes the boundary of Ω. Finally, the letter C will be used to denote a generic pos-
itive constant, independent of ε or any discretization parameters, and possibly having different
values in each occurrence.

2. The Model Problem and its Regularity

We assume that the functions aij(x) and fi(x) are analytic on Ω and that there exist
constants Cf , γf , Ca, γa > 0 such that

∥∥∥f
(n)
i

∥∥∥
∞,Ω

≤ Cfγn
f n! ∀ n ∈ N0, i = 1, ...,m, (2.1)

∥∥∥a
(n)
ij

∥∥∥
∞,Ω

≤ Caγn
a n! ∀ n ∈ N0, i, j = 1, ..., m. (2.2)
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As usual, we cast the problem (1.5)–(1.6) into an equivalent weak formulation, which reads:
Find −→u ∈ [

H1
0 (Ω)

]m such that

B (−→u ,−→v ) = F (−→v ) , ∀ −→v ∈ [
H1

0 (Ω)
]m

, (2.3)

where

B (−→u ,−→v ) = ε2
m∑

i=1

(u′i, v
′
i)Ω +

m∑

i=1

m∑

j=1

(aijuj , vi)Ω , (2.4)

F (−→v ) =
m∑

i=1

(fi, vi)Ω . (2.5)

From (1.4), we get that the bilinear form B (·, ·) is coercive with respect to the energy norm

‖−→u ‖2E,Ω := ε2 |−→u |21,Ω + α2 ‖−→u ‖20,Ω , (2.6)

i.e.,
B (−→u ,−→u ) ≥ ‖−→u ‖2E,Ω ∀ −→u ∈ [

H1
0 (Ω)

]m
. (2.7)

This, along with the continuity of B (·, ·) and F (·) , imply the unique solvability of (2.3). We
also have the a priori estimate

‖−→u ‖E,Ω ≤
1
α

∥∥∥−→f
∥∥∥

0,Ω
. (2.8)

We now present results on the regularity of the solution to (1.5)–(1.6). Note that by the
analyticity of aij and fi, we have that ui are analytic. Moreover, we have the following theorem,
whose proof is a straight forward generalization of the proof of Theorem 1 from [4].

Theorem 2.1. Let −→u be the solution to (1.5)–(1.6) with 0 < ε ≤ 1. Then there exist positive
constants C and K ≥ 1, independent of ε, such that

∥∥∥u
(n)
i

∥∥∥
0,Ω

≤ CKn max{n, ε−1}n ∀ n ∈ N0, i = 1, ..., m. (2.9)

We will now obtain a decomposition for the solution −→u into a smooth (asymptotic) part,
two boundary layer parts and a remainder as follows:

−→u = −→w +−→u − +−→u + +−→r . (2.10)

This decomposition is obtained by inserting the formal ansatz

−→u (x) ∼
∞∑

i=0

εi−→u i(x), (2.11)

into the differential equation (1.5), and equating like powers of ε, so that we can define the
smooth part −→w as

−→w (x) :=
M∑

i=0

ε2i−→u 2i, (2.12)

where the terms −→u 2i are defined recursively by

−→u 0 = A−1−→f , (2.13)
−→u 2i = A−1 (−→u 2i)

′′
, i = 0, 2, 4, ... (2.14)



390 C. XENOPHONTOS AND L. OBERBROECKLING

A calculation shows that
L(−→u −−→w ) = ε2M+2 (−→u 2M )′′ , (2.15)

hence, as ε → 0, −→w (x) defined by (2.12) satisfies the differential equation, but not the boundary
conditions. To correct this we introduce boundary layer functions −→u + and −→u − by

L−→u − =
−→
0 in Ω L−→u + =

−→
0 in Ω

−→u −(0) = −−→w (0) −→u +(0) =
−→
0

−→u −(1) =
−→
0 ; −→u +(1) = −−→w (1).

(2.16)

Finally, we define −→r by

L−→r = ε2M+2 (−→u 2M )′′ , (2.17a)
−→r (0) = −→r (1) =

−→
0 . (2.17b)

The following results follow from the analogous ones for the scalar problem considered in [4],
and their puprose is to provide information on the regularity of each of the components in (2.10).

Lemma 2.1. Let −→u 2i be defined as in (2.13)–(2.14). Then there exist positive constants
C, K1,K2, (K2 > 1), depending only on A and

−→
f such that for any i, n ∈ N0∥∥∥(−→u 2i)

(n)
∥∥∥
∞,Ω

≤ CK2i
1 Kn

2 (2i)!n!.

Theorem 2.2. There exist constants C, K1, K2 ∈ R+ depending only on
−→
f and A such that

if 0 < 2MεK1 ≤ 1, then −→w (x) given by (2.12), satisfies
∥∥∥−→w (n)

∥∥∥
∞,Ω

≤ CK
n

2n! ∀ n ∈ N0. (2.18)

Theorem 2.3. Let −→u ± be the solutions of (2.16). Then there exist constants α, C,K > 0
independent of ε and n such that for any x ∈ Ω, n ∈ N0, and i = 1, ..., m,

∣∣∣
(
u−i

)(n)
(x)

∣∣∣ ≤ CKne−xα/ε max{n, ε−1}n, (2.19a)
∣∣∣
(
u+

i

)(n)
(x)

∣∣∣ ≤ CKne−(1−x)α/ε max{n, ε−1}n. (2.19b)

Theorem 2.4. There are constants C, K1, K2 > 0 depending only on the input data such that
the remainder −→r defined by (2.17b) satisfies

∥∥∥−→r (n)
∥∥∥

0,Ω
≤ CK2

2ε2−n (2MεK1)
2M

, n = 0, 1. (2.20)

3. The Finite Element Method

For the discretization of (2.3), we choose a finite dimensional subspace SN of H1
0 (Ω) and

solve the problem: Find −→u N ∈ [SN ]m such that

B (−→u N ,−→v ) = F (−→v ) ∀ −→v ∈ [SN ]m . (3.1)

The unique solvability of the discrete problem (3.1) follows from (1.4) and (2.7); by the well-
known orthogonality relation, we have

‖−→u −−→u N‖E ≤ inf−→v ∈[SN ]m
‖−→u −−→v ‖E . (3.2)
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The subspace SN is chosen as follows: Let ∆ = {0 = x0 < x1 < ... < xM = 1} be an arbitrary
partition of Ω = (0, 1) and set

Ij = (xj−1, xj) , hj = xj − xj−1, j = 1, ...,M.

Also, define the master (or standard) element IST = (−1, 1), and note that it can be mapped
onto the jth element Ij by the linear mapping

x = Qj(t) =
1
2

(1− t)xj−1 +
1
2

(1 + t)xj .

With Πp (IST ) the space of polynomials of degree ≤ p on IST , we define our finite dimensional
subspaces as

SN ≡ S
−→p (∆) =

{
u ∈ H1

0 (Ω) : u (Qj(t)) ∈ Πpj
(IST ) , j = 1, ...,M}

,

and −→
S p

0(∆) :=
[
S
−→p (∆) ∩H1

0 (Ω)
]m

, (3.3)

where −→p = (p1, ..., pM) is the vector of polynomial degrees assigned to the elements.
The following approximation result from [9] will be the main tool for the analysis of the

method. As mentioned earlier, the analysis for the scalar problem in [4] relied on Gauss-Lobatto
interpolants (and their approximation properties), which is different from what we present in
this work.

Theorem 3.1. For any u ∈ C∞
(
IST

)
there exists Ipu ∈ Πp (IST ) such that

u (±1) = Ipu (±1) , (3.4)

‖u− Ipu‖20,IST
≤ 1

p2

(p− s)!
(p + s)!

∥∥∥u(s+1)
∥∥∥

2

0,IST

, ∀ s = 0, 1, ..., p, (3.5)

∥∥(u− Ipu)′
∥∥2

0,IST
≤ (p− s)!

(p + s)!

∥∥∥u(s+1)
∥∥∥

2

0,IST

, ∀ s = 0, 1, ..., p. (3.6)

The definition below describes the mesh used for the method: If we are in the asymptotic
range of p, i.e. p ≥ 1/ε, then a single element suffices since p will be sufficiently large to give
us exponential convergence without any refinement. If we are in the pre-asymptotic range, i.e.
p < 1/ε, then the mesh consists of three elements as described below. We should point out that
this is the minimal mesh-degree combination for attaining exponential convergence; obviously,
refining within each element will retain the convergence rate but would require more degrees of
freedom – one such example is the so-called geometrically graded mesh discussed in [4] for the
scalar problem.

Definition 3.1. For κ > 0, p ∈ N and 0 < ε ≤ 1, define the spaces
−→
S (κ, p) of piecewise

polynomials by

−→
S (κ, p) :=

{−→
S p

0(∆); ∆ = {0, 1} if κpε ≥ 1
2 ,

−→
S p

0(∆); ∆ = {0, κpε, 1− κpε, 1} if κpε < 1
2 .

In both cases, the polynomial degree is uniformly p on all elements.

Before we state the main theorem of the paper, we cite a useful computation.
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Lemma 3.1. Let p ∈ N, λ ∈ (0, 1]. Then

(p− λp)!
(p + λp)!

≤
[

(1− λ)(1−λ)

(1 + λ)(1+λ)

]p

p−2λpe2λp+1.

Proof. Using Stirling’s approximation

√
2πn

(n

e

)n

e
1

12n+1 ≤ n! ≤
√

2πn
(n

e

)n

e
1

12n ≤
√

2πn
(n

e

)n

e

for the factorial (cf. [7]), we have

(p− λp)!
(p + λp)!

≤
√

2π(1− λ)p√
2π(1 + λ)p

(
(1−λ)p

e

)(1−λ)p

(
(1+λ)p

e

)(1+λ)p

e

e
1

12(1+λ)p+1

≤ [(1− λ) p](1−λ)p

[(1 + λ) p](1+λ)p
e2λpe1− 1

12(1+λ)p+1

≤
[

(1− λ)(1−λ)

(1 + λ)(1+λ)

]p

p−2λpe2λpe.

This completes the proof of the lemma. 2

We now present our main result.

Theorem 3.2. Let
−→
f and A be composed of functions that are analytic on Ω and satisfy

the conditions in (2.1)–(2.2). Let −→u = [u1, ..., um]T be the solution to (1.5)–(1.6). Then
there exist constants κ, C, β > 0 depending only on

−→
f and A such that there exists Ip

−→u =
[Ipu1, ..., Ipum]T ∈ −→S (κ, p) with Ip

−→u = −→u on ∂Ω and

‖−→u − Ip
−→u ‖2E,Ω ≤ Cp3e−βp.

Proof. We consider three separate cases.

Case 1: κpε ≥ 1
2 (asymptotic case), ∆ = {0, 1}

From Theorem 2.1 we have
∥∥∥−→u (n)

∥∥∥
2

0,Ω
≤ CK2n max{n, ε−1}2n,

and by Theorem 3.1 there exists Ip
−→u ∈ −→

S (κ, p) such that −→u = Ip
−→u on ∂Ω and for any

s = 0, 1, ..., p

∥∥∥(−→u − Ip
−→u )′

∥∥∥
2

0,Ω
≤ (p− s)!

(p + s)!

∥∥∥−→u (s+1)
∥∥∥

2

0,Ω

≤ (p− s)!
(p + s)!

CK2(s+1) max{s + 1, ε−1}2(s+1).

Let s = λp for some λ ∈ (0, 1] to be selected shortly. Then, since p ≥ 1/(2κε), we have

max{s + 1, ε−1}2(s+1) = max{λp + 1, ε−1}2(λp+1) = (λp + 1)2(λp+1)
,
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provided κ ≤ λ/2. This, along with Lemma 3.1, gives
∥∥∥(−→u − Ip

−→u )′
∥∥∥

2

0,Ω
≤ (p− λp)!

(p + λp)!
CK2(λp+1) (λp + 1)2(λp+1)

≤
[

(1− λ)(1−λ)

(1 + λ)(1+λ)

]p

p−2λpe2λp+1CK2(λp+1) (λp + 1)2(λp+1)

≤ CeK2

[
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eK)2λ

]p

(λp + 1)2
(

1 + λp

p

)2λp

≤ CeK2p2

[
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eK)2λ

]p (
1
p

+ λ

)2λp

.

Since (
1
p

+ λ

)2λp

= λ2λp

[(
1 +

1
λp

)λp
]2

≤ e2λ2λp,

we further get
∥∥∥(−→u − Ip

−→u )′
∥∥∥

2

0,Ω
≤ Cp2

[
(1− λ)(1−λ)

(1 + λ)(1+λ)
(eKλ)2λ

]p

.

Consequently, if we choose λ = (eK)−1 ∈ (0, 1) we have
∥∥∥(−→u − Ip

−→u )′
∥∥∥

2

0,Ω
≤ Cp2e−β1p, (3.7)

where

β1 = |ln q1| , q1 =
(1− λ)(1−λ)

(1 + λ)(1+λ)
< 1,

and the constant C > 0 is independent of ε. The choice of λ dictates that the constant κ in
the definition of the mesh must satisfy

κ ≤ 1
2eK

. (3.8)

Repeating the previous argument for the L2 norm of (−→u − Ip
−→u ), we get, using (3.6),

‖−→u − Ip
−→u ‖20,Ω ≤ Ce−β1p. (3.9)

Combining (3.7)–(3.9), and using the definition of the energy norm, we get the desired result.

Case 2: κpε < 1
2 (pre-asymptotic case), ∆ = {0, κpε, 1− κpε, 1}

The mesh consists of three elements Ii, i = 1, 2, 3 and we decompose −→u as in (2.10):
−→u = −→w +−→u − +−→u + +−→r .

The expansion order M is chosen as the integer part of ηκp/2, where η > 0 is a fixed parameter
satisfying

1
2
ηK1 ≤ 1,

1
2
ηK1 =: δ <

1
2
,

with K1 and K1 the constants from Theorems 2.2 and 2.4, respectively. The choice of η

guarantees that as κpε < 1
2 , we have

2MεK1 = ηκpεK1 <
1
2
ηK1 ≤ 1
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and

2MεK1 = ηκpεK1 <
1
2
ηK1 = δ <

1
2
.

Thus the assumptions of Theorem 2.2 are satisfied and the remainder −→r is small by Theorem
2.4 — in particular, we have for n = 1, 2 :

∥∥∥(−→r )(n)
∥∥∥

0,Ω
≤ Cε2−nK2

2 (2MεK1)
2M ≤ Cε2−nδηκp ≤ Cε2−ne−β2p, (3.10)

where β2 = |ln q2| , q2 = δηκ < 1.

We next analyze the approximation of each of the remaining three terms in the decomposi-
tion (2.10).

For the approximation of −→w , we have, by Theorem 3.1, that there exists Ip
−→w ∈ −→

S (κ, p)
such that −→w = Ip

−→w on ∂Ω and for any s = 0, 1, ..., p

∥∥∥(−→w − Ip
−→w )′

∥∥∥
2

0,Ω
≤ (p− s)!

(p + s)!

∥∥∥−→w (s+1)
∥∥∥

2

0,Ω
≤ (p− s)!

(p + s)!
CK2(s+1) ((s + 1)!)2 ,

where we used Theorem 2.2. Letting s = λp, for some λ ∈ (0, 1] to be selected shortly, and
using Lemma 3.1, we get

∥∥∥(−→w − Ip
−→w )′

∥∥∥
2

0,Ω

≤



(
1− λ

)(1−λ)

(
1 + λ

)(1+λ)




p

p−2λpe2λp+1CK2λp+2
2

[(
λp + 1

)λp+1+1/2
e−λp−1

]2

≤C
(
λp + 1

)3




(
1− λ

)(1−λ)

(
1 + λ

)(1+λ)




p

K2λp
2

(
1 + λp

p

)2λp

≤C
(
λp + 1

)3




(
1− λ

)(1−λ)

(
1 + λ

)(1+λ)




p

K2λp
2 λ

2λp

[(
1 +

1
λp

)λp
]2

≤Cp3




(
1− λ

)(1−λ)

(
1 + λ

)(1+λ)

(
K2λ

)2λ




p

.

Thus, we choose λ = 1/K2 ∈ (0, 1) and we have
∥∥∥(−→w − Ip

−→w )′
∥∥∥

2

0,Ω
≤ Cp3e−β3p, (3.11)

where

β3 = |ln q3| , q3 =

(
1− λ

)(1−λ)

(
1 + λ

)(1+λ)
< 1.

Repeating the previous argument for the L2 norm of (−→w − Ip
−→w ), we get, using (3.6),

‖−→w − Ip
−→w ‖20,Ω ≤ Cpe−β3p. (3.12)

We now approximate the boundary layers. We will only consider −→u −, since −→u + is completely
analogous. In view of Theorem 2.3, we will construct separate approximations for −→u − on
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the intervals Ĩ1 := I1 = [0, κpε], and Ĩ2 := [κpε, 1]. Let i ∈ {1, ..., m} be arbitrary. Then, by
Theorem 3.1 there exists Ipu

−
i ∈ S(κ, p) such that Ipu

−
i = u−i on ∂Ĩ1 and for any s = 0, 1, ..., p

∥∥∥
(
u−i − Ipu

−
i

)′∥∥∥
2

0,Ĩ1

≤ (κpε)2s (p− s)!
(p + s)!

∥∥∥
(
u−i

)(s+1)
∥∥∥

2

0,Ĩ1

. (3.13)

Now, by Lemma 2.3, we have

∥∥∥
(
u−i

)(s+1)
∥∥∥

2

0,Ĩ1

=

κpε∫

0

∣∣∣
(
u−i

)(s+1)
(x)

∣∣∣
2

dx

≤ CκpεK2(s+1) max{s + 1, ε−1}2(s+1) max
x∈[0,κpε]

{e−2xα/ε}

≤ CκpεK2(s+1) max{s + 1, ε−1}2(s+1). (3.14)

Choose s = λ̃p for some λ̃ ∈ (0, 2κ] to be selected shortly, with κ satisfying (3.8). Then, since
κpε < 1/2, we get s + 1 = λ̃p + 1 ≤ 2κp + 1 < 1/ε + 1 < 2/ε and by Lemma 3.1, (3.13) and
(3.14), we have

∥∥∥
(
u−i − Ipu

−
i

)′∥∥∥
2

0,Ĩ1

(3.15)

≤CK2(λ̃p+1)κ2λ̃p+1p2λ̃p+122λ̃p+1ε−1 (p− λ̃p)!

(p + λ̃p)!

≤C22λ̃p+1K2(λ̃p+1)κ2λ̃p+1p2λ̃p+1ε−1




(
1− λ̃

)(1−λ̃)

(
1 + λ̃

)(1+λ̃)




p

p−2λ̃pe2λ̃p+1

≤CeK2κpε−1




(
1− λ̃

)(1−λ̃)

(
1 + λ̃

)(1+λ̃)




p

(2Keκ)2λ̃p

≤Cpε−1e−β4p, (3.16)

where

β4 = |ln q4| , q4 =

(
1− λ̃

)(1−λ̃)

(
1 + λ̃

)(1+λ̃)
< 1.

Now, on the interval Ĩ2 = [κpε, 1], u−i is already exponentially small, and by Lemma 2.3

∥∥∥
(
u−i

)′∥∥∥
2

0,Ĩ2

=

1∫

κpε

∣∣∣
(
u−i

)′∣∣∣
2

dx ≤ Cε−2 (1− κpε)max
x∈Ĩ2

{
e−2xα/ε

}
≤ Cε−2e−2κpα.

Thus, we approximate u−i by its linear interpolant I1u
−
i , and we have

∥∥∥
(
u−i − I1u

−
i

)′∥∥∥
2

0,Ĩ2

≤
∥∥∥
(
u−i

)′∥∥∥
2

0,Ĩ2

+
∥∥∥
(I1u

−
i

)′∥∥∥
2

0,Ĩ2

≤ Cε−2e−2κpα,

which along with (3.16) give
∥∥∥
(
u−i − Ipu

−
i

)′∥∥∥
2

0,Ω
≤ Cpε−2e−β5p, (3.17)
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for some β5 > 0 independent of ε. Repeating the previous arguments for the L2 norm of(
u−i − Ipu

−
i

)
, we get ∥∥u−i − Ipu

−
i

∥∥2

0,Ω
≤ Ce−β5p. (3.18)

Using the same techniques, similar bounds can be obtained for −→u +.

Combining (3.10), (3.12), (3.17), (3.18) and the analogous bounds for −→u +, we have

‖−→u − Ip
−→u ‖20,Ω

=
∥∥(−→w +−→u − +−→u +

)− (Ip
−→w + Ip

−→u − + Ip
−→u + +−→r )∥∥2

0,Ω

≤‖−→w − Ip
−→w ‖20,Ω +

∥∥−→u − − Ip
−→u −∥∥2

0,Ω
+

∥∥−→u + − Ip
−→u +

∥∥2

0,Ω
+ ‖−→r ‖20,Ω

≤Cpe−βp,

for some β > 0, independent of ε. Similarly,

|ui − Ipui|21,Ω

≤ |wi − Ipwi|21,Ω +
∣∣u−i − Ipu

−
i

∣∣2
1,Ω

+
∣∣u+

i − Ipu
+
i

∣∣2
1,Ω

+ |ri|21,Ω

≤Cε−2p3e−βp,

so that

‖−→u − Ip
−→u ‖2E,Ω

=ε2
m∑

i=1

|ui − Ipui|21,Ω + α2 ‖−→u − Ip
−→u ‖20,Ω ≤ Cp3e−βp

as desired. 2

Remark 3.1. In contrast to the analysis for the scalar problem carried out in [4], our approach
allows for the choice of κ in the definition of the mesh, to be made more specific, even when
the data of the problem is not constant. As was shown in the proof of the above theorem, κ

can be chosen based on the constant of analyticity of the input data.

Using Theorem 3.2 and the quasioptimality result (3.2) we have the following.

Corollary 3.1. Let −→u be the solution to (1.5)–(1.6) and let −→u FE ∈ −→S p
0(∆) be the solution to

(3.1). Then exist constants κ,C, σ > 0 depending only on the input data
−→
f and A such that

‖−→u −−→u FE‖E ≤ Cp3/2e−σp.

4. Numerical Experiments

In this section we present the results of numerical computations for systems of 2 equations
(i.e., m = 2), having as our goal the illustration our theoretical findings; we refer the interested
reader to [12] for a detailed numerical study in which several other cases are considered.

4.1. The constant coefficient case

First we consider the constant coefficient case, in which

A =
[

2 −1
−1 2

]
,
−→
f (x) =

[
1
1

]
, −→u (0) =

[
0
0

]
.
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An exact solution is available, hence the computations we report are reliable. We will be
plotting the percentage relative error in the energy norm, given by

100× ‖−→u EXACT −−→u FEM‖E,Ω

‖−→u EXACT ‖E,Ω

, (4.1)

versus the number of degrees of freedom N , on a semilog scale.
To illustrate the necessity to resolve the boundary layers, we first consider the p version

FEM on the uniform mesh {0, 1/2, 1}. Figure 4.1 shows the performance of this method, which
for relatively large values of ε (i.e. ε ≥ 1/p), exponential rates are achieved. As ε decreases,
the convergence rate deteriorates to an algebraic one due to the fact that the layers are not
resolved.
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Fig. 4.1. Energy norm convergence for the p version.

Figure 4.2 shows the performance of the p/hp version on the 3 element mesh {0, κpε, 1 −
κpε, 1} for different values of ε and we observe that the method not only does not deteriorate
as ε → 0, but it actually performs better, when the error is measured in the energy norm. This
suggests that there is a positive power of ε in the error estimate of Corollary 3.1. In fact, for
the corresponding scalar problem with constant coefficients and polynomial right hand side,
this was shown to be true in [10], where the estimate

‖−→u EXACT −−→u FEM‖E,Ω ≤ Cε1/2βp, C ∈ R+, β ∈ (0, 1)

was proven. This allows for the derivation of an analogous estimate in the maximum norm
which, although will not contain any positive powers of ε, will show that the method converges
at an exponential rate independently of ε. (See [13] for a proof of this fact for high order h

version FEM on Shishkin meshes.)
To illustrate the above claim, we show a final computational result, in which the error is

measured in the maximum norm

‖−→u EXACT −−→u FEM‖∞,Ω = max
k=1,2

{
max
[0,1]

|−→u EXACT −−→u FEM |
}

.
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Fig. 4.2. Energy norm convergence for the p/hp version.

As Fig. 4.3 shows, the method is robust and converges at an exponential rate.

4.2. The variable coefficient case

Next, we consider the variable coefficient case, in which

A =

[
2 (x + 1)2 − (

1 + x2
)

−2 cos(πx/4) 2.2e1−x

]
,
−→
f (x) =

[
2ex

10x + 1

]
, −→u (0) =

[
0
0

]
.

An exact solution is not available, and for our computations we use a reference solution
obtained with a large number of degrees of freedom on a very fine mesh which includes expo-
nential refinement near the endpoints of the domain (see [12] for more details). We are again
interested in the (now estimated) percentage relative error in the energy norm, as given by
(4.1).

In Figure 4.4 we show the p/hp version on the 3 element mesh {0, κpε, 1 − κpε, 1}, for
different values of ε, and we observe that the method performs better as ε → 0, in the variable
coefficient case as well. This, does not, strictly speaking, agree with the theory and it could
very well be due to the fact that we used a reference solution instead of an exact solution for
the computations. Nevertheless, the exponential convergence is visible. Finally, in Figure 4.5
we show the performance of the method when the error is measured in the maximum norm,
which again shows its robustness and exponential convergence rate.

5. Conclusions

We have studied the finite element approximation of systems of reaction-diffusion equations
whose solution contains boundary layers. We showed that under the assumption of analytic
input data, the p/hp version on the variable three element mesh {0, κpε, 1− κpε, 1} yields
exponential convergence as p → ∞, independently of ε, when the error is measured in the
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Fig. 4.3. Maximum norm convergence for the p/hp version.
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Fig. 4.4. Energy norm convergence for the p/hp version.

energy norm. The constant κ in the mesh was shown to depend on the constant of analyticity
of the input data.

Through two numerical experiments, we verified the established exponential rate and ob-
served that, for the problems under consideration, the method performs better as ε → 0, as was
the case for the corresponding scalar problem with constant coefficients and polynomial right
hand side studied in [10]. Finally, we illustrated that when the error in the maximum norm is
used, the method retains its robustness and exponential convergence rate.
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Fig. 4.5. Maximum norm convergence for the p/hp version.
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