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Abstract. In this paper, we generalize well-known results for the L2-norm a
posteriori error estimation of finite element methods applied to linear elliptic
problems in convex polygonal domains to the case where the polygons are non-
convex. An important factor in our analysis is the investigation of a suitable
dual problem whose solution, due to the non-convexity of the domain, may
exhibit corner singularities. In order to describe this singular behavior of the
dual solution certain weighted Sobolev spaces are employed. Based on this
framework, upper and lower a posteriori error estimates in weighted L2-norms
are derived. Furthermore, the performance of the proposed error estimators is

illustrated with a series of numerical experiments.
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1. Introduction

Given a (possibly non-convex) bounded polygonal domain Q C R? with (Lips-
chitz) boundary I' = 99, and a function f € L?(Q), we consider the elliptic model
problem

(1) —Au=f in Q
(2) =0 on I
The standard weak formulation of (1)—(2) reads: Find u € Hg(2) such that

(3) Vu-Vvde = | fvdx

Q Q
for all v € H}(Q). Here and it what follows, we use the following notation: For a
domain D C R™ (n = 1 or n = 2) and an integer k € Ny, we denote by H*(D)
the usual Sobolev space of order k on D, with norm || - ||x,p and semi-norm |- | p.
The space Hj(f2) is defined as the subspace of H!(Q) with zero trace on 9.
Furthermore, H~!(D) denotes the dual space of H}(D), and L?*(D) = H°(D).

In order to discretize the variational formulation (3) by a finite element method,
we consider a regular subdivision 7rg (finite element mesh) of €2 into disjoint open
triangles K (elements), i.e. Trp = {K}, Uger,, K = Q. By hg, we denote the
diameter of an element K € 7pr. We assume that the subdivision 7rg is shape-
regular (see, e.g., [6]) and of local bounded variation. The latter assumption means
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that there exists a constant o > 1 such that o1 < hk,/hk, < o, for any two
neighboring elements Ky and K. Moreover, we introduce the finite element space

So (0, Trp) = {0 € HY(Q) : |k € P1(K),K € Trr},

where, for k € Ny and K € Tpg, Pr(K) is defined as the set of all polynomials of
total degree (at most) k on K.

A finite element approximation of the exact solution u € H}(Q) of (1)—(2) can
now be obtained in the usual way by finding the unique solution upp € S& o1 (Q,7rE)
of the discrete variational formulation

(4) a(upp,v) =Lv)  Yve Sy (), Trr),
where

a(w,v) = / Vw - Vude, L(v) = / fvde.
Clearly, there holds the Galersf(in orthogonality ?
(5) alepp,v) =0 Yo € S;(Q, Trg).
Here, epp is the finite element error given by
(6) €FE = U — UFE,

where u € H} () is again the exact solution of (1)-(2), and urp € Sy (Q, Trg) is
its numerical approximation from (4).

Standard techniques for the a posteriori error estimation of the L?-norm of erg,
consist usually of the following two main steps (Aubin-Nitsche trick; see, e.g., [1, 5,
12], and the references therein): Firstly, a suitable dual problem is formulated; this
makes it possible to relate the L?-norm of erp to the finite element method (4).
Secondly, using the Galerkin orthogonality (5), the L2-error |lepg||12(q) is bounded
in terms of some approximation errors between the solution of the dual problem and
an appropriate interpolant in the finite element space Sé’l (Q,7rg). Here, standard
L?-norm a posteriori analyses are typically based on approximation results that
require the global H?2-regularity of the dual problem, which is in fact available if
the polygonal domain {2 is convex; see [2, 7, 8], for example. In non-convex polygons,
however, this assumption does generally not hold; here, due to the presence of corner
singularities, the regularity of the dual problem is typically reduced to H'*¢, for
¢ < 1. Consequently, standard H2-approximation results cannot be applied.

The goal of this paper is to generalize the above-mentioned approach for the
L?-norm a posteriori error estimation of the finite element error erg to the case
where the domain € is a possibly non-convex polygon. To this end, we describe the
regularity of the dual problem in terms of weighted Sobolev spaces using the results
in [2], and apply some appropriate interpolation results (see, e.g., [11], and the refer-
ences therein) to approximate its solution in the finite element space Sé’l(ﬂ, TrE).
We will then be able to derive upper a posteriori bounds for some weighted L2-
norms of the error epg; see Theorem 3.1. More precisely, we will show that there
holds an estimate of the form

(7) 1o ernlli @) < C Y nx(urs, )%

KeTrg
where ® is a certain weight function (associated to Q), and nx, K € Tpg, are
local error indicators depending on the mesh 7r g, the finite element solution upg
from (4) and the right-hand side f in (1). In addition, using suitable cut-off func-
tions (see [9]), we will also prove some (weighted) local lower bounds; see Theo-
rem 3.4.
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Throughout the paper, we shall use the following notation: By & we denote the
set of all element edges in the finite element mesh 7rr which do not belong to 9.
Note that, for E € £z, there exist two neighboring elements Ky, K, € 7rg such that
E = 0K;N0K,; we let wp = {Kj, K, }, and define Qp = (K3 UK),)°. Furthermore,
for E € &7 and a vector function v € {¢ € L*(Qg)? : ¢|x € H'(K)?, K € wg},
we define the jump

(8) [v](x) = v(x)|Kk, - nK, +v(2)|K, K, rekFE.

Here, for an element K € Trg, nk represents the outward normal unit vector to
OK. Finally, for an edge E € &7, we denote by hg the length of E; note that, due
to the shape regularity of 7rg, there holds that

(9) ,uilhK < hg < phg, VK € wg, VFE €&7,

where the constant p > 1 is independent of the element diameters.

The remaining part of this article is organized as follows: In Section 2 we intro-
duce the dual problem, which the a posteriori error analysis in this paper is based
upon, and discuss its regularity. Section 3 contains the upper and lower a posteriori
error estimates and their proofs. In Section 4, we illustrate the performance of the
error estimators presented in Section 3 with some numerical experiments.

2. Dual Problem

In order to prove the a posteriori error estimate (7), we shall study a dual problem
of the form

(10) —AY = x(erg) in Q
(11) P =0 on T,

with a (weak) solution ¢ € H}(Q). Here, the right-hand side x(erg) € H ()
depends on the finite element error (6) and will be specified later.

An important factor in our analysis will be the approximation of the dual solu-
tion ¢ by functions in the finite element space S& ’1(Q, TrE). Here, the regularity
of ¥ plays an essential role. We note that, since the polygonal domain {2 is possibly
non-convex, the solution 4 of (10)—(11) does not necessarily belong to H2()) (even
if the right-hand side x(erg) was smooth) due to the presence of corner singular-
ities. A possible way to describe this low regularity of ¢ is given by the use of
weighted Sobolev spaces; cf. [2, 3], for example.

2.1. Weighted Sobolev Spaces. Let A = {A4;}, be the set of all corners of
the polygonal domain . To each of these points A;, i = 1,2,..., M, we associate
a weight

(12) i €[0,1).
These numbers are stored in a weight vector
(13) /6:(617/627"‘7/61\4)-

Next, we introduce the following weight function on 2:

M
bp@) = [[r@)®,  ri@)=|e— Al
=1
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Then, for any integers m > [ > 0, the weighted Sobolev spaces H gl I(Q) are defined
as the completion of the space C>°(Q) with respect to the weighted Sobolev norms

m
IIUHHmz @ = lulfro+Y0 Y 1@kl D¥ullg o, 121,

k=l |a|=k
m
0y = 3 S 1@psatl D%l g
k=0 |a|=k
Here,
oledy,
Do = e = et

with @ = (a1, as) € N2 and |a| = a; + as.
Before discussing the regularity of the dual problem (10)—(11), we prove the
following auxiliary result:

Lemma 2.1. Let 8 be a weight vector as in (12)—(13). Then, for a function
v € HY(Q), there holds that ®5%v € Hg®(Q).

Proof. For each corner A; € A, 1 < i < M, of the polygon Q, we define a sector
S; = QN U(A;), where U (A;) = {x : |& — 4;] < €}. Here, we assume that
€ > 0 is chosen sufficiently small, so that the sectors S;, 1 < i < M, are disjoint.
Furthermore, we let 2. = Q\ (Uf\il Si).

Recalling the definition of the weighted Sobolev norm || - ”Hg’o(ﬂ)’ we have

H%Qvlligﬁ(m :/(I)ﬂ%Qdm

Hence, we obtain

M
|®5 U”HOO :Z/ @EQUde—l—/ <I>5 v? dee
- i Q.
<Zbup (Hrj 251)/ T;zBiUQdSC
Si

i—1 TES:
J#l
—2 2
+ sup @g(x) / vede
e, .

M
SC’Z/ r;25i02d$+0/ v? de.
=175 Qe

Furthermore, there holds (cf. the proof of [4, Lemma 4.3], see also the proof of [10
Proposition 25]) that

< Clvlis,

/ 7”1-_2@1}2 dx < C”””?—Il 1 (S) >

i

for all 1 <i < M. Thus, it follows that

195205000y < Cllvli o

which completes the proof. ([l
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2.2. Regularity of the Dual Problem. Let 3 be a weight vector as in Sec-
tion 2.1. Then, we define x(erg) in (10) by

(14) x(erp) = ®5’erp.

By the definition of the finite element space Sé’l (Q,TrE), there holds epp € H} (),
and thus, the previous Lemma 2.1 implies that y(erg) € Hg’O(Q). Therefore,

applying [2, Theorem 2.1 and Remark 3], we obtain the following regularity result
for the dual problem (10)—(11):

Proposition 2.2. Let B = (p1, B2, ..., Bm) be a weight vector on Q with

m
(15) 1>6>1——,

Wi
where w; denotes the interior angle of Q at the corner A;, i = 1,2,..., M. Then,

the weak solution 1 € H () of the dual problem (10)—(11) exists (and is unique)
and belongs to H;Q(Q) Furthermore, the bound

(16) 161220 < Cll®5"ers

holds true.

0,0

2.3. Approximation of Hé2(Q) in ;"' (Q, 7rg). In order to approximate the
solution % of the dual problem (10)—(11) by functions in the finite element space
Sé ’1(9, TrE), an interpolation estimate for the space H ;2(9) (when approximated

by the finite element space Sé’l(Q, TrE)) is required.
Here and it what follows, we define for an element K € 7pp the local quantity

(17) Hg x = sup ®g(x).
zeK

Furthermore, by K 4 we denote the set of all elements in 7pg that contain a corner
of the polygon €2 on their boundary, i.e.

ICA:{KETFE: AEFforacertainAGA}.

For simplicity, we assume that the mesh 7pp is sufficiently refined, so that each

K € K4 contains exactly one corner of 2. Moreover, for K € K 4, we let O = (;,

where f3; is the weight associated with the corner of Q that is contained in K.
Due to our assumptions on the mesh 7z g, there holds:

Lemma 2.3. There exists a constant C' > 0 independent of the element sizes such
that

o
(18) Hpx < C inf p()

forall K € Tpp \ K4.
Proof. Let K € Tpg \ K4. Then,

(19)
M Bi

M M
. ) , SUPgex ()
Hg x = sup Pg(x) < supr-mﬁlz inf r;(z)% — =
P xzxeK B( ) il;llmeK l( ) HwGK z( ) H 1nfweKr,»(a:)5»

i=1 i=1
M O SUDg e 7o) T SiPeer ri(@)”
< inf (JTri(@)™ ) J] 572555 = inf @p(e) [] 25700
i=1

zeK pale} infa:eK n-(sc)ﬁz zeK pale} inf:ceK ri(:c)ﬁi
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It remains to show that the expression

M .
[] becx ri(@)”
=% infaer (@)

is bounded independently of the element sizes. To this end, we notice that

M ) M i
H SUpge i 1 ()" _ H SUPge i T3 () < CH infpex ri(x) + hi A
= infeex ri(x)? - infzex ri(x)

lnmeK 7“1(3'3)

cof (gt )"

=1 zeK Ti

Now, the bounded variation property of 7pg implies that hx (infgex ri(x)) "t is

bounded independently of hx and of r;, for any i € {1,..., M}. O

There holds the following approximation result:

Proposition 2.4. Let Tpg be a given finite element mesh and ¢ a function in
HE’Q(Q), where B is a weight vector as in Section 2.1. Then, there exists an inter-

polant 3 € Sy (, Trp) such that

> Bk (hr o=@l x+ RV (0= DB i+ R

) < C|<P|§{2,2(Q).
B
KeTrg

Here, the constant C > 0 is independent of ¢ and of the element sizes.
Proof. Due to the standard trace inequality
1 1
Iolloore < O (ki ol +hEIVelox) VK € Tep,

it is sufficient to prove that

@) Y Hx(hr'le = Bk + hR2IV(e = D) < Clolaag,
KeTrg

We choose & € Sp''(Q, Trp) to be the elementwise linear interpolant of ¢ in the

vertices of each element K € Tpg. Then, by standard approximation results, there
holds

(21) hille = @13 & + hZ IV (e = D)3k < Clolzx
for all K € Tpg \ K4. Here, we have used, by the definition of the space H;’Q(Q),

that ¢ is H2-regular away from the corners of .
Furthermore, for K € K 4, we have

@) htle - Bk + BRIV~ DIE e < ChE R el
K
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see [11], for example. Combining (21) and (22), recalling the definition of Hg g,
K € Trg, and applying (18), yields

> (e — Bl + hZIV e — D) k)
KeTrE

-2
<o B et Y Hlob)
KeKa K KeTrp\Ka

g(]( > b7 s Bh(@) lplGen o+ D inf Pf(a) / ID%Ide>
KeKka zEK K KeTrp\Ka K

2 2 2 12
gc( > Ielaeaot S [ eBD% dm)

KeKka KeTrp\Ka
2
< C|@|H;v2(9)'
This shows (20) and thereby completes the proof. a
3. A Posteriori Error Analysis

The aim of this section is to establish an a posteriori error analysis for the
(weighted) L2-norm of the finite element error ergr. The upper bound (7) shall
be proved first; see the following Theorem 3.1. The local lower bounds will be
presented in Theorem 3.4 later on in this section.

‘We shall need some additional notation: For an element K € 7rg and a function
v € L?(K), we denote by U the L?-projection of v onto the space of all constant

functions on K, i.e.
_ 1 / d
VK = 75 vax,
K| Jk

where |K| is the area of K. Furthermore, we define the following data oscillation
term:

(23) Ok (v) = hillv — Dk ||o,x -

Theorem 3.1 (Upper Bound). Let B be a weight vector as in Proposition 2.2.
Then, the finite element error epg from (6) satisfies the a posteriori error estimate

1

3
(21) fogterslon < (3 i)

KeTrg

where the constant C' > 0 is independent of the finite element solution upg, of the
right-hand side f, and of the element sizes. The local error indicators ng x are
given by

(25) e = Ha (Wl Tic B s + WV ur e1 13 o0 + Ok (1)?),
where Hg g 1s the elementwise constant from (17), and the jump [-] is defined in (8).

Remark 3.2. In convex polygonal domains, the opening angles at the corners satisfy
w; < . Hence, according to (15), the weight vector 3 can be chosen to be the zero
vector; in particular, we note that, by Proposition 2.2 (see also [2, 7, 8]), the
solution of the dual problem (10)—(11) belongs to H?(2) in this case. Furthermore,
for 8 = (0,0,...,0), the bound (24) is the well-known a posteriori error estimate
for the L2-norm of the finite element error exp in convex polygons; cf. [1, 5, 12],
for example.
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Remark 3.3. In order to evaluate the quantity Hg ', K € Tpg, arising in the local
error estimators (25) in practice, we compute the set Hg x = {Hg x(C;)}5_;, where
(1, Cy, C3 denote the corners of K, and set Hg x = maxHg k.

Proof of Theorem 3.1. We start by multiplying the equation (10) by erg and in-
tegrating both sides over €2, and by noting that x(erg) = (I)B erp (cf. (14)). This
leads to the following identities:

||(I),51€FE”3,Q = /Q Q5 eFE dr = — /Q erpAt dx.
Moreover, integration by parts yields
H‘I)BleFE”?),Q = /QVGFE -V de = alepg, V).
In addition, recalling the Galerkin orthogonality (5), we have that
1®5 erelda=alers ¢ — ),
where zZ € S&’I(Q, TrE) is the interpolant from Proposition 2.4. Hence, it follows

@5 crelfa = [ Vers: V(v -D)de
Q

-~

(26) :/waw—zﬁ)dw—/ﬂwm~V<w—¢>dw
:/fw—@dw—/VuFE-W—zE)dw
Q Q

The second term can be manipulated by an elementwise integration by parts and
by using the fact, since upg is elementwise linear, that Aupg = 0:

/VUFE Vi — 1/) Z /VuFE (¢ — 1/’)
KeTrgp
27) —= Y [ (Vurseni)w - D)ds

Then, combining (26) and (27), results in
125" ernlsq
— [ Tt =) da - /EIWUFEW D)+ [ (F=T)w =) da
< Y (Frlouellt = Do + 3 MVurellosle - Blos

KeTrg Eecér
+ D
KeTrg
< 3 W xloxle = dlox + D MVursllooxoelld — Pllo.ox\o0
KeTrg KeTrE

+ ) hlOk(f)

KeTrg
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Therefore, applying a weighted Cauchy-Schwarz inequality and recalling the ap-
proximation properties from Proposition 2.4, we obtain

125" erellfo

1

< (X B - T+ 020 = Dorn) ) (X b

KeTrp KeTrg

1
2
§C|80H§2(Q)< > 77?3,1() :

KeTrE

Nl=

Furthermore, making use of the regularity estimate (16), implies

1

O,Q( Z 77,%,}()2~

KeTrg

195 ernlto < CllPs'ern|
Dividing both sides of the above inequality by ||<I’5le rEllo,o completes the proof.
([l

The following result implies the efficiency of the a posteriori error bound (24).

Theorem 3.4 (Local Lower Bounds). Let the assumptions of the previous The-
orem 3.1 be satisfied. Furthermore, consider an element K € Tpp and an edge
E € E7. Then, the two estimates

(28) I xllore < Chi?(Ha i | @5 erpllo.x + Ox(f)),
and
_3
(29) IIVurelllos <C Y he? (Hakll®g erelox + Ok (f)),

Kewg

hold true, where the constant C > 0 is independent of upg, f, and of the element
SiZ€S.

Proof. We prove (28) and (29) separately.
Proof of (28): For K € Tpg, [9, Lemma 2 and Lemma 3] imply the existence of
a polynomial cut-off function Bi € Ps(K) satisfying

(30) Bilox =0, VBrklox =0,

and

(31) ”BKHO,K S ChK, h%( S C/ BK dili,
K

with a constant C' > 0 independent of h-.
Then, since fy is constant on K, we have that

_ 1 _
If x| = fKBKdCB/K /KBdeCCJr/KBK(fK*f)dm

Noticing that Aupg = 0 and integrating by parts twice, results in
/ Bdew = —/ BKAQFE dx = / VBK . VeFE dx = —/ ABK erp d:l:7
K K K K
where we have used the properties from (30). Therefore, it holds that
— / ABK erE dx +/ BK(?K — f) dx
K K

< Chi2(|128ABk ok 195 erpllo.x + | Bxlloxlf — Fillox)-

BK?K dﬂ: .

< COhy?

fxl < Chy®
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Recalling the definition of Hg x and applying a standard inverse estimate for poly-
nomials (cf. [11], for example), it follows that

(32) [®sABKkllo.x < sup Op(x)| ABk [lo,x < Chi’Hg i || Brc o, x -
xe

Therefore, using the first inequality from (31), gives
[Ficl < Ch (hi’Ba.xl|P5"
< Chi (Wil k|15 erpllok + IIf — Fxllo.x)

< Chi’(Hp x| ®5 erplox + Ok(f)),

)

which leads to
Ifkllo.x < Chi |fr| < Chi? (Hp x| ®5 ernllo.x + Ok (f))-

Proof of (29): For E € &z, there is a cut-off function Br € C'(Qg) with the
following properties (cf. [9, Lemma 2 and Lemma 3] and (9)):

(33) BE|aQE =0, VBE|8QE =0, BE|K€738(K),K€WE,
and
(34) |Belloos < Chs,  hs<C / By ds,

E

with a constant C' > 0 independent of hg.
Since Au € L2(f2), we have that [Vu]|g = 0. Therefore, and due to the fact
that Vupg is constant along FE, there holds

fEB — / —Bu[Vers] ds

Twofold integration by parts and making use of the properties (33), yields

[[Vure]|el = < Chy'

/ BE VeFE]d

/ BE[[VGFE dS—— Z BE VeFE ’I’LK)dS
E Kewg

Z / (ereABg — BglAerg)dx

Kewr
Therefore, recalling that —Aepgp = —Au = f, results in
IIVure]le|

Kewr

S (/ 05 erel0aaBg| o+ [ 1Bel(Ful + |1 - Tul) iz
Kewr

<Chp' Y 195 ernlox|®sABElo.x
Kewr

—&—C’h]}l Z Bello,x ( f )
Kewr

Proceeding as in (32), we obtain

|26ABEllo.x < ChiHe k||Bellox, K €wp.
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Hence, we have

I[Vure]| el
<Chg' Y IBelox (hi’ts xll® erellox + [ Frllox + I1f = Frellox)
Kewr
< Chp'|Bellogs D, (hlHsxll®5 erelox + [Fxllox +hOx(f)),

Kewg
which, by applying (34), leads to
Vurellel <C > (hilHs xll®g erellox + [ Frllox + h Ok (f)).
Kewg
Thus, it follows that

1
IIVurellellos < Chg Y (hillp xl|®5 ers]
Kewg

o5 + [[Fxllo.x +h2 Ok (f))-

Finally, using (9) and inserting the estimate (28), completes the proof.

4. Numerical Experiments

In this section we shall illustrate the practical performance of the local error
estimators ng i, K € Tpg, from (25) with a series of numerical experiments. All of
our computations are based on the following widely-used adaptive mesh refinement
algorithm (see, e.g., [12]):

(1) Set k=0, and consider an initial mesh Tlﬁ(g on €.
(2) Compute the numerical solution ug% from (4) on TISIZ)
(3) Compute the local error indicators ng i from (25).
4) U > per, 77%’ x is sufficiently small then stop. Otherwise, find Nmax =
max ., gk, and refine those elements K € Tpp for which 7g x >
FE
Thmax- Set kK =k + 1 and go to (2).

Here, 0 < 7 < 1 is a fixed threshold which, in our numerical experiments, is set to
be 0.5.

4.1. Example 1: Smooth Solution in Convex Polygon. On the unit square
Q=(0,1)%,
with corners
A; =(0,0), A, =(1,0), As=(1,1), As=(0,1),
we consider the model problem
—Au=2(—2*+z—y* +y) in Q
u=20 on 0N).

The exact solution is given by u(z, y) = 2y(x—1)(y—1) and is analytic in Q. We note
that, since 2 is convex, the weights 3; associated to the corners A;,i = 1,2, 3,4, can
be chosen arbitrarily in [0, 1); cf. Proposition 2.2 and Remark 3.2. In our numerical
experiments we focus on two particular cases. For simplicity, the data oscillation
terms shall be neglected.

Firstly, we consider weight vectors of the form 8 = (51,0,0,0), with 8, € [0,1).
The corresponding weighted L?-norms are then given by |||x| "1 -||p.o. In Figure 1,
we present the weighted L?-errors for 3 € {0.00,0.25,0.50,0.75,0.90,0.99}, as well
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T T
: 5,=000 o B, =000

| o B,=025 B, =025
. 5B, =050 o B, =050
107 | —p_B,=075|7 — B =075

Error Estimators

: 8,=0.90 B, =0.90
\ B,=0.99 B, =099
\\ ; s 8

efficiency index

10° 10° 10° 10°
number of degrees of freedom number of degrees of freedom

FIGURE 1. Example 1: 83 = 33 = 84 = 0.0. Left: True (weighted)
L2-errors vs. global error estimators 7gobal. Right: Efficiency
indices iqf.

as the corresponding (global) error estimators (neglecting the data oscillation term)
given by

1

2

nglobad:( Z 7],%)}() .
KeTrg

We observe that the (global) error estimators over-estimate the true (weighted) L2-
error by an approximately consistent factor. More precisely, the efficiency index,
given by
5 \2
ZKETFE nﬁ’K

195 ers]

ieff =

)

0,0

is around 10. This number results from the presence of the (unknown) constants
in the lower and upper a posteriori error bounds from Theorems 3.1 and 3.4, re-
spectively. Furthermore, we note that the decay of the global error estimators and
of the true errors is of order 1 with respect to the number of degrees of freedom,
and therefore optimal. Figure 3 shows the adaptively refined meshes for 8; = 0.50
and B; = 0.99; as expected, they are strongly refined near the corner A;, thereby
resolving the singularity of the weight @51(33) at the origin.

Secondly, we consider weight vectors of the form 3 = (01, 82, 83, B4), with 5, =
B2 = B3 = B4 € {0.00,0.25,0.50,0.75,0.90,0.99}. The results are very similar to
the previous case. In particular, the decay of the global error indicators ngiobal
and of the weighted L2-errors is again of optimal order, and the efficiency indices
ieft have an approximately constant value of 10; cf. Figure 2. Furthermore, from
Figure 4, we see that the adaptive meshes are now refined at all of the four corners
of €, thereby again resolving the singularities of the weight @51.

4.2. Example 2: Singular Solution in Non-Convex Polygon. The second
series of our numerical experiments is based on a polygon with a re-entrant corner
at the origin. More precisely, on the L-shaped domain

Q= (=1,1)\ ([0, 1] x [~1,0]),
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: T
- B, =B,=B,=B,=0.00 - B,=B,=B,=B,=000

- B,=B,=B,=B,=025 8- B, =B,=B;=B,=025

- B, =B, =B, =B, =050 - B, =B, =P, =P, =050

10t LB ==y =B,=075 || > B,=B,=PB,=B, =075
=B,=B,=B,=090 < B, =P, =Ppy=p, =090

=B, =099 : : : —+— B, =B,=B,=B,=099

efficiency index

Triie Errors”

10° I I I I
2 3

10 10° 10 10
number of degrees of freedom number of degrees of freedom

FIGURE 2. Example 1: Left: True (weighted) L?-errors vs. global
error estimators 7global. Right: Efficiency indices ief.
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F1GURrE 3. Example 1: Adaptively refined meshes. Left: 8; = 0.5,
B2 = B3 = B4 = 0.0 (12 refinement steps, 11768 elements). Right:
81 = 0.99, 35 = B3 = B4 = 0.0 (13 refinement steps, 16362 ele-
ments).

with corners A; = (0,0), As = (1,0),..., Ag = (0, —1), we consider the problem
—Au=0 in
u=g on 0f).

The exact solution is given by u(r,6) = rd sin(%@), where (r,6) denote polar coor-
dinates in R?. The Dirichlet boundary data g is suitably chosen, and incorporated
in the finite element method in the usual way. We remark that the function u rep-
resents the typical solution behavior of linear elliptic problems near the re-entrant
corner A; of ©; in particular, we note that u ¢ H?().

In accordance with Proposition 2.2, the non-convexity of the polygon €2 at the
corner A; implies a restriction on the range of the associated weight 3, € [0,1):
b1 > % Consequently, in our numerical experiments, we consider weight vectors

1

B = (41,0,...,0) with 8; € {0.34,0.4,0.5,0.75,0.9,0.99}. From Figure 5, we see
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FIGURE 4. Example 1: Adaptively refined meshes. Left: (§; =
B2 = B3 = B4 = 0.5 (10 refinement steps, 17760 elements). Right:
81 = B2 = B3 = P4 = 0.99 (10 refinement steps, 19744 elements).
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number of degrees of freedom number of degrees of freedom

FIGURE 5. Example 2: 0y = 3 = 04 = 05 = O = 0.0. Left: True
(weighted) L?-errors vs. global error estimators TMglobal- Right:
Efficiency indices ief.

that the numerical results resemble those obtained in Example 1, and that the rates
of decay (for the global error estimators and for the weighted L2-errors) are again
optimal. In addition, the adaptively refined meshes in Figures 6-7 show a strong
refinement at A;; the method hereby resolves both, the low regularity of the exact
solution u at this point as well as the singularity of the weight occurring in the
weighted L?-norm of the error.
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