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Abstract

A numerical method based on finite difference method with variable mesh is given for

self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter-

uniform convergence, a variable mesh is constructed, which is dense in the boundary layer

region and coarse in the outer region. The uniform convergence analysis of the method is

discussed. The original problem is reduced to its normal form and the reduced problem is

solved by finite difference method taking variable mesh. To support the efficiency of the

method, several numerical examples have been considered.
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1. Introduction

The problem in which a small parameter multiplies to the highest derivative arise in various
fields of science and engineering, for instance, fluid mechanics, fluid dynamics, elasticity, quan-
tum mechanics, chemical reactor theory, hydrodynamics etc. A large number of papers and
books have been published describing various methods for solving singular perturbation prob-
lems, see, e.g., Axelsson et al. [2], Bellman [3], Bender and Orszag [4], Cole and Kevorkian [5],
Eckhaus [7], Hamker and Miller [10], O’Malley [13], Nayfeh [16], Van Dyke [22]

Niijima [17] gave uniformly second order accurate difference schemes for reaction-diffusion
equations, whereas Miller [14] gave sufficient condition for the uniform first-order convergence
of a general three-point difference scheme. Parameter-uniform numerical methods [9, 15] are
methods whose numerical approximations UN satisfy error bounds of the form

‖uε − UN‖ ≤ Cϑ(N), ϑ(N) → 0 as N →∞,

where uε is the solution of the continuous problem, ‖.‖ is the maximum pointwise norm, N

is the number of mesh points (independent of ε) used and C is a positive constant which is
independent of both ε and N . In other words, the numerical approximations UN converge to
uε for all values of parameter ε in the range 0 < ε ¿ 1.

It is well-known that standard discretization methods for solving singular perturbation
problems are unstable and fail to give accurate results when the perturbation parameter ε

is small. Therefore, it is important to develop suitable numerical methods for these problems,
whose accuracy does not depend on the parameter value ε, i.e., the methods are convergent
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ε-uniformly [6,8,20]. In this paper, the strategy and the proposed method based on a suitably
designed fitted mesh has been shown to converge with ϑ(N) = N−1 ln N .

In this paper, we consider the following self-adjoint singularly perturbed two-point boundary
value problem

Ly ≡ −ε(p(x)y′)′ + q(x)y = f(x), (1.1)

for 0 ≤ x ≤ 1 with the natural boundary conditions

y(0) = α, y(1) = β, (1.2)

where α, β are given constants and ε is a small positive parameter (0 < ε ¿ 1). Further assume
that the coefficients p(x), q(x) and the function f(x) are smooth and satisfy

p(x) ≥ η1 > 0, p′(x) ≥ 0, q(x) ≥ η2 > 0.

Under these conditions, the operator L admits the maximum principle [18].
In general finding the numerical solution of a second order boundary value problem with y′

term is more difficult as compare to a second order boundary value problem without y′ term,
therefore we first reduce (1.1) to its normal form and then the reduced problem is solved by
finite difference scheme using arithmetic mesh.

Briefly, outline is as follows. In Section 2, we give description of the method. The derivation
of the difference scheme has been given in Section 3. The idea how to choose the mesh has
been given in Section 4, whereas the parameter uniform-convergence of the scheme is given in
Section 5. To demonstrate the efficiency of the method some numerical experiments have been
solved in Section 6 and finally the conclusion has been presented in Section 7.

2. Description of the Method

Eq. (1.1) can be rewritten as

y′′ + P (x)y′ + Q(x)y = F (x), (2.1)

where

P (x) =
p′(x)
p(x)

, Q(x) = − q(x)
εp(x)

and F (x) = − f(x)
εp(x)

.

By the transformation
y(x) = U(x)V (x), (2.2)

Eq. (2.1) can be written as its normal form:

V ′′(x) + A(x)V (x) = G(x), (2.3)

with

V (0) =
y(0)
U(0)

= γ, V (1) =
y(1)
U(1)

= δ, γ, δ ∈ R, (2.4)

where

A(x) = Q(x)− 1
2
P ′(x)− 1

4
(P (x))2,

G(x) = F (x) exp
(

1
2

∫ x

P (ζ) dζ

)
, U(x) = exp

(
−1

2

∫ x

P (ζ) dζ

)
.
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Multiplying Eq. (2.3) throughout by −ε we get

−εV ′′ + W (x)V = Z(x), with V (0) = γ, V (1) = δ, (2.5)

where
W (x) = −εA(x), Z(x) = −εG(x).

Now we have

Z(x) = −εG(x)

= −ε F (x) exp
(

1
2

∫ x

P (ζ) dζ

)

=
f(x)
p(x)

exp
(

1
2

∫ x

P (ζ) dζ

)
. (2.6)

Eq. (2.6) shows that Z(x) is independent of ε. However W (x) may or may not depend on ε.

Hypothesis: We assume that the coefficients p(x) and q(x) in Eq. (1.1) are such that

W (x) ≥ µ(=
√

ε ln N) > 0.

Now we shall solve the problem (2.5) by finite difference scheme taking a variable mesh.

3. Derivation of the Difference Scheme

In this difference scheme, we approximate y′′ by a three point formula as follows: Let N

be the number of mesh points in the interval [0, 1] and let x0 = 0, xi = Σi−1
k=0hk (1 ≤ i ≤

N), hk = xk+1 − xk, xN = 1. Let di = hi − hi−1, be the common mesh difference. For the sake
of convenience, we can take di = d (a constant) ∀ i. Taking the Taylor’s series expansion and
neglecting the term of third and higher order, we get the following expansions for yi+1 and yi−1

yi+1 ' yi + hiy
′
i +

h2
i

2
y′′i , (3.1)

yi−1 ' yi − hi−1y
′
i +

h2
i−1

2
y′′i . (3.2)

Multiplying Eq. (3.2) by d/hi−1, we get

d

hi−1
yi−1 ' d

hi−1
yi − dy′i +

dhi−1

2
y′′i , (3.3)

adding Eqs. (3.2) and (3.3) and subtracting from Eq. (3.1), we get

y′′i '
2

hi(hi + hi−1)

[(
1 +

d

hi−1

)
yi−1 −

(
2 +

d

hi−1

)
yi + yi+1

]
, (3.4)

approximating Eq. (2.5) with the help of Eq. (3.4), we get

−2ε

hi(hi + hi−1)

[(
1 +

d

hi−1

)
Vi−1 −

(
2 +

d

hi−1

)
Vi + Vi+1

]
+ WiVi = Zi,
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this gives

−2ε

hi(hi + hi−1)

(
1 +

d

hi−1

)
Vi−1 +

{
2ε

hi(hi + hi−1)

(
2 +

d

hi−1

)
+ Wi

}
Vi (3.5)

− 2ε

hi(hi + hi−1)
Vi+1 = Zi, (3.6)

with V0 = γ and VN = δ. This can be written in matrix form as

MV = Z, (3.7)

where M = [mij ]; 1 ≤ i, j ≤ N − 1, is a tridiagonal matrix with

mi,i+1 = coefficient of Vi+1 in Eq. (3.7), i = 1, . . . , N − 2,

mi,i = coefficient of Vi in Eq. (3.7), i = 1, . . . , N − 1,

mi,i−1 = coefficient of Vi−1 in Eq. (3.7), i = 1, . . . , N − 2,

V = (V1, V2, V3, . . . VN−1)′ and Z = (Z1, Z2 . . . ZN−1)′ are the column vectors. The tridiago-
nal system (3.7) can easily be solved by using an efficient algorithm called discrete invariant
embedding [1].

4. Mesh Selection Strategy

It is well-known that on an equidistant mesh no scheme can attain convergence at all mesh
points uniformly in ε, unless its coefficients have an exponential property. Therefore, unless we
use a specially chosen mesh, we will not be able to get ε-uniform convergence at all the mesh
points [20].

Let N be the number of mesh points in the interval [0,1] and let d = hi − hi−1, be the
common mesh difference. Then we have

xN − x0 = (xN − xN−1) + (xN−1 − xN−2) + . . . . . . + (x1 − x0)

= {h0 + (N − 1)d}+ {h0 + (N − 2)d}+ . . . . . . + h0

= {(N − 1) + (N − 2) + . . . . . . + 1}d + Nh0

=
1
2
N(N − 1)d + Nh0,

this gives

d =
2(1−Nh0)
N(N − 1)

(4.1)

Therefore for given values of N and h0, we can choose d from Eq. (4.1) and subsequent h′si can
be obtained by hi = hi−1 + d, i = 1, . . . , N . For d = 0, mesh will reduced to uniform mesh and
the corresponding difference scheme will reduced to central finite difference scheme.

In the given mesh selection strategy, the boundary layer width plays an important role.
According to Miller et al. [15], if the solution of the homogenous singular perturbation problem
involves the functions of the type exp(−x/ε), then width of boundary layer δ = O(ε ln(1/ε))
whereas in case the solution involves the functions of the type exp(−x/

√
ε), then δ = O(

√
ε ln

(1/ε)). We used this fact while solving the examples. Our mesh selection procedure needs prior
knowledge of δ, h0 and d. We have chosen δ, as above whereas the other two parameters have
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been taken as h0 ¿ δ and d is given by Eq. (4.1). This selection of parameters implies that
there must exist at least one point in the boundary layer region, i.e., boundary layer has been
resolved with this choice of parameters.

Remark 4.1. If the boundary layer occurs at the left end then we take d > 0, this gives more
mesh points near the boundary layer. Similarly, if the boundary layer occurs at the right end
then we take d < 0, this gives more mesh points near the boundary layer.

Remark 4.2. If the boundary layer occurs at both ends then we take d > 0, for first half
interval [0, 1/2] and we take d < 0 for the second half interval [1/2, 1]. This gives more mesh
points near the boundary layer.

Remark 4.3. If the boundary layer occurs at center then we take d < 0, for first half interval
[0, 1/2] and we take its mirror image for the second half interval [1/2, 1]. This gives more mesh
points near the boundary layer.

5. Uniform-convergence of the Scheme

Let the problem (2.5) be denoted by Pε and the corresponding discritized problem be denoted
by PN

ε , i.e.,

Pε ≡
{ −εV ′′ + W (x)V = Z(x), with

V (0) = γ, V (1) = δ,

and

PN
ε ≡

{ −ε∆2V (xi) + W (xi)V (xi) = Z(xi) with
V (0) = γ, V (1) = δ.

Let Lε be the operator corresponding to problem Pε and let LN
ε be the operator correspond-

ing to problem PN
ε , i.e.,

Lε ≡ −ε
d2

dx2
+ W (x)I,

and
LN

ε ≡ −ε∆2 + WiI,

where

∆2V (xi) =
2

hi(hi + hi−1)

[(
1 +

d

hi−1

)
Vi−1 −

(
2 +

d

hi−1

)
Vi + Vi+1

]
.

In order to prove the uniform convergence of the method, we shall use the discrete maximum
principle and the following lemmas:

Lemma 5.1 (Discrete Maximum Principle) Assume that the mesh function φi satisfies
φ0 ≥ 0 and φN ≥ 0. Then LN

ε φi ≥ 0 for 1 ≤ i ≤ N − 1 implies that φi ≥ 0, for all 0 ≤ i ≤ N.

Proof. If possible suppose φj < 0, for some j satisfying 1 ≤ j ≤ N − 1. Also suppose that
φk = min

1≤i≤N−1
φi. Then we have

LN
ε φk = −ε∆2φk + Wkφk

= − 2ε

hk(hk + hk−1)

[(
1 +

d

hk−1

)
φk−1 −

(
2 +

d

hk−1

)
φk + φk+1

]
+ Wkφk

= − 2ε

hk(hk + hk−1)

[{(
1 +

d

hk−1

)
(φk−1 − φk)

}
+ (φk+1 − φk)

]
+ Wkφk.
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By the definition of φk, we have φk−1 − φk and φk+1 − φk are both positive. Consequently, it
follows from the above equation that LN

ε φk < 0, which contradicts the hypothesis and hence
φi ≥ 0, for all 0 ≤ i ≤ N . ¤

Lemma 5.2. Let φi be any mesh function such that φ0 = φN = 0. Then

| φi | ≤ 1
µ

max
1≤j≤N−1

| LN
ε φj |, for 0 ≤ i ≤ N. (5.1)

Proof. Let the right hand side of (5.1) be M . Define two mesh functions ψ+
i and ψ−i such

that
ψ±i = M ± φi.

Then ψ±0 = ψ±N = M > 0 and for 1 ≤ i ≤ N − 1, we have

LN
ε ψ±i = −ε∆2ψ±i + Wiψ

±
i

= −ε∆2(M ± φi) + Wi(M ± φi)

= MWi ± LN
ε φi ≥ Mµ± LN

ε φi ≥ 0.

Therefore by discrete maximum principle we have

ψ±i ≥ 0, for 0 ≤ i ≤ N,

and hence we have the desired estimate (5.1). ¤

Lemma 5.3. Let x0 = 0, d = hi − hi−1 be the common mesh difference,

xi =
i−1∑

k=0

hk, for 1 ≤ i ≤ N − 1; xN = 1.

Then
hi ≤ 3

N
, for 0 ≤ i ≤ N − 1.

Proof. For 0 ≤ i ≤ N − 1, we have

hi = hi−1 + d = h0 + id

=
1
N

[
1− N(N − 1)

2
d

]
+ id ≤ 1

N
+ id

≤ 1
N

+ i
2

N(N − 1)
≤ 3

N
.

This completes the proof of the lemma. ¤

Lemma 5.4. For every φ ∈ C3(0, 1), we have
∥∥∥∥
(

∆2 − d2

dx2

)
φ

∥∥∥∥ ≤ 2
N
‖φ‖3, 0 ≤ i ≤ N, (5.2)

where
‖ φ ‖j= sup

x∈(0,1)

‖φ(j)
(x)‖.
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Proof. Note that x0 = 0, xi = Σi−1
k=0hk, i = 1, . . . , N , hk = xk+1 − xk, xN = 1. Let d be the

common mesh difference hi − hi−1. Taking Taylor’s series expansion and neglecting the term
of fourth and higher order, we get the following expansions for φi+1 and φi−1, 0 ≤ i ≤ N − 1:

φi+1 ' φi + hiφ
′
i +

h2
i

2
φ′′i +

h3
i

6
φ′′′i (ξ1), xi ≤ ξ1 ≤ xi+1, (5.3a)

φi−1 ' φi − hi−1φ
′
i +

h2
i−1

2
φ′′i −

h3
i−1

6
φ′′′i (ξ2), xi−1 ≤ ξ2 ≤ xi. (5.3b)

Multiplying Eq. (5.3b) by d/hi−1 gives

d

hi−1
φi−1 =

d

hi−1
φi − dφ′i +

dhi−1

2
φ′′i −

dh2
i−1

6
φ′′′i (ξ2). (5.4)

Adding Eq. (5.3b) and Eq. (5.4) we get
(

1 +
d

hi−1

)
φi−1 =

(
1 +

d

hi−1

)
φi − hiφ

′
i +

hihi−1

2
φ′′i +

hih
2
i−1

6
φ′′′i (ξ2); (5.5)

and adding Eq. (5.3a) and Eq. (5.5) yields
(

∆2 − d2

dx2

)
φ(xi) =

1
3(hi + hi−1)

[h2
i φ
′′′
i (ξ1)− h2

i−1φ
′′′
i (ξ2)],

≤ 2h2
i

3(hi + hi−1)
‖φ‖3 ≤ 2

3
hi‖φ‖3.

≤ 2
N
‖φ‖3, (using Lemma 5.3)

which lends to (5.2). ¤

Lemma 5.5. ([15]) The solution uε of Pε has the form

uε = vε + wε, (5.6)

where the smooth component vε and singular component wε satisfy

| v(k)
ε (x) |≤ C (1 + ε−(k−2)/2e(x, µ)), 0 ≤ k ≤ 3, x ∈ [0, 1], (5.7a)

| w(k)
ε (x) |≤ C ε−k/2e(x, µ), 0 ≤ k ≤ 3, x ∈ [0, 1], (5.7b)

where
e(x, µ) = e−x

√
µ/ε + e−(1−x)

√
µ/ε.

Now we shall give the following theorem to show the uniform convergence of the proposed
method.

Theorem 5.1. The variable mesh finite difference scheme PN
ε is ε-uniform for the problem

Pε. Moreover the solution uε of Pε and the solution Uε of PN
ε satisfy the following ε-uniform

error estimate
sup

0<ε≤1
‖ Uε − uε ‖≤ CN−1 ln N, (5.8)

where C is a positive constant independent of ε.
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Proof. Decompose the solution Uε, of the discrete problem in smooth (Rε) and singular (Sε)
components

Uε = Rε + Sε,

where Rε is the solution of inhomogeneous problem

LN
ε Rε = Z, Rε(a) = rε(a), Rε(b) = rε(b), (5.9)

and Sε is the solution of the homogeneous problem

LN
ε Sε = 0, Sε(a) = sε(a), Sε(b) = sε(b). (5.10)

Here rε and sε, are the regular component and singular component of the continuous problem
Pε and defined as:

uε = rε + sε,

with rε = r0 + εr1, where r0 is the solution of the reduced problem, sε is the solution of the
homogeneous problem

Lεsε = 0, sε(0) = u0 − r0(0), sε(1) = u1 − r0(1), (5.11)

and r1 satisfies
Lεr1 = r′′0 , r1(0) = 0, r1(1) = 0. (5.12)

Then we have Uε − uε = (Rε − rε) + (Sε − sε), this gives

‖ Uε − uε ‖≤‖ (Rε − rε) ‖ + ‖ (Sε − sε) ‖ (5.13)

Now we have

LN
ε (Rε − rε) = Z − LN

ε rε = (Lε − LN
ε )rε

= −ε

(
d2

dx2
−∆2

)
rε.

Therefore Lemma 5.4 gives

‖ LN
ε (Rε − rε)(xi) ‖≤ 2

N
ε ‖ rε ‖3 .

Using Lemma 5.5 for the estimate of r′′′ε yields

‖ LN
ε (Rε − rε)(xi) ‖≤ C

√
εN−1 ≤ C N−1.

An application of Lemma 5.1 gives

‖(Rε − rε)‖ ≤ CN−1. (5.14)

Now by the same argument as that for the smooth component, the error for the singular
component of the solution is given by

‖LN
ε (Sε − sε)(xi)‖ ≤ 2

N
ε‖sε‖3.

Using Lemma 5.5 for the estimate for s′′′ε we obtain

‖ LN
ε (Sε − sε)(xi) ‖≤ Cε−

1
2 N−1.
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Table 6.1: Maximum absolute error for Example 1, for different values of ε and N

N=100 N=500 N=1000 N=1500

ε uniform variable uniform variable uniform variable uniform variable

mesh mesh mesh mesh mesh mesh mesh mesh

2−4 1.20E-03 3.59E-04 4.66E-05 1.42E-05 1.17E-05 3.56E-06 5.18E-06 1.58E-06

2−6 1.80E-03 4.64E-04 7.22E-05 1.84E-05 1.81E-05 4.60E-06 8.03E-06 2.04E-06

2−8 5.70E-03 7.04E-04 2.30E-04 2.79E-05 5.74E-05 6.97E-06 2.55E-05 3.10E-06

2−10 1.94E-02 1.30E-03 8.34E-04 5.21E-05 2.09E-04 1.30E-05 9.29E-05 5.80E-06

2−12 6.74E-02 2.60E-03 3.20E-03 1.03E-04 7.93E-04 2.57E-05 3.53E-04 1.14E-05

2−14 1.27E-01 5.10E-03 1.21E-02 2.05E-04 3.10E-03 5.13E-05 1.40E-03 2.28E-05

2−16 9.12E-02 1.03E-02 4.47E-02 4.10E-04 1.19E-02 1.02E-04 5.40E-03 4.56E-05

2−18 2.90E-02 2.07E-02 1.11E-01 8.20E-04 4.44E-02 2.05E-04 1.97E-02 9.10E-05

2−20 7.40E-03 3.79E-02 1.11E-01 1.60E-03 1.11E-01 4.09E-04 7.11E-02 1.82E-04

2−22 1.90E-03 7.55E-02 4.29E-02 3.20E-03 1.11E-01 8.20E-04 1.26E-01 3.64E-04

2−24 4.65E-04 3.51E-02 1.12E-02 6.50E-03 4.27E-02 1.60E-03 8.18E-02 7.28E-04

EN 1.27E-01 7.55E-02 1.11E-01 6.50E-03 1.11E-01 1.60E-03 1.26E-01 7.28E-04

Now since µ =
√

ε ln N, we have

‖ LN
ε (Sε − sε)(xi) ‖≤ CN−1 ln N,

and an application of Lemma 5.1 to the function Sε − sε gives

‖ (Sε − sε) ‖≤ CN−1 ln N, (5.15)

Combining the relations (5.13) - (5.15) yields the desired estimate (5.8). ¤

6. Test Examples and Numerical Results

Example 1. First, we consider the following singular perturbation problem [19]

−εy′′ +
4

(x + 1)4

(
1 +

√
ε(x + 1)

)
y = f(x), y(0) = 2, y(1) = −1, (6.1)

where f(x) is chosen such that the exact solution is given by

y(x) = − cos
(

4πx

x + 1

)
+

3[exp(−2x/
√

ε(x + 1))− exp(−1/
√

ε)]
1− exp(−1/

√
ε)

. (6.2)

Table 6.2: Results of Stynes [19] for Example 1(maximum errors)

N ε = (1/N)0.25 ε = (1/N)0.5 ε = (1/N)0.75 ε = (1/N)1.0

16 9.5E-02 7.8E-02 6.6E-02 6.4E-02

32 2.3E-02 1.8E-02 1.6E-02 1.7E-02

64 5.6E-03 4.2E-03 4.0E-03 4.2E-03

128 1.3E-03 1.0E-03 1.0E-03 1.3E-03

256 3.1E-04 2.5E-04 2.6E-04 3.7E-04
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Example 2. Next, we consider the problem [21]

−εy′′ + y = f(x), y(0) = 0, y(1) = 0,

where f(x) is chosen such that the exact solution of the problem is given by

y(x) = exp(x) + exp(−x/
√

ε)− x

(
exp(1) + exp(−1/

√
ε)

)
− 2(1− x).

Example 3. Next, we consider the problem having two boundary layers at each end point [23]:

−εy′′ + (1 + x(1− x))y = f(x), y(0) = 0, y(1) = 0,

where f(x) is chosen such that the exact solution is given by

y(x) = 1 + (x− 1) exp(−x/
√

ε)− x exp(−(1− x)/
√

ε).

Table 6.3: Results of Patidar [11] for Example 1(maximum errors)

N ε = (1/N)0.25 ε = (1/N)0.5 ε = (1/N)0.75 ε = (1/N)1.0

16 5.8E-02 4.8E-02 4.8E-02 4.80E-02

32 1.3E-02 1.2E-02 1.2E-02 1.2E-02

64 3.2E-03 3.1E-03 3.0E-03 3.4E-03

128 7.8E-04 1.0E-03 7.6E-04 1.0E-03

256 1.9E-04 1.9E-04 2.1E-04 3.1E-04

Table 6.4: Results of Lubuma [12] for Example 1(maximum errors)

N ε = (1/N)0.25 ε = (1/N)0.5 ε = (1/N)0.75 ε = (1/N)1.0

16 3.8E-02 2.5E-02 1.6E-02 1.4E-02

32 9.6E-03 6.3E-03 4.3E-03 7.9E-03

64 2.4E-03 1.6E-03 1.1E-03 2.4E-03

128 6.0E-04 3.9E-04 2.7E-04 6.2E-04

256 1.5E-04 9.8E-05 6.9E-05 1.6E-04

Table 6.5: Our results for Example 1(maximum errors)

N ε = (1/N)0.25 ε = (1/N)0.5 ε = (1/N)0.75 ε = (1/N)1.0

16 2.0E-02 1.7E-02 1.5E-02 1.4E-02

32 4.7E-03 4.0E-03 3.4E-03 4.1E-03

64 1.1E-03 9.1E-04 9.3E-04 1.1E-03

128 2.6E-04 2.0E-04 2.4E-04 3.2E-04

256 6.1E-05 5.0E-05 6.4E-05 9.6E-05
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Table 6.6: Maximum absolute error for Example 2, for different values of ε and N

N=100 N=500 N=1000 N=1500

ε uniform variable uniform variable uniform variable uniform variable

mesh mesh mesh mesh mesh mesh mesh mesh

2−4 2.48E-05 2.38E-05 9.90E-07 9.44E-07 2.48E-07 2.36E-07 1.10E-07 1.05E-07

2−6 9.81E-05 5.31E-05 3.93E-06 2.10E-06 9.82E-07 5.26E-07 4.36E-07 2.34E-07

2−8 3.91E-04 1.07E-04 1.57E-05 4.26E-06 3.92E-06 1.06E-06 1.74E-06 4.73E-07

2−10 1.60E-03 2.15E-04 6.27E-05 8.53E-06 1.57E-05 2.13E-06 6.98E-06 9.48E-07

2−12 5.90E-03 4.31E-04 2.51E-04 1.71E-05 6.27E-05 4.26E-06 2.79E-05 1.90E-06

2−14 2.15E-02 8.61E-04 9.98E-04 3.41E-05 2.51E-04 8.53E-06 1.12E-04 3.79E-06

2−16 4.12E-02 1.70E-03 3.90E-03 6.82E-05 9.98E-04 1.71E-05 4.45E-04 7.58E-06

2−18 2.95E-02 3.40E-03 1.47E-02 1.36E-04 3.90E-03 3.41E-05 1.80E-03 1.52E-05

2−20 9.30E-03 6.90E-03 3.69E-02 2.73E-04 1.47E-02 6.82E-05 6.50E-03 3.03E-05

EN 2.95E-02 6.90E-03 3.69E-02 2.73E-04 1.47E-02 6.82E-05 6.50E-03 3.03E-05

Table 6.7: Comparisons of maximum errors for Example 2 with those in [21], for ε = 5−6.

N=20 N=40 N=80 N=160

Scheme in [21] 3.3E-02 9.4E-03 1.6E-03 1.9E-04

Our scheme 2.1E-02 5.1E-03 1.0E-03 9.1E-05

Table 6.8: Comparisons of maximum absolute error for Example 3 with those in [11]

Results in [11] Our Results

ε uniform mesh variable mesh uniform mesh variable mesh

1/8 2.30E-05 2.60E-05 2.27E-05 4.59E-05

1/16 3.10E-05 3.90E-05 3.06E-05 2.44E-05

1/32 4.50E-05 5.30E-05 4.54E-05 2.92E-05

1/64 7.80E-05 7.00E-05 7.84E-05 3.74E-05

1/128 1.50E-04 9.00E-05 1.45E-04 4.58E-05

1/256 2.80E-04 1.10E-04 2.74E-04 5.29E-05

1/512 5.30E-04 1.40E-04 5.26E-04 5.47E-05

1/1024 1.00E-03 2.00E-04 1.02E-03 5.82E-05

1/2048 2.00E-03 3.00E-04 1.99E-03 1.28E-04

Table 6.9: Maximum absolute error for Example 4, for different values of ε and N

ε N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

2−4 1.23E-02 1.35E-02 1.40E-02 1.42E-02 1.43E-02 1.43E-02 1.44E-02

2−8 3.03E-03 2.89E-03 2.88E-03 2.88E-03 2.88E-03 2.88E-03 2.88E-03

2−12 1.11E-02 2.60E-03 5.71E-04 2.98E-04 2.87E-04 2.84E-04 2.83E-04

2−16 3.49E-02 1.06E-02 2.56E-03 6.39E-04 1.54E-04 3.37E-05 2.17E-05

2−20 3.89E-02 3.48E-02 1.04E-02 2.54E-03 6.39E-04 1.59E-04 3.91E-05

2−24 8.76E-02 3.80E-02 3.47E-02 1.03E-02 2.55E-03 6.36E-04 1.56E-04
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Figure 1. Exact solution and approximate solution of Example 1, for ε = 10−3 and N = 64.

Example 4. Finally, we consider the problem having two boundary layers at each end point:

−ε

(
(1 + x2)y′

)′
+

(
1 + x(1− x)

)
y = f(x), y(0) = 0, y(1) = 0,

where f(x) is chosen such that the exact solution is of the form:

y(x) = 1 + (x− 1) exp(−x/
√

ε)− x exp(−(1− x)/
√

ε).

It is noted that the normal form is given by

−εV ′′ + W (x)V = Z(x),

where

W (x) =
[1 + x(1− x) + ε(1 + x2)]

(1 + x2)
, Z(x) = f(x)/

√
1 + x2.

In this section, the maximum absolute error at nodal points is given by

EN
ε = max

i
| y(xi)− yi |,

and the ε-uniform maximum nodal error is defined by

EN = max
ε

EN
ε , 0 < ε ¿ 1.

7. Discussion and Conclusion

We have described a practical method for solving self-adjoint singularly perturbed two-point
boundary value problems. The method is shown to be uniformly convergent, i.e., independent
of perturbation parameter ε. Several examples have been solved to demonstrate the efficiency
of the presented method.

Numerical results for Examples 1 and 2 are presented in Tables 6.1 and 6.6 with uniform
mesh and with variable mesh for different values of parameter ε and the number of mesh points
N . The numerical results presented in Tables 6.1 and 6.6 clearly indicate that the proposed
scheme with uniform mesh is not uniformly convergent for sufficiently small value of ε and
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Figure 2. Exact solution and approximate solution of Example 1, for ε = 10−3 and N = 64.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact Sol.
Approx. Sol

Figure 3. Exact solution and approximate solution of Example 1, for ε = 10−3 and N = 64.

the maximal nodal error increases as ε decreases. To overcome this drawback, we have used
a variable mesh as described above. The numerical results displayed in Tables 6.1 and 6.6
clearly indicate that the proposed method based on a finite difference scheme with given mesh
is ε-uniformly convergent. The proposed numerical method is accurate of order O(N−1 ln N).
Tables 6.2–6.5 and 6.7–6.8 shows, how the present method is more efficient than the methods
given in [11,12,19,21]. To further corroborate the applicability of the proposed method, graphs
between exact solution and approximate solutions have been plotted for the first three examples
for a fixed ε = 10−3 and N = 64. It is observsed that the numerical solutions are in very good
agreement of the exact solution.
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