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Abstract

In this paper, a two-scale higher-order finite element discretization scheme is proposed

and analyzed for a Schrödinger equation on tensor product domains. With the scheme, the

solution of the eigenvalue problem on a fine grid can be reduced to an eigenvalue problem

on a much coarser grid together with some eigenvalue problems on partially fine grids. It

is shown theoretically and numerically that the proposed two-scale higher-order scheme

not only significantly reduces the number of degrees of freedom but also produces very

accurate approximations.
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1. Introduction

Theoretical analysis of the electronic structure of matter is usually based on the energy-levels

and wavefunctions of the many-body particle system. As a result, a number of eigenvalues and

eigenfunctions of the Schrödinger type equations are required to be computed accurately and

efficiently. However, it is a challenging task to solve multi-dimensional eigenvalue problems by

conventional discretization methods, due to storage requirements and computational complex-

ity.

In order to reduce the computational costs, such as the computational time and the storage

requirement, we will introduce a two-scale higher-order finite element discretization scheme

to solve the associated eigenvalue problem. With the scheme, the solution of the eigenvalue

problem on a fine grid can be reduced to an eigenvalue problem on a much coarser grid and

some eigenvalue problems on partially fine grids. It is shown by both theory and numerics

that the scheme is efficient. The work of this paper may be viewed as a generalization of that

in [14, 21, 22], in which some two-scale linear finite element discretizations for solving partial

differential equations in multi-dimensions were developed.
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In the modern electronic structure computation of large scale, the pseudopotential formula-

tions of the Kohn-Sham equations should be used. Note that in the pseudopotentional setting,

the associated effective potentials of the Kohn-Sham equations are smooth [4, 5, 23, 24, 27],

though the original effective potentials are singular. Hence we may start our investigation from

the following Schrödinger equation:

{
− 1

2∆u + V u = λu in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω = (0, 1)3 and the effective potential V is smooth, say, V ∈ W 1,∞(Ω).

We now give a somewhat more detailed description of the main ideas and results in this

paper. Let Sh1,h2,h3

0 (Ω) ⊂ H1
0 (Ω) be the standard triquadratic finite element space associated

with the finite element mesh T h1,h2,h3(Ω) with mesh size h1 in x-direction, h2 in y-direction

and h3 in z-direction, respectively. One prototype scheme to discretize (1.1), say for the first

eigenvalue λ with its corresponding eigenfunction u with
∫
Ω |u|2 = 1, is as follows:

1. Solve (1.1) on a globally coarse grid: Find (uH,H,H , λH,H,H) ∈ SH,H,H
0 (Ω) × R such

that
∫
Ω |uH,H,H |2 = 1 and

∫

Ω

1

2
∇uH,H,H · ∇v + V uH,H,H · v = λH,H,H

∫

Ω

uH,H,H · v, ∀v ∈ SH,H,H
0 (Ω).

2. Solve (1.1) on some partially fine grids in parallel:

Find (uh,H,H , λh,H,H) ∈ Sh,H,H
0 (Ω) × R such that

∫
Ω |uh,H,H |2 = 1 and

∫

Ω

1

2
∇uh,H,H · ∇v + V uh,H,H · v = λh,H,H

∫

Ω

uh,H,H · v, ∀v ∈ Sh,H,H
0 (Ω);

Find (uH,h,H , λH,h,H) ∈ SH,h,H
0 (Ω) × R such that

∫
Ω |uH,h,H |2 = 1 and

∫

Ω

1

2
∇uH,h,H · ∇v + V uH,h,H · v = λH,h,H

∫

Ω

uH,h,H · v, ∀v ∈ SH,h,H
0 (Ω);

Find (uH,H,h, λH,H,h) ∈ SH,H,h
0 (Ω) × R such that

∫
Ω
|uH,H,h|

2 = 1 and

∫

Ω

1

2
∇uH,H,h · ∇v + V uH,H,h · v = λH,H,h

∫

Ω

uH,H,h · v, ∀v ∈ SH,H,h
0 (Ω).

3. Set

uh
H,H,H = uh,H,H + uH,h,H + uH,H,h − 2uH,H,H ,

λh
H,H,H = λh,H,H + λH,h,H + λH,H,h − 2λH,H,H .

If, for example, λH,H,H , λh,H,H , λH,h,H , and λH,H,h are the first eigenvalues of the corresponding

problems, then we can establish the following results (see Theorem 4.1 in Section 4 below)

(∫

Ω

|u − uh
H,H,H |2

)1/2

= O(h3 + H5) and |λ − λh
H,H,H | = O(h4 + H6)
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provided that u has some reasonable regularity. These estimates mean that we can obtain

asymptotically optimal approximation by taking H = O(h3/5) for eigenfunctions, and H =

O(h2/3) for eigenvalues. Our technical tools for analyzing two-scale finite element approxima-

tions are some superconvergence techniques developed in [14, 20, 26] (see, also, [17–19,35]).

The remainder of this paper is arranged as follows: In the coming section, some preliminary

materials, including two error estimations of finite element interpolants in a weak form, are

provided. With the two-scale finite element analysis in Section 3, which is a generalization

of [14,21,22] to higher-order finite element methods, a two-scale higher-order element scheme is

then analyzed for eigenvalue problems in Section 4. In Section 5, several numerical results, which

support our theory, are reported. Finally, some remarks are concluded and a generalization for

a more general elliptic eigenvalue problem is presented in Appendix.

2. Preliminaries

Let Ω = (0, 1)d(d ≥ 2). We shall use the standard notation for Sobolev spaces W s,p(Ω) and

their associated norms and seminorms, see, e.g., [1,10]. For p = 2, we denote Hs(Ω) = W s,2(Ω)

and H1
0 (Ω) = {v ∈ H1(Ω) : v |∂Ω= 0}, where v |∂Ω= 0 is in the sense of trace, ‖ ·‖s,Ω = ‖ ·‖s,2,Ω

and ‖ · ‖Ω = ‖ · ‖0,2,Ω. We let (·, ·) to be the standard inner-product of L2(Ω). Throughout this

paper, we shall assume that the effective potential V ∈ W 1,∞(Ω). And we use letter C (with or

without subscripts) to denote a generic positive constant which may stand for different values

at its different occurrences. For convenience, the symbol <
∼ will be used in this paper. The

notation that A <
∼ B means that A ≤ CB for some constant C that is independent of mesh

parameters.

We denote by N0 the set of all nonnegative integers and Zd = {1, 2, · · · , d}. For a function

w ∈ W s,p(Ω), a point x = (x1, x2, . . . , xd) ∈ Ω and the index ααα = (α1, α2, . . . , αd) ∈ N
d
0, we let

(Dαααw)(x) =

(
∂ααα1

∂xααα1

1

· · ·
∂αααdw

∂xαααd

d

)
(x)

with |ααα| = α1 + · · · + αd. Furthermore, we denote 0 = (0, . . . , 0) ∈ R
d, e = (1, . . . , 1) ∈ R

d and

for i ∈ Zd, êi = e− ei and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
d whose ith component is one and zero

otherwise.

The following mixed Sobolev spaces, which contain Hp+3(Ω) and Hp+2(Ω) respectively, are

also used:

WG,p+3(Ω) =
{
w ∈ Hp+2(Ω) : Dαααw ∈ L2(Ω), 0 ≤ ααα ≤ (p + 2)e, |ααα| = p + 3

}
,

WG,p+2(Ω) =
{
w ∈ Hp+1(Ω) : Dαααw ∈ L2(Ω), 0 ≤ ααα ≤ (p + 1)e, |ααα| = p + 2

}
,

with their natural norms ‖ · ‖W G,p+3(Ω) and ‖ · ‖W G,p+2(Ω) (cf. [26]).

For t ∈ (p, p + 1), we define the fractional mixed Sobolev space WG,t+2(Ω) by using the

interpolation approach (see, e.g., [6]) as follows: Set θ = t − p and define

K(s, u) = inf
v∈W G,p+3(Ω)

(
‖u − v‖W G,p+2(Ω) + s‖v‖W G,p+3(Ω)

)
,

WG,t+2(Ω) ≡
[
WG,p+2(Ω), WG,p+3(Ω)

]
θ

=
{
u ∈ WG,p+2(Ω) : ‖u‖[W G,p+2(Ω),W G,p+3(Ω)]θ < ∞

}
, (2.1)
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where

‖u‖[W G,p+2(Ω),W G,p+3(Ω)]θ =

(∫ ∞

0

s−2θ−1[K(s, u)]2ds

)1/2

.

Let T h(Ω) consist of d−rectangles, which satisfies that it is not exceedingly over-refined

locally, namely, there exists γ ≥ 1 such that

hγ <
∼ h(x), ∀x ∈ Ω, (2.2)

where h(x) is the mesh-size function whose value is the diameter hτ of the element τ containing

x, h = max
x∈Ω

h(x) is the (largest) mesh size of T h(Ω). Define Sh,p(Ω) to be a space of continuous

piecewise polynomial on Ω:

Sh,p(Ω) =
{
v ∈ C(Ω̄) : v |τ∈ Qp(τ), ∀τ ∈ T h(Ω)

}
, (2.3)

where Qp(τ) is the space of all polynomials that are of degree not greater than p with respect

to each of the d variables. Set

Sh,p
0 (Ω) = H1

0 (Ω) ∩ Sh,p(Ω).

To obtain the error estimates of the finite element approximation, we need some regularity

information of the Schrödinger equation (see, e.g., [12]):

Proposition 2.1. Assume that f ∈ Hs(Ω) for some s ≥ 0 and

{
− 1

2∆u + V u = f in Ω,

u = 0 on ∂Ω
(2.4)

has a unique solution u ∈ H1
0 (Ω). Then u ∈ H1

0 (Ω)∩Hs+2(Ω) for s ∈ [0, 1). Moreover, if f = 0

at corners (when d = 2), and along edges (when d = 3, and with the appropriate definition of

edges when d ≥ 4), then u ∈ H1
0 (Ω) ∩ Hs+2(Ω) and

‖u‖s+2,Ω <
∼ ‖f‖s,Ω (2.5)

for all s ∈ [0, 3).

2.1. An Eigenvalue Problem

Define

a(u, v) =

∫

Ω

1

2
∇u∇v + V uv, u, v ∈ H1

0 (Ω). (2.6)

A number λ is called an eigenvalue of a(·, ·) relative to (·, ·) if there is a nonzero vector u ∈

H1
0 (Ω), called an associated eigenfunction, satisfying

a(u, v) = λ(u, v), ∀v ∈ H1
0 (Ω). (2.7)

It is easy to obtain from (2.6) and V ∈ W 1,∞(Ω) that there exist ν ≥ 0, such that

aν(w, w) ≥ C−1‖w‖2, ∀w ∈ H1
0 (Ω) (2.8)
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for some constant C, where

aν(w, v) = a(w, v) + ν(u, v), w, v ∈ H1
0 (Ω). (2.9)

Note that (2.7) is equivalent to

aν(u, v) = E(u, v), ∀v ∈ H1
0 (Ω)

with E = λ + ν. Hence (2.7) has a countable sequence of real eigenvalues

λ1 ≤ λ2 ≤ λ3 ≤ · · ·

and the corresponding eigenfunctions

u1, u2, u3, · · · ,

which can be assumed to satisfy

(ui, uj) = δij , i, j = 1, 2, · · · .

In the sequence {λj}, the λj ’s are repeated according to their geometric multiplicity.

A standard finite element scheme for (2.7) is: Find a pair of (λh, uh), where λh ∈ R and

0 6= uh ∈ Sh,p
0 (Ω), satisfying

a(uh, v) = λh(uh, v), ∀v ∈ Sh,p
0 (Ω), (2.10)

or

aν(uh, v) = Eh(uh, v), ∀v ∈ Sh,p
0 (Ω) (2.11)

with Eh = λh + ν. One sees from (2.8) that (2.10) has a finite sequence of eigenvalues

λ1,h ≤ λ2,h ≤ · · · ≤ λnh,h, nh = dim Sh,p
0 (Ω)

and the corresponding eigenfunctions

u1,h, u2,h, · · · , unh,h,

which can be assumed to satisfy

(ui,h, uj,h) = δij , i, j = 1, 2, · · · .

It follows directly from the minimum-maximum principle (see, e.g., [3]) that

λi ≤ λi,h, i = 1, 2, · · · , nh.

Set

M(λi) =
{
w ∈ H1

0 (Ω) : w is an eigenfunction of (2.7) corresponding to λi

}
,

δh(λi) = sup
w∈M(λi),‖w‖0,Ω=1

inf
v∈Sh

0 (Ω)
‖w − v‖1,Ω.

The following results are standard and can be found in the literature (see, e.g., [2, 3, 9]

or [32]).
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Proposition 2.2. (i) For any ui,h of (2.10) with ‖ui,h‖0,Ω = 1, there is an eigenfunction ui of

(2.7) corresponding to λi satisfying ‖ui‖0,Ω = 1 and

‖ui − ui,h‖1,Ω ≤ Ciδh(λi). (2.12)

Moreover,

‖ui − ui,h‖0,Ω ≤ Cih‖u
i − ui,h‖1,Ω. (2.13)

(ii) For eigenvalues,

λi ≤ λi,h ≤ λi + Ci‖u
i − ui,h‖

2
1,Ω, i = 1, 2, · · · . (2.14)

Here Ci is some positive constant depending on i but not on the mesh parameter h.

The two-scale analysis for the eigenvalues is based on the following crucial (but straightfor-

ward) property of eigenvalue and eigenfunction approximation (see [3, 32]).

Proposition 2.3. Let (λ, u) be an eigenpair of (2.7). For any w ∈ H1
0 (Ω) \ {0},

a(w, w)

(w, w)
− λ =

a(w − u, w − u)

(w, w)
− λ

(w − u, w − u)

(w, w)
. (2.15)

2.2. Some Basic Analysis

For simplicity, we may assume that ν = 0 in (2.9). Consequently, (2.4) is uniquely solvable

for any f ∈ L2(Ω). Define a Galerkin projection Ph : H1
0 (Ω) → Sh,p

0 (Ω) by

a(w − Phw, v) = 0, ∀v ∈ Sh,p
0 (Ω), (2.16)

for which there holds

‖Phw‖1,Ω <
∼ ‖w‖1,Ω, ∀w ∈ H1

0 (Ω). (2.17)

Then various a priori global error estimates can be obtained from the approximate properties

of the finite element space Sh,p(Ω). For instance, if w ∈ H1
0 (Ω)∩Ht+1(Ω)(t ∈ [0, p]) holds, then

(see, e.g., [6, 10])

‖(I − Ph)w‖1,Ω <
∼ ht‖w‖t+1,Ω, (2.18)

‖(I − Ph)w‖0,Ω <
∼ h‖(I − Ph)w‖1,Ω, ∀w ∈ H1

0 (Ω), (2.19)

where I is the identity operator.

There is some superclose relationship between the Galerkin projection of the eigenfunction

and the finite element approximation to the eigenfunction, which can be deduced from [32]:

Proposition 2.4. Let ui,h be a solution of (2.10), and Phui be the Ritz-Galerkin projection of

ui, then we have

‖Phui − ui,h‖1,Ω <
∼ λi,h − λi + λi‖u

i − ui,h‖0,Ω. (2.20)
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Define a linear operator K : L2(Ω) → H1
0 (Ω) by

a(Kw, v) = (w, v), ∀w ∈ L2(Ω), ∀v ∈ H1
0 (Ω). (2.21)

Then (2.7) becomes

u = λKu (2.22)

and (2.10) can be rewritten as

uh = λhPhKuh. (2.23)

It is derived from Proposition 2.1 that

M(λi) ⊂ Hs+1(Ω) ⊂ WG,s+1(Ω), ∀s ∈ [0, 4) (2.24)

and hence

‖u‖s+1,Ω <
∼ ‖u‖0,Ω (2.25)

for u ∈ M(λi).

In the remainder of this subsection, for simplicity, we assume that (λh, uh) ∈ R × Sh,p
0 (Ω)

is some finite element eigenpair of (2.10) with ‖uh‖0,Ω = 1 while (λ, u) ∈ R × H1
0 (Ω) is the

associated exact eigenpair of (2.7) that satisfies ‖u‖0,Ω = 1 and

‖u − uh‖0,Ω + |λ − λh| ≤ C
(
h + ‖u − uh‖1,Ω

)
‖u − uh‖1,Ω. (2.26)

Consequently, if M(λi) ⊂ Ht+1(Ω)
(
t ∈ [0, p]

)
, then

|λh − λ| <
∼ h2t, (2.27)

‖u − uh‖0,Ω + h‖u − uh‖1,Ω <
∼ ht+1, (2.28)

which leads to

∥∥∥
λh − λ

λ
(u − Phu) + (λ − λh)K(u − uh)

∥∥∥
1,Ω

. h3t, (2.29)

∥∥∥
λh − λ

λ
(u − Phu) + (λ − λh)K(u − uh)

∥∥∥
0,Ω

. h3t+1. (2.30)

Lemma 2.1. If M(λ) ⊂ Ht+1(Ω)
(
t ∈ [0, p]

)
, then

λh − λ = λ(u, u − Phu) + O
(
h2t+2

)
. (2.31)

Proof. It is obtained from (2.7) and (2.10) that (see [14] for details)

λh − λ =λ(u, u − Phu) + (λh − λ)(uh, uh − Phu)

+ λ(uh − u, uh − Phu) − λ‖u − uh‖
2
0,Ω,

which, together with (2.27), (2.28) and (2.20) produces (2.31). This completes the proof. �
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Lemma 2.2. There holds

(I − λK)(u − uh) =
1

λ
(λ − λh)u + u − Phu + rh(u), (2.32)

where

rh(u) =
λh − λ

λ
(u − Phu) + (λh − λ)K(u − uh) + λh(Ph − I)K(u − uh)

satisfying

‖rh(u)‖0,Ω + h‖rh(u)‖1,Ω <
∼ h2t+2 (2.33)

provided that M(λ) ⊂ Ht+1(Ω)
(
t ∈ [0, p]

)
.

Proof. The identity (2.32) can be established by using (2.22) and (2.23) (see [14] for details).

Since (2.18), (2.19) and (2.25) imply that

‖(Ph − I)K(u − uh)‖0,Ω + h‖(Ph − I)K(u − uh)‖1,Ω

<
∼ht+1‖K(u − uh)‖t+1,Ω <

∼ ht+1‖u − uh‖0,Ω

<
∼h2t+2‖u‖t+1,Ω,

we can derive (2.33) from (2.27)-(2.30). This completes the proof. �

2.3. Finite element interpolants

To generalize the two-scale discretization approach in [21,22] to higher-order finite element

in arbitrary dimensions, we need to apply the superconvergence techniques developed in [14,17,

18,21,22,26,35], which concern some error estimations of finite element interpolants in a weak

form setting.

Assume that T h
(
(0, 1)

)
is a uniform mesh with mesh size h on (0, 1) and Sh,p

(
(0, 1)

)
⊂

H1
(
(0, 1)

)
(p ≥ 2) is the associated piecewise higher-order finite element space. Set

Sh,p
0

(
(0, 1)

)
= Sh,p

(
(0, 1)

)
∩ H1

0

(
(0, 1)

)
.

We next describe the multi-dimensional notation. For h = (h1, . . . , hd), where hj ∈ (0, 1),

construct a mesh of Ω = (0, 1)d by

Th(Ω) = T h1
(
(0, 1)

)
× · · · × T hd

(
(0, 1)

)

with the associated spaces of piecewise polynomials on Ω by

Sh,p(Ω) = Sh1,p
(
(0, 1)

)
⊗ · · · ⊗ Shd,p

(
(0, 1)

)
,

Sh,p
0 (Ω) = Sh1,p

0

(
(0, 1)

)
⊗ · · · ⊗ Shd,p

0

(
(0, 1)

)
.

We remark that both Sh,p(Ω) and Sh,p
0 (Ω) are the tensor product spaces of the spaces of

piecewise polynomials of degree not greater than p on (0, 1).

Instead of the standard Lagrangian interpolation, in our analysis, we need to use a so-called

“vertices-edges-area” interpolation [15, 20, 35]. For l ∈ Zd, let Ihl
: C
(
[0, 1]

)
→ Shl,p

(
[0, 1]

)
be

defined by: For all
(
xi

l , x
i+1
l

)
∈ T hl

(
(0, 1)

)

Ihl
u(xi

l) = u(xi
l), Ihl

u(xi+1
l ) = u(xi+1

l ),
∫ xi+1

l

xi
l

(u − Ihl
u)vdxl = 0, ∀v ∈ Pp−2(x

i
l , x

i+1
l ), (2.34)



A Two-Scale Higher-Order Finite Element Discretization for Schrödinger Equation 323

where Pp(τ) denotes the set of polynomials of degree not greater than p on τ . It is shown that

(see, e.g., [15, 20, 35])

Ihl
v = v, ∀v ∈ Shl,p([0, 1]),

‖Ihl
v‖s,[0,1] ≤ C‖v‖s,[0,1], ∀v ∈ C([0, 1]), s = 0, 1,

‖v − Ihl
v‖0,[0,1] + hl‖v − Ihl

v‖1,[0,1]

≤Cht+1
l ‖v‖t+1,Ω, ∀v ∈ C([0, 1]), t ∈ [0, p]. (2.35)

The so-called interpolation “vertices-edges-area” operator Ih,p from C(Ω) onto Sh(Ω) is con-

structed as Ih = Ih1
◦ · · · ◦ Ihd

. For ααα = (α1, α2, . . . , αd) ∈ N
d
0, we set

hααα = hα1

1 · · ·hαd

d , hααα = (h1α1, . . . , hdαd).

From the standard interpolation error estimation, we immediately obtain

Proposition 2.5. Assume that w ∈ H1
0 (Ω) ∩ WG,t+2(Ω) (t ∈ [p, p + 1]). If 0 ≤ ααα ≤ e and

|ααα| ≥ 2, then

a

( ∏

0≤βββ≤ααα,|βββ|=1

(
I − Ihβββ

)
w, v

)

<
∼ max

0≤µµµ≤pe, |µµµ|=t+1
hµµµ‖w‖W G,t+2(Ω)‖v‖1,Ω, ∀v ∈ Sh,p

0 (Ω), (2.36)

where a(·, ·) is defined by (2.6).

The following result may be viewed as a generalization of the relevant result known in the

literature (see, e.g., [17–20, 35, 36]). Novelties of our estimate lie in, for example, the weak

assumption on the regularity of the function. Although the general estimate is theoretically

interesting, our main motivation is to use it to analyze some two-scale finite element discretiza-

tions to be presented in the coming sections.

Proposition 2.6. If w ∈ H1
0 (Ω) ∩ WG,t+2(Ω)

(
t ∈ [p, p + 1]

)
, then

a
(
(I − Ih)w, v

)
<
∼ max

|ααα|=t+1
hααα‖w‖W G,t+2(Ω)‖v‖1,Ω, ∀v ∈ Sh,p

0 (Ω). (2.37)

Proof. The estimation for t = p is referred to the Appendix (see Proposition A.1), and

it is only necessary to give the proof for t = p + 1 by using the interpolation theory (see,

e.g., [6, 10, 28, 29]). For simplicity, we denote ∂l

∂l
xi

by ∂l
xi

(i ∈ Zd, l ∈ N0).

First, using the fact that ∂2
xl

v is a polynomial of degree not greater than p− 2 with respect

to the variable xl and integrating by parts lead to

∫

τ

∂xl

(
I − Ihel

)
w∂xl

v = 0, ∀v ∈ Sh,p
0 (Ω). (2.38)

Now for i 6= l and l ∈ Zd, we define Fl : Ω̄ → R by

Fl(x) =
1

2

(
(xl − xτ,l)

2 −
h2

l

4

)
if x ∈ τ̄ ∈ Th(Ω), (2.39)
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where xτ = (xτ,1, xτ,2, · · · , xτ,d) is the barycenter of τ and x = (x1, x2, · · · , xd) ∈ Ω. By simple

calculation using Leibniz derivation rule, it is easy to see that Fl ∈ C(Ω̄) and for m = 2, 3, · · · , p,

there is a polynomial Rm(xl) ∈ Pm−2 ⊂ Pp−2 such that (cf. [35])

1

m!
(xl − xτ,l)

m =
2m+1

(2m + 2)!

(
Fm+1

l (xl)
)(m+2)

+ Rm(xl), (2.40)

(
Fm+1

l (xτ,l ±
hl

2
)
)(n)

= 0 for n ≤ m. (2.41)

So using Taylor’s expansion, we have for v ∈ Sh,p
0 (Ω) that

∫

τ

∂xi

(
I − Ihel

)
w∂xi

v =

∫

τ

(
I − Ihel

)
∂xi

w

( p∑

j=0

1

j!

(
xl − xτ,l

)j
∂xi

∂j
xl

v
(
xτ,l

))
.

Note that for j ≤ p − 2,

∫

τ

(
I − Ihel

)
∂xi

w

( p−2∑

j=0

1

j!
(xl − xτ,l)

j∂xi
∂j

xl
v(xτ,l)

)
= 0,

where (2.34) is used. Integrating by parts, we then obtain for j = p − 1 and j = p respectively

that ∫

τ

(
I − Ihel

)
∂xi

w
1

j!

(
xl − xτ,l

)j
∂xi

∂j
xl

v(xτ,l)

=

∫

τ

2j+1

(2j + 2)!

(
F j+1

l (xl)
)(j+2)(

I − Ihel

)
∂xi

w∂xi
∂j

xl
v
(
xτ,l

)

+ Rj(xl)
(
I − Ihel

)
∂xi

w∂xi
∂j

xl
v
(
xτ,l

)

=(−1)j

∫

τ

2j+1

(2j + 2)!
F j+1

l (xl)∂
j+2
xl

(
I − Ihel

)
∂xi

w∂xi
∂j

xl
v
(
xτ,l

)

=
(−1)j2j+1

(2j + 2)!

∫

τ

F j+1
l (xl)∂

j+2
xl

∂xi
w∂xi

∂j
xl

v
(
xτ,l

)
.

Taking the three parts above into account, we arrive at
∫

Ω

∂xi

(
I − Ihel

)
w∂xi

v

=
∑

τ∈Th(Ω)

(
(−1)p+12p

(2p)!

∫

τ

F p
l (xl)∂

p+1
xl

∂2
xi

w∂p−1
xl

v
(
xτ,l

)

+
(−1)p2p+1

(2p + 2)!

∫

τ

F p+1
l (xl)∂

p+2
xl

∂xi
w∂xi

∂p
xl

v
(
xτ,l

))

<
∼ hp+2

l ‖w‖W G,p+3(Ω)‖v‖1,Ω, ∀v ∈ Sh,p
0 (Ω), (2.42)

where integration by parts and the inverse estimate are employed. Using the error estimate

‖V v − V (xτ )v(xτ )‖0,τ <
∼ hl‖V ‖1,∞,τ‖v‖1,τ , ∀τ ∈ Th(Ω), l ∈ Zd, v ∈ Sh,p

0 (Ω)

and the identity
∫

Ω

V (I − Ihel
)wv

=
∑

τ∈Th(Ω)

(∫

τ

V (xτ )v(xτ )
(
I − Ihel

)
w +

∫

τ

(
V v − V (xτ )v(xτ )

)(
I − Ihel

)
w

)
,
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we obtain
∫

Ω

V
(
I − Ihel

)
wv <

∼ hp+2
l ‖w‖p+1,Ω‖v‖1,Ω, ∀v ∈ Sh,p

0 (Ω). (2.43)

Obviously, for any v ∈ Sh,p
0 (Ω) and l ∈ Zd,

a
(
(I − Ihel

)w, v
)

=

∫

Ω

∂xl

(
I − Ihel

)
w∂xl

v +

d∑

i=1,i6=l

∫

Ω

∂xi

(
I − Ihel

)
w∂xi

v +

∫

Ω

V
(
I − Ihel

)
wv.

Thus we get from (2.38), (2.42), (2.43) and the standard interpolation error estimation that

a
(
(I − Ihel

)w, v
)

<
∼ hp+2

l ‖w‖W G,p+3(Ω)‖v‖1,Ω, ∀v ∈ Sh,p
0 (Ω). (2.44)

Finally, from the identity

I − Ih = −
∑

0≤ααα≤e,|ααα|≥1

(−1)|ααα|
∏

0≤βββ≤ααα,|βββ|=1

(I − Ihβββ),

we conclude for any v ∈ Sh,p
0 (Ω) that

a
(
(I − Ih)w, v

)

=
∑

0≤ααα≤e,|ααα|=1

a
(
(I − Ihααα)w, v

)
−

∑

0≤ααα≤e,|ααα|≥2

(−1)|ααα|a

( ∏

0≤βββ≤ααα,|βββ|=1

(I − Ihβββ)w, v

)
.

Therefore we derive (2.37) for t = p+1 from (2.36), (2.44) and the above result. This completes

the proof. �

3. Two-scale Finite Element Analysis

In this section, we will combine the two-scale techniques in [21,22] with higher-order element

methods, which may be viewed as a generalization of [14] to higher-order elements. The notation

in [14, 21] will be used in our discussion.

3.1. Two-scale finite element interpolants

Given σ ∈ (0, 1). Let whααα+σβββ ∈ Shααα+σβββ,p(Ω)
(
0 ≤ ααα,βββ ≤ e and ααα + βββ = e

)
, and set

δααα
σwh =

∏

αi 6=0

δei
σ wh,

where δei
σ wh = wh − whêi+σei

, i ∈ Zd. If d = 2 and h = (h1, h2), for instance, then

δ(1,0)
σ wh1,h2

= wh1,h2
− wσ,h2

,

δ(1,1)
σ wh1,h2

= wh1,h2
− wh1,σ − wσ,h2

+ wσ,σ.

Given h, H ∈ (0, 1). Let wHe ∈ SHe,p(Ω), whe ∈ She,p(Ω) and whααα+Hβββ ∈ Shααα+Hβββ,p(Ω)
(
0 ≤

ααα,βββ ≤ e,ααα + βββ = e
)
, and define

Bh
Hwhe = wHe −

d∑

i=1

δei

h wHe. (3.1)
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It is shown in the following proposition that a one-scale interpolation on a fine grid can be

obtained by some combination of two-scale interpolations asymptotically, which can be derived

from the standard one-scale interpolation error estimations (cf. [16, 21, 22] for two- and three-

dimensions and [14] for arbitrary dimensions).

Proposition 3.1. If t ∈ [p, p + 1], then

‖Bh
HIhew − Ihew‖0,Ω + H‖Bh

HIhew − Ihew‖1,Ω

<
∼Ht+2‖w‖W G,t+2(Ω) if w ∈ WG,t+2(Ω). (3.2)

Proof. For wk = Ikw, when k = (k1, k2, · · · , kd), we have

whe = wHe +
d∑

|ααα|=1

(−1)|ααα|δααα
hwHe.

Thus we obtain

Bh
Hwhe − whe = −

d∑

|ααα|=2

(−1)|ααα|δααα
hwHe, (3.3)

which, together with the standard interpolation error estimations and the interpolation theory

(see, e.g., [6, 28, 29]), completes the proof. �

3.2. Two-scale finite element Galerkin projections

Recall that the standard Galerkin projection Ph : H1
0 (Ω) → Sh,p

0 (Ω) is defined by

a(u − Phu, v) = 0, ∀v ∈ Sh,p
0 (Ω), (3.4)

which is well-posed when max{hi : i ∈ Zd} ≪ 1 (cf. [30,31]). Here and hereafter, we assume that

any mesh size involved is small enough so that the associated discrete problem is well-posed.

Following the two-scale finite element interpolants, we construct the two-scale finite element

Galerkin projection as follows:

Bh
HePheu =

d∑

i=1

PHêi+hei
u − (d − 1)PHeu.

For instance,

Bh
H,H,HPh,h,hu = Ph,H,Hu + PH,h,Hu + PH,H,hu − 2PH,H,Hu.

Theorem 3.1. If u ∈ H1
0 (Ω) ∩ WG,t+2(Ω) (t ∈ [p, p + 1]), then

‖Bh
HePheu − Pheu‖0,Ω + H‖Bh

HePheu − Pheu‖1,Ω <
∼ Ht+2‖u‖W G,t+2(Ω). (3.5)

Moreover,

‖Bh
HePheu − Pheu‖1−p,Ω <

∼ Ht+p+1‖u‖W G,t+2(Ω) (3.6)

holds for p = 2, 3.
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Proof. The estimation for t = p is referred to the Appendix and we will only need to give

the proof for t = p + 1 by using the interpolation theory (see, e.g., [6, 28, 29]).

Let h ∈ {H, h}d. It is seen from (2.37) that

‖Phu − Ihu‖1,Ω <
∼ max

i∈Zd

h(p+2)ei . (3.7)

Hence from the fact

‖Bh
He

(Phe − Ihe)u‖1,Ω <
∼ max

h∈{H,h}d
‖(Ph − Ih)u‖1,Ω (3.8)

and the identity

Bh
He

Pheu − Pheu = Bh
He

(Phe − Ihe)u + (Bh
He

Ihe − Ihe)u + (Ihe − Phe)u, (3.9)

we obtain the error estimate under H1−norm in (3.5) from (3.7) and (3.2).

Now we are going to derive the error estimation under L2−norm by using the Aubin-Nitsche

duality argument. For any φ ∈ L2(Ω), let w = (L∗)−1φ ∈ H1
0 (Ω) ∩ H2(Ω). Then

‖w − IHew‖1,Ω <
∼ H‖w‖2,Ω <

∼ H‖φ‖0,Ω.

Note that

|(Bh
He

Pheu − Pheu, φ)| = |a(Bh
He

Pheu − Pheu, w)|

=|a(Bh
HePheu − Pheu, w − IHew)| <

∼ ‖Bh
HePheu − Pheu‖1,Ω‖w − IHew‖1,Ω, (3.10)

we obtain

|(Bh
He

Pheu − Pheu, φ)| <
∼ H‖Bh

He
Pheu − Pheu‖1,Ω‖φ‖0,Ω,

which together with (3.5) implies

‖Bh
He

Pheu − Pheu‖0,Ω <
∼ Hp+3‖u‖W G,p+3(Ω). (3.11)

For the negative norm estimate, let φ ∈ Hp−1
0 (Ω) and we have from (2.5) that w = (L∗)−1φ ∈

H1
0 (Ω) ∩ Hp+1(Ω) and

‖w − IHew‖1,Ω <
∼ Hp‖w‖p+1,Ω <

∼ Hp‖φ‖p−1,Ω

for p = 2, 3. Thus we get from (3.10) and the H1-norm estimation that

|(Bh
HePheu − Pheu, φ)| <

∼ Hp‖Bh
HePheu − Pheu‖1,Ω‖φ‖p−1,Ω,

which together with (3.5) implies

‖Bh
HePheu − Pheu‖1−p,Ω <

∼ H2p+2‖u‖W G,p+3(Ω). (3.12)

This completes the proof. �
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4. Two-scale Finite Element Eigenvalue Discretizations

In this section, we shall apply the two-scale higher-order finite element methods to solve

eigenvalue problems on tensor product grids (see, e.g., [14,21,22]). For simplicity, in this section,

we consider p = 2 only and we will denote Sh,2(Ω) by Sh(Ω). Let (λh, uh) be a finite element

approximation on Sh
0 (Ω), namely, ‖uh‖0,Ω=1 and

a
(
uh, v

)
= λh

(
uh, v

)
, ∀v ∈ Sh

0 (Ω). (4.1)

For clarity, we consider the approximation of any eigenvalue λ of (2.7). Here and hereafter

we let λHe be the finite element eigenvalue of (4.1) corresponding to SHe
0 (Ω) and satisfy

|λ − λHe| <
∼ δ2

He
(λ). (4.2)

It is seen from Proposition 2.2 that associated with the eigenfunction uHe satisfying (4.1) (when

h is replaced by He), there exists an exact eigenfunction u of (2.7) satisfying ‖u‖0,Ω = 1 and

‖u − uHe‖1,Ω <
∼ δHe(λ), ‖u − uHe‖0,Ω <

∼ HδHe(λ). (4.3)

The result, which will be used in our analysis, can be derived from Riesz-Schauder theory

(see, e.g., [11]).

Proposition 4.1. Let h ∈ {H, h}d and G ⊂ Ω. If M(λ) ⊂ Hs+r(G) (0 ≤ s ≤ 1), then

sup
w∈M(λ),‖w‖0,Ω=1

inf
v∈Sh

0 (G)
‖w − v‖1,G <

∼ σr+s−1, (4.4)

where σ = maxi∈Zd
hei . In particular, if M(λ) ⊂ Hs+2(Ω) (s ∈ [0, 1]), then

|λ − λHe| <
∼ H2(s+1), ‖u − uHe‖1,Ω <

∼ Hs+1, ‖u − uHe‖0,Ω <
∼ Hs+2 (4.5)

‖u − Phu‖1,Ω <
∼ σs+1, ‖u − Phu‖0,Ω <

∼ σs+2. (4.6)

Following the two-scale combination formula (3.1), we define the following two-scale finite

element approximations to the eigenpair (λ, u) as follows (see, e.g., [21]):

Bh
He

λhe = λHe −
d∑

i=1

δei

h λHe, Bh
He

uhe = uHe −
d∑

i=1

δei

h uHe.

Theorem 4.1. If u ∈ H1
0 (Ω) ∩ WG,t+2(Ω) (2 ≤ t ≤ 3), then

∣∣Bh
He

λhe − λ
∣∣ <
∼ Ht+3 + h4, (4.7)

‖Bh
He

uhe − u‖1,Ω . Ht+1 + h2. (4.8)

Moreover, if λ is simple, then

‖Bh
He

uhe − u‖0,Ω . Ht+2 + h3. (4.9)

Proof. From Lemma 2.1, we have

Bh
Heλhe − λhe = λ

(
u, Pheu − Bh

HePheu
)

+ O(H6),
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which together with Theorems 3.1 and (4.5) produces (4.7). Note that

‖Bh
He

(Pheu − uhe)‖1,Ω <
∼ max

h∈{H,h}d
‖Phu − uh‖1,Ω; (4.10)

hence from the identity

Bh
He

uhe − u = Bh
He

(
uhe − Pheu

)
+ Bh

He
Pheu − Pheu + Pheu − u, (4.11)

we obtain (4.8) from (2.20), (3.5), and (4.5).

Now we are going to derive (4.9). From the definition of Bh
He

uhe, we have

(I − λK)
(
u − Bh

Heuhe

)
= (I − λK)

( d∑

i=1

(u − uhei+Hêi
) − (d − 1)(u − uHe)

)
.

Thus we obtain from Lemma 2.2 that

(I − λK)
(
u − Bh

Heuhe

)

=

d∑

i=1

(
1

λ

(
λ − λhei+Hêi

)
u + u − Phei+Hêi

u + rhei+Hêi
(u)

)

− (d − 1)

(
1

λ

(
λ − λHe

)
u + u − PHeu + rHe(u)

)

or

(I − λK)
(
u − Bh

Heuhe

)

=
1

λ

(
λ − Bh

Heλhe

)
u + u − Bh

HePheu +

d∑

i=1

rhei+Hêi
(u) − (d − 1)rHeu.

Note that Theorems 3.1 and (4.7) lead to

∣∣∣∣
1

λ

(
λ − Bh

He
λhe

)∣∣∣∣ <∼ Ht+3 + h4,

‖u − Bh
He

Pheu‖0,Ω <
∼ Ht+2 + h3.

Hence using (2.33), we obtain

‖(I − λK)
(
u − Bh

He
uhe

)
‖0,Ω . Ht+2 + h3. (4.12)

Denote the subspace spanned by eigenfunctions corresponding to the eigenvalue λ by Hλ. Then

the assumption that λ is simple implies that Hλ = span{u} and

(
u(Bh

He
uhe, u) − Bh

He
uhe, u

)
= 0,

namely,

u
(
Bh

He
uhe, u

)
− Bh

He
uhe ∈ H⊥

λ ≡
{
v ∈ H1

0 (Ω) : (u, v) = 0
}
.

Note that K is a compact operator and I − λK is an operator from the subspace H⊥
λ to itself.

Hence the operator I − λK restricted on the subspace H⊥
λ has a bounded inverse. Therefore,

from

u
(
Bh

Heuhe, u
)
− Bh

Heuhe = (I − λK)−1(I − λK)
(
u − Bh

Heuhe

)
,
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we have

‖u
(
Bh

Heuhe, u
)
− Bh

Heuhe‖0,Ω . ‖(I − λK)
(
u − Bh

Heuheu
)
‖0,Ω,

which, together with (4.12), yields

‖u
(
Bh

He
uhe, u

)
− Bh

He
uhe‖0,Ω . Ht+2 + h3. (4.13)

Since

‖u − Bh
He

uhe‖0,Ω ≤ ‖u − u
(
Bh

He
uhe, u

)
‖0,Ω + ‖u

(
Bh

He
uhe, u

)
− Bh

He
uhe‖0,Ω,

it remains to estimate ‖u − u
(
Bh

He
uhe, u

)
‖0,Ω. Using the identity

1 −
(
Bh

Heuhe, u
)

=
(
u − Bh

Heuhe, u
)
,

we obtain

1 −
(
Bh

Heuhe, u
)

=
1

2

( d∑

i=1

‖uhei+Hêi
− u‖2

0,Ω − (d − 1)‖uHe − u‖2
0,Ω

)

which leads to the conclusion. This completes the proof. �

From the theorems above, we can conclude that the quadratic elements may be the best

choice in solving (1.1) or (2.7) taking the regularity into account.

Remark 4.1. It may be derived from Proposition 2.3 that

∣∣∣∣
a
(
Bh

He
uhe, B

h
He

uhe

)

‖Bh
He

uhe‖2
0,Ω

− λ

∣∣∣∣ <
∼ H2t+2 + h4 (4.14)

provided u ∈ H1
0 (Ω) ∩ WG,t+2(Ω)

(
t ∈ [2, 3]

)
.

5. Numerical Examples

In this section, we shall report some numerical experiments that illustrate our two-scale

discretization schemes. The numerical experiments were carried out on SGI Origin 3800 in the

State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciences.

The first two examples are typical in quantum chemistry. For illustration, we provide

numerical results for the eigenvalue approximations only.

Example 1. Consider the oscillator equation

−
1

2
∆u +

1

2
r2u = λu in R

3, (5.1)

where r =
√

x2
1 + x2

2 + x2
3. The first four eigenvalues of (5.1) are 1.5, 2.5, 2.5, and 2.5. In

our computation, we choose Ω = (−5.0, 5.0)3. The numerical results obtained by triquadratic

elements and tricubic elements are provided in Table 5.1 and Table 5.2 respectively, where

l = 10.0.

It is seen from Table 5.2 that the convergence rate of tricubic elements can reach O(h6);

however we are not able to prove it due to the limitation of the regularity.

Although our analysis requires that the potential V is smooth, it will be shown by the next

example that the two-scale discretization may work well even if the potential is not so smooth.
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Table 5.1: Example 1: estimates for the first four eigenvalues by triquadratic elements.

l/h × l/H × l/H |λ1 − λh
1 H,H,H| |λ2 − λh

2 H,H,H | |λ3 − λh
3 H,H,H| |λ4 − λh

4 H,H,H |

16 × 4 × 4 0.000568817 0.135533 0.070273 0.070273

24 × 6 × 6 0.000115000 0.021530 0.010251 0.010251

32 × 8 × 8 0.000036817 0.008937 0.004633 0.004633

48 × 12 × 12 0.000007343 0.006482 0.003274 0.003274

64 × 16 × 16 0.000002320 0.002182 0.001105 0.001105

96 × 24 × 24 0.000000443 0.000451 0.000228 0.000228

convergence rate O(h4) O(h4) O(h4) O(h4)

Table 5.2: Example 1: estimates for the first four eigenvalues by tricubic elements.

l/h × l/H × l/H |λ1 − λh
1 H,H,H| |λ2 − λh

2 H,H,H | |λ3 − λh
3 H,H,H| |λ4 − λh

4 H,H,H |

16 × 4 × 4 0.000011078 0.078406 0.039263 0.039263

24 × 6 × 6 0.000001000 0.003021 0.001516 0.001516

32 × 8 × 8 0.000000209 0.001621 0.000811 0.000811

48 × 12 × 12 0.000000002 0.000173 0.000060 0.000060

convergence rate O(h6) O(h6) O(h6) O(h6)

Example 2. Consider the the Schrödinger equation of the hydrogen atom

−
1

2
∆u −

1

r
u = λu in R

3. (5.2)

We carry out our computation over domain Ω = (−6.4, 6.4)3. The first eigenvalue is −0.5. Due

to the singularity at point (0, 0, 0), we may employ a so-called graded mesh approach. The idea

of graded meshes is to put the nodes of the uniform mesh graded towards the singular point,

for instance, for Ω = (−l, l)3 with some singularity at (0, 0, 0), we may use the nodes as

x̃i =

{
( i

N )
3
2 l, if xi > 0

−( i
N )

3
2 l, if xi < 0

for i = 1, 2, · · · , N

in each coordinate direction.

The numerical results obtained by triquadratic elements and tricubic elements are presented

in Table 5.3 and Table 5.4 respectively, where λh
H,H,H represents the result of the uniform

discretization, λ̃h
H,H,H represents the result of the graded mesh and l = 12.8. It is seen from

the numerical results that the two-scale discretization using graded mesh works successfully.

The last example is not a Schrödinger type equation.

Example 3. Consider an eigenvalue problem in three-dimensions:




−
3∑

i=1

∂

∂xi

(
x2

i

∂u

∂xi

)
= λu in Ω = (1, 3) × (1, 2) × (1, 2),

u = 0 on ∂Ω.

(5.3)

The first eigenvalue is

λ1 =
3

4
+ (

2

ln2 2
+

1

ln2 3
)π2 ≃ 50.01189403

and the associated eigenfunction is

u1 =

3∏

i=1

(
xi

− 1
2 sin

(π lnxi

lnβββi

))
, β1 = 3, β2 = β3 = 2.
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Table 5.3: Example 2: estimates for the first eigenvalue by triquadratic elements.

l/h × l/H × l/H |λ1 − λh
1,H,H,H | |λ1 − λ̃h

1,H,H,H|

16 × 4 × 4 0.051738 0.047198

32 × 8 × 8 0.018315 0.001536

48 × 12 × 12 0.008348 0.000405

64 × 16 × 16 0.005104 0.000200

96 × 24 × 24 0.002514 0.000143

Table 5.4: Example 2: estimates for the first eigenvalue by tricubic elements.

l/h × l/H × l/H |λ1 − λh
1,H,H,H | |λ1 − λ̃h

1,H,H,H|

16 × 4 × 4 0.036939 0.028790

32 × 8 × 8 0.018410 0.005550

48 × 12 × 12 0.009456 0.001827

Table 5.5: Example 3: results obtained by triquadratic elements.

2/h × 1/H × 1/H |λ1 − λh
1,H,H,H| ‖u1 − uh

1,H,H,H‖1,Ω ‖u1 − uh
1,H,H,H‖0,Ω

6×2×2 0.06386330 0.17340868 0.00452017

12×3×3 0.00487843 0.02380351 0.00034418

16×4×4 0.00142976 0.00773721 0.00006299

36×6×6 0.00024072 0.00158094 0.00000563

48×8×8 0.00016276 0.00048986 0.00000266

convergence rate O(H5) O(H4) O(H5)

Table 5.6: Example 3: results obtained by tricubic elements.

2/h × 1/H × 1/H |λ1 − λh
1,H,H,H| ‖u1 − uh

1,H,H,H‖1,Ω ‖u1 − uh
1,H,H,H‖0,Ω

6×2×2 0.00238354 0.00923775 0.00114159

8×3×3 0.00032543 0.00030127 0.00005628

12×4×4 0.00027922 0.00006103 0.00000533

24×6×6 0.00022688 0.00001515 0.00000240

The numerical results obtained by triquadratic elements and tricubic elements are shown in

Table 5.5 and Table 5.6, respectively. The numerical results in Table 5.5 support that our dis-

cretization scheme may be applied to other type elliptic eigenvalue equations not of Schrödinger

type (cf. Appendix). It is noted that the convergence of finite element approximations in Table

5.6 is not optimal due to the regularity of the exact eigenfunction.

Remark 5.1. The ratio of h/H is chosen mainly for the optimal cost of the computation. For

example, in the last example, H = O(h2/3) almost holds for the triquadratic elements, and

H = O(h3/4) almost holds for the tricubic elements. But we adjust the ratio in the first two

examples due to the limit of storage of the computation. Anyway, all the numerical results

illustrate the efficiency of the two-scale discretization scheme.

6. Concluding Remarks

In this paper, we have proposed and analyzed the two-scale higher-order finite element

discretization scheme for Schrödinger type equations. It is shown by both theory and numerics

that the number of degrees of freedom of the two-scale finite element approximation is much
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less than that of the standard finite element solution. However, it is proved in this paper that

the two-scale finite element approximation still pocesses the same approximate accuracy as

that of the standard finite element solution. Hence it is a very economic solution in terms of

computational cost. To apply the two-scale higher-order finite element discretization approach

to solving Kohn-Sham equations in the pseudopotential setting is our on-going project. For such

computations, however, there are many practical issues, including the implementation details

for local density approximations, that need to be addressed. We will report our progresses in

our forthcoming papers.

What we studied here is the finite element computation over tensor product domains only.

Indeed, we may generalize those techniques to general domains and design some new local and

parallel algorithms. We refer to [22] for relevant discussions. Finally, we should mention that

the convergence of the two-scale combination approximations may be improved if the exact

solution and the coefficients of the problem have better regularity.

Appendix

We may generalize the two-scale higher-order techniques to a more general eigenvalue prob-

lem on Ω = (0, 1)d as follows
{

Lu = λu in Ω,

u = 0 on ∂Ω,
(A.1)

where L is a linear elliptic operator of second order:

Lu = −

d∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+ V u

which satisfies aij ∈ W 1,∞(Ω), V ∈ W 1,∞(Ω), and (aij) is uniformly positive symmetric definite

on Ω̄. The corresponding weak form is defined by:

a(u, v) =

∫

Ω

d∑

i,j=1

aij
∂u

∂xi

∂v

∂xj
+ V uv. (A.2)

Obviously, Proposition 2.5 is valid when a(·, ·) is defined by (A.2) and similar results to

Proposition 2.6 can be also expected.

Proposition A.1. If w ∈ H1
0 (Ω) ∩ Hp+2(Ω), then

a
(
(I − Ih)w, v

)
<
∼ max

|ααα|=p+1
hααα‖w‖p+2,Ω‖v‖1,Ω, ∀v ∈ Sh,p

0 (Ω). (A.3)

Moreover, if the weak form is defined by (2.6) and w ∈ H1
0 (Ω) ∩ WG,p+2(Ω), then

a
(
(I − Ih)w, v

)
<
∼ max

|ααα|=p+1
hααα‖w‖W G,p+2(Ω)‖v‖1,Ω, ∀v ∈ Sh,p

0 (Ω). (A.4)

Proof. First of all, it is seen for any l ∈ Zd that

∫

Ω

∂xl
(I − Ihel

)w∂xl
v = 0, ∀v ∈ Sh,p

0 (Ω). (A.5)
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If j ∈ Zd \ {l}, then we obtain from using Taylor’s expansion that

∫

τ

∂xl
(I − Ihel

)w∂xj
v

= −

∫

τ

(I − Ihel
)w

(
p−1∑

i=0

1

i!
(xl − xτ,l)

i∂i+1
xl

∂xj
v(xτ,l)

)

= −

∫

τ

(I − Ihel
)w

(
p−2∑

i=0

1

i!
(xl − xτ,l)

i∂i+1
xl

∂xj
v(xτ,l)

)

−

∫

τ

(I − Ihel
)w

(xl − xτ,l)
p−1

(p − 1)!
∂p

xl
∂xj

v(xτ,l),

which, together with integration by parts and the property of Fl, yields
∫

τ

∂xl
(I − Ihel

)w∂xj
v

= −

∫

τ

2p

(2p)!

(
F p

l (xl)
)(p+1)

(I − Ihel
)w∂p

xl
∂xj

v(xτ,l)

+ Rp−1(xl)(I − Ihel
)w∂p

xl
∂xj

v(xτ,l)

=(−1)p

∫

τ

2p

(2p)!
F p

l (xl)∂
p+1
xl

(I − Ihel
)w∂p

xl
∂xj

v(xτ,l),

or
∫

τ

∂xl
(I − Ihel

)w∂xj
v =

(−1)p2p

(2p)!

∫

τ

F p
l (xl)∂

p+1
xl

w∂p
xl

∂xj
v(xτ,l).

It is also observed that
∫

Ω

∂xl
(I − Ihel

)w∂xj
v =

∑

τ∈Th(Ω)

(
(−1)p+12p

(2p)!

∫

τ

F p
l (xl)∂

p+1
xl

∂xj
w∂p

xl
v(xτ,l)

)

<
∼ hp+1

l ‖w‖W G,p+2(Ω)‖v‖1,Ω, ∀v ∈ Sh,p
0 (Ω), (A.6)

where the inverse estimate is used.

Similarly, for w ∈ H1
0 (Ω) ∩ Hp+1(Ω) and v ∈ Sh,p

0 (Ω), we get

∫

τ

(I − Ihel
)wv =

∫

τ

(
p−2∑

i=0

1

i!
(xl − xτ,l)

i(I − Ihel
)w∂i

xl
v(xτ,l)

)

+

∫

τ

(I − Ihel
)w

(xl − xτ,l)
p−1

(p − 1)!
∂p−1

xl
v(xτ,l) +

∫

τ

(I − Ihel
)w

(xl − xτ,l)
p

p!
∂p

xl
v(xτ,l)

=
(−1)p−12p

(2p)!

∫

τ

F p
l (xl)∂

p+1
xl

u∂p−1
xl

v(xτ,l) +
(−1)p+12p+1

(2p + 2)!

∫

τ

(
F p+1

l (xl)
)′

∂p+1
xl

u∂p
xl

v(xτ,l).

Thus we arrive at
∫

Ω

(I − Ihel
)wv =

∑

τ∈Th(Ω)

(
(−1)p+12p

(2p)!

∫

τ

F p
l (xl)∂

p+1
xl

w∂p−1
xl

v(xτ,l)

+
(−1)p+12p+1

(2p + 2)!

∫

τ

(
F p+1

l (xl)
)′

∂p+1
xl

w∂p
xl

v(xτ,l)

)
. (A.7)
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Obviously, substituting w by ∂xi
w and v by ∂xj

v in (A.7) implies
∫

Ω

∂xi
(I − Ihel

)w∂xj
v <
∼hp+1

l ‖w‖W G,p+2(Ω)‖v‖1,Ω, i 6= l. (A.8)

Therefore, it follows from (A.5), (A.6) and (A.8) that
∫

Ω

aij∂xi
(I − Ihel

)w∂xj
v

= aij(xτ )

∫

Ω

∂xi

(
I − Ihel

)
w∂xj

v +

∫

Ω

(aij − aij(xτ ))∂xi
(I − Ihel

)w∂xj
v

<
∼ hp+1

l ‖w‖p+2,Ω‖v‖1,Ω, ∀v ∈ Sh,p
0 (Ω). (A.9)

Combining (A.9) and
∫

Ω

V (I − Ihel
)wv <

∼ hp+1
l ‖w‖p+1,Ω‖v‖0,Ω, ∀v ∈ Sh,p

0 (Ω), (A.10)

we have

a
(
(I − Ihel

)w, v
)

<
∼ hp+1

l ‖w‖p+2,Ω‖v‖1,Ω, ∀v ∈ Sh,p
0 (Ω). (A.11)

Note that from the identity

I − Ih = −
∑

0≤ααα≤e,|ααα|≥1

(−1)|ααα|
∏

0≤βββ≤ααα,|βββ|=1

(I − Ihβββ),

we obtain for any v ∈ Sh,p
0 (Ω) that

a
(
(I − Ih)w, v

)
=

∑

0≤ααα≤e,|ααα|=1

a
(
(I − Ihααα)w, v

)

−
∑

0≤ααα≤e,|ααα|≥2

(−1)|ααα|a

( ∏

0≤βββ≤ααα,|βββ|=1

(I − Ihβββ)w, v

)
. (A.12)

Hence we can derive (A.3) from (2.36), (A.11) and (A.12). Moreover, (A.4) can be obtained

using (2.36), (A.5), (A.6) and (A.8). This completes the proof. �

Consequently, we have the following results.

Theorem A.1. If u ∈ H1
0 (Ω) ∩ Hp+2(Ω), then

‖Bh
HePheu − Pheu‖0,Ω + H‖Bh

HePheu − Pheu‖1,Ω <
∼ Hp+2. (A.13)

Moreover,

‖Bh
HePheu − Pheu‖1−p,Ω <

∼ H2p+1, p = 2, 3. (A.14)

Theorem A.2. If u ∈ H1
0 (Ω) ∩ H4(Ω) and p = 2, then

∣∣Bh
He

λhe − λhe

∣∣ <
∼ H5, ‖Bh

He
uhe − uhe‖1,Ω . H3. (A.15)

Moreover, if λ is simple, then

‖u − Bh
He

uhe‖0,Ω . H4 + h3. (A.16)
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[8] H.J. Bungartz, M. Griebel and U. Rüde, Extrapolation, combination, and sparse grid techniques

for elliptic boundary value problems, Comput. Method. Appl. Mech., 116, (1994), 243-252.

[9] F. Chatelin, Spectral Approximations of Linear Operators, Academic Press, New York, 1983.

[10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.

[11] X. Dai and A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems,

SIAM J. Numer. Anal., 46, (2008), 295-324.

[12] M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes Math. 1341,

Springer-Verlag, Berlin, 1988.

[13] M. Griebel, M. Schneider and C. Zenger, A combination technique for the solution of sparse grid

problem, in: Iterative Methods in Linear Algebra (P. de Groen and P. Beauwens, eds.), IMACS,

Elsevier, North Holland, (1992), 163-281.

[14] X. Gao, F. Liu and A. Zhou, Three-scale finite element discretization schemes for eigenvalue

problems, BIT, 48 (2008), 533-562.

[15] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations–Theory and

Algorithms, Springer-Verlage, Berlin, 1986.

[16] J.P. Hennart and E.H. Mund, On the h- and p-versions of the extrapolated Gordon’s projector

with applications to elliptic equations, SIAM J. Sci. Comput., 9, (1988), 773-791.

[17] H. Huang, Z. Li and A. Zhou, New error estimates of biquadratic Lagrange elements for Poisson’s

equation, Appl. Numer. Math., 56, (2006), 712-744.

[18] X. Liao and A. Zhou, A multi-parameter splitting extrapolation and a parallel algorithm for

elliptic eigenvalue problems, J. Comput. Math., 16, (1998), 213-220.

[19] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Improvement, Science Press, Beijing,

2006.

[20] Q. Lin, N.N. Yan and A. Zhou, A sparse finite element method with high accuracy, Numer. Math.,

88, (2001), 731-742.

[21] F. Liu and A. Zhou, Two-scale finite element discretizations for partial differential equations, J.

Comput. Math., 24, (2006), 373-392.

[22] F. Liu and A. Zhou, Localizations and parallelizations for two-scale finite element discretizations,

Commun. Pur. Appl. Anal., 6, (2007), 757-773.

[23] J.E. Pask and P.A. Sterne, Finite element methods in ab initio electronic structure calculations,

Modelling Sumul. Mater. Sci. Eng., 13, (2005), 71-96.

[24] W.E. Pickett, Pseudopotential methods in condensed metter applications, Computer Physics Re-

ports, 9, (1989), 115-198.

[25] C. Pflaum, Convergence of the combination technique for second-order elliptic differential equa-

tions, SIAM J. Numer. Anal., 34, (1997), 2431-2455.

[26] C. Pflaum and A. Zhou, Error analysis of the combination technique, Numer. Math., 84, (1999),



A Two-Scale Higher-Order Finite Element Discretization for Schrödinger Equation 337

327-350.

[27] D. Singh, Plane Waves, Pseudopotentials and the LAPW Method, Kluwer, Dordrecht, 1994.

[28] E.M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Uni-

versity Press, 1971.

[29] M.W. Wong, Weyl Transforms, Springer-Verlag, 1998.

[30] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal.,

33, (1996), 1759-1777.

[31] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations,

Math. Comput., 69, (2000), 881-909.

[32] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput.,

70, (2001), 17-25.

[33] Y. Xu and A. Zhou, Fast Boolean approximations methods for solving integral equations in high

dimensions, J. Integral Equ. Appl., 16, (2004), 83-110.

[34] C. Zenger, Sparse grids, in: Parallel Algorithm for Partial Differential Equations, Proc. of 6th

GAMM-Seminar, Hackbush, W., ed., Braunschweig, Vieweg-Verlag, 1991.

[35] A. Zhou and J. Li, The full approximation accuracy for the stream function-vorticity-pressure

method, Numer. Math., 68, (1994), 401-411.

[36] A. Zhou, C. Liem, T. Shih and T. Lu, A multi-parameter splitting extrapolation and a parallel

algorithm, Sys. Sci. Math. Sci., 10, (1997), 253-260.


