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Abstract

A new recovery operator P : Qdisc
n (T ) → Qdisc

n+1(M) for discontinuous Galerkin is

derived. It is based on the idea of projecting a discontinuous, piecewise polynomial solution

on a given mesh T into a higher order polynomial space on a macro mesh M. In order

to do so, we define local degrees of freedom using polynomial moments and provide global

degrees of freedom on the macro mesh. We prove consistency with respect to the local

L2-projection, stability results in several norms and optimal anisotropic error estimates.

As an example, we apply this new recovery technique to a stabilized solution of a singularly

perturbed convection-diffusion problem using bilinear elements.

Mathematics subject classification: 65N12, 65N15, 65N30.
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1. Introduction

The importance of developing superconvergence recovery techniques for finite element ap-
proximations is two folded: firstly, the objective is to improve the approximation accuracy of
low order finite elements on coarse meshes, which will significantly reduce the computational
costs to achieve a certain accuracy. Secondly, the recovered solution values can be used in
computation of a posteriori error estimators, which are essential for estimating the accuracy of
finite element approximations and for guiding the mesh refinement in adaptive methods.

The main objective in this paper is the improvement of solution accuracy by using su-
percloseness results and an appropriate recovery technique (postprocessing). This type of su-
perconvergence by recovery is well-known and has been extensively studied in the literature
for different classes of problems, see, e.g., [5, 6, 9, 16]. The application of this technique to
stabilized finite element discretization for solving singularly perturbed problems can be found
in [11, 13, 14]. It has been shown that (in the two-dimensional case) the vertex-edge-cell in-
terpolant, studied in [1], is superclose to the streamline-diffusion finite element solution on a
Shishkin mesh. A recovery operator which is consistent with this special interpolant, allows to
prove a superconvergence result for the postprocessed SDFEM solution.
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An alternative stabilization method for singularly perturbed problems is the discontinuous
Galerkin method for which a supercloseness result with respect to the discontinuous, local L2-
projection onto piecewise bilinear functions has been established in [12]. The discussed method
therein is the so called NIPG, see also [3, 10].

Our recovery techniques applies to the more general case of the local L2-projection onto the
space of discontinuous, piecewise polynomials of arbitrary degree n ∈ N in each variable and
in any space dimension. Therefore it can be applied to a more general class of discontinuous
Galerkin methods. We choose for application the NIPG because here a supercloseness result is
known. For convection-diffusion equations in 1d several supercloseness results using numerical
traces and possible postprocessing methods are known, see [4, 15].

We also recommend the reader to the recent reference [18] on recovery techniques in finite
elements with special emphasis on Zienkiewicz-Zhu’s patch recovery and polynomial preserving
recovery.

The outline of this article is as follows. We start in Section 2 with the 1d-recovery operator.
In Section 3 we construct the 2d-recovery operator and prove stability and anisotropic error
estimates. Finally, in Section 4 we connect our results to recently published results [12] in the
case of bilinears on a Shishkin mesh for a singularly perturbed partial differential equation.

Notation: For a function u : T → R which belongs piecewise in L2 we define the broken
L2-norm by

‖u‖0,T =

( ∑

K∈T
‖u‖20,K

)1/2

.

2. Basics in 1d

We start the definition of the recovery operator in one space-dimension. In order to simplify
the notation we will work on reference elements. Thus, let IL := [−1, 0] and IR := [0, 1] be the
reference intervals.

Our operator will be a projection onto a higher order polynomial space on macro meshes.
Let IM := IL ∪ IR denote the reference macro element to a given macro element consisting
of two intervals. The reference mesh consists of the two subintervals of IM and is denoted by
T := {IL, IR}.

We start the definition of the projector by defining local degrees of freedom on this mesh.
Let

Ri(v) :=
∫ 1

0

ηi(t)v(t) dt and Li(v) :=
∫ 0

−1

ηi(t + 1)v(t) dt, ∀i = 0, . . . , n (2.1)

with {ηi}n
i=0 denoting the Legendre polynomial basis of Pn(IR), the space of polynomials of

degree at most n. Due to the L2-orthogonality of these polynomials, the sets {Ri}m
i=0 and

{Li}m
i=0 with 0 ≤ m ≤ n are Pm(IR)- resp. Pm(IL)-unisolvent, i.e. an element v ∈ Pm(I) is

uniquely defined for given values {N1
i v}m

i=0. Then, there is a local basis {ψ1
i }n

i=0 of Pn(IR) with

Ri(ψ1
j ) = δij , i, j = 0, . . . , n (2.2)

where δij is the Kronecker delta. Clearly our local basis functions are scaled Legendre polyno-
mials with deg ψ1

i = i, i = 0, . . . , n, and the interpolation operator defined by

πv ∈ P disc
n (T ) : Ri(πv) = Ri(v), Li(πv) = Li(v), i = 0, . . . , n (2.3)
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is the local L2-projection into Pdisc
n (T ) := {v ∈ L2(IM ) : v|K ∈ Pn(K), ∀K ∈ T }.

Now let us define the global degrees of freedom for our projection operator on the macro
element combining local ones. Simple adding of the two sets of n + 1 local degrees gives

N1
i (v) := (Ri + Li)(v), i = 0, . . . , n. (2.4a)

In order to define a function of Pn+1(IM ), we need one additional, independent degree. We use

N1
n+1(v) := (Rn − Ln)(v). (2.4b)

Lemma 2.1. Let 0 ≤ m ≤ n + 1. The sets {N1
i }m

i=0 are Pm(IM )-unisolvent.

Proof. Start with m = n + 1. We have

dim(Pn+1(IM )) = n + 2 = #{N1
i }n+1

i=0 .

Thus, it is sufficient to show that for p(t) =
∑n+1

i=0 pit
i ∈ Pn+1(IM ) with N1

i (p) = 0, i =
0, . . . , n+1 it follows p ≡ 0. Recall that the j-th order Legendre polynomial ηj is L2-orthogonal
to all lower order polynomials. Then we have

0 = N1
n+1(p)

= pn+1

(∫ 1

0

ηn(t)tn+1 dt−
∫ 0

−1

ηn(t + 1)tn+1 dt

)
+ pn

(∫ 1

0

ηn(t)tn dt−
∫ 0

−1

ηn(t + 1)tn dt

)

= pn+1

∫ 1

0

(
ηn(t)tn+1 − ηn(t)(tn+1 − (n + 1)tn)

)
dt + pn

∫ 1

0

(
ηn(t)tn − ηn(t)tn

)
dt

= (n + 1)pn+1

∫ 1

0

ηn(t)tn dt

︸ ︷︷ ︸
6=0

⇒ pn+1 = 0,

where we used the substitution t + 1 → t in the second line. Thus, p ∈ Pn(IM ).

0 = N1
n(p) = pn

(∫ 0

−1

ηn(t + 1)tn dt +
∫ 1

0

ηn(t)tn dt

)

= 2pn

∫ 1

0

ηn(t)tn dt

︸ ︷︷ ︸
6=0

⇒ pn = 0.

Thus, p ∈ Pn−1(IM ). Recursively, we conclude pn−1 = · · · = p0 = 0 and therefore p ≡ 0.
For m ≤ n the proof can be shown similarly without the first step. ¤

Let us construct a polynomial basis {ζ1
i }n+1

i=0 of Pn+1(IM ) by

N1
i (ζ1

j ) = δij , i, j = 0, . . . , n + 1.

Remark 2.2. The global degrees of freedom are orthogonal to all lower order polynomials, i.e.

N1
i (pi−1) = 0, pi−1 ∈ Pi−1(IM ), i = 1, . . . , n + 1.

As a consequence each basis function ζ1
i is a polynomial of degree i.
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Now, we define the 1d-recovery operator P1 : L1(IM ) → Pn+1(IM ) by means of the nodal
functionals (2.4) in the canonical way

P1v ∈ Pn+1(IM ) : N1
k (P1v) = N1

k (v), k = 0, . . . , n + 1. (2.5)

Lemma 2.3. The recovery operator is consistent in the sense of

P1v = P1πv, for all v ∈ L1([−1, 1]).

Proof. We show, that N1
k (P1v) = N1

k (πv), k = 0, . . . , n + 1. Then by definition (2.5) the
lemma follows. Using (2.3)–(2.5) we get

N1
k (P1v) = N1

k (v) = Rk(v) + Lk(v)

= Rk(πv) + Lk(πv) = N1
k (πv), k = 0, . . . , n

N1
n+1(P

1v) = N1
n+1(v) = Rn+1(v) − Ln+1(v)

= Rn+1(πv)− Ln+1(πv) = N1
n+1(πv). ¤

Remark 2.4. Although the definition of P1u in (2.5) and πu in (2.3) are similar, the recovery
operator is not the L2-projection onto Pn+1(IM ). Indeed, let u = sign(x) ∈ Pdisc

0 (T ). Then, a
direct calculation shows that

P1u =

{
2x, n = 0,

0, n > 0,

whereas the L2-projection for n = 0, . . . , 3 satisfies

πu =

{
3
2x, n = 0, 1
5
16x(9− 7x2), n = 2, 3.

Moreover, we can show (as in Theorem 3.2 below) that P1 : P disc
n (T ) → P disc

n+1(M) is H1-stable
for n ≥ 1 in the sense

‖(P1u)′‖0,IM
≤ C‖u′‖0,T ∀u ∈ P disc

n (T ).

The L2-projection does not satisfy this property as one can see from the same example because
for u = sign(x) ∈ Pdisc

0 (T ) ⊂ Pdisc
1 (T ) we have

‖u′‖0,T = 0 and ‖(πu)′‖0,IM > 0.

3. Postprocessing in 2d

In this section the main aspect of this article is developed. We start by defining the 2d-
reference elements, see Figure 3.1 and denote the reference mesh by T := {K1,K2,K3, K4}.

The local L2-projection π into Qdisc
n (T ) := {v ∈ L2(M) : v|K ∈ Qn(K), ∀K ∈ T } can be

defined similarly to (2.3) by introducing appropriate nodal functionals.
For simplifying the following notation, define a bijective index mapping k : {0, . . . , n+1}2 →

{1, . . . , (n + 2)2}. Furthermore, we modify the notations Ri, Li and Ni from Section 2, such
that an additional x or y in the subindex indicates the direction of integration.
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K1K2

K3 K4

M = IM × IM = [−1, 1]2,

K1 = IR × IR, K2 = IL × IR,

K3 = IL × IL, K4 = IR × IL

Fig. 3.1. Subdomains of the reference macro element M in 2d

Using tensor products of the 1d-degrees of freedom in (2.4), we propose the 2d-degrees of
freedom for i, j = 0, . . . , n + 1 by

N2
k(i,j)(v) = (N1

i,x ◦N1
j,y)(v) = (N1

j,y ◦N1
i,x)(v). (3.1)

For example, we have

(N1
1,x ◦N1

0,y)(v) =
∫ +1

−1

∫ +1

0

(2x− 1)v(x, y) dxdy +
∫ +1

−1

∫ 0

−1

(2x + 1)v(x, y) dxdy.

Lemma 3.1. The set {N2
k}(n+2)2

k=1 is Qn+1(M)-unisolvent and there exists a polynomial basis

{ζ2
l }(n+2)2

l=0 of Qn+1(M) with

N2
k (ζ2

l ) = δkl, k, l = 1, . . . , (n + 2)2.

Proof. The unisolvence follows directly from Lemma 2.1 and definition (3.1). Thus, a
polynomial basis with the proclaimed property exists and moreover, its basis functions can be
rewritten using the 1d counterparts

ζ2
k(i,j) = ζ1

i (x)ζ1
j (y), i, j = 0, . . . , n + 1. (3.2)

Now we are ready to define the 2d-recovery operator P2 : L1(M) → Qn+1(M) by

P2v ∈ Qn+1(M) : N2
k (P2v) = N2

k (v), k = 1, . . . , (n + 2)2. ¤ (3.3)

Theorem 3.2 (Consistency and stability) The operator P2 is consistent in the sense of

P2v = P2πv, for all v ∈ L1(M)

and stable for a differential operator Dγ with |γ| = m ≤ n, i.e.

‖DγP2v‖0,T ≤ C‖Dγv‖0,T , ∀v ∈ Qdisc
n (T ).

Proof. Consistency for the 2d-projection follows directly from the 1d-projection (Lemma 2.3).
In order to prove stability, we introduce

Qi := {v ∈ Qdisc
n (T ) : v|Ki ∈ Qn(Ki), v|M\Ki

= 0},
Q̃i := {v ∈ Qi : Dγv ≡ 0}.

According to the direct sum Qdisc
n (T ) = Q1 ⊕ · · · ⊕Q4, we decompose a function v ∈ Qdisc

n (T )
into v = v1 + v2 + v3 + v4 with vi ∈ Qi. Then, we get

N2
k(i,j)(v1) = (Ri,x ◦Rj,y)(v1)
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and using the local basis (2.2)

v1(x, y) =
n∑

i,j=0

(Ri,x ◦Rj,y)(v1)ψi(x)ψj(y)

=
n∑

i,j=0

N2
k(i,j)(v1)ψi(x)ψj(y) ∀(x, y) ∈ K1.

Splitting the differential operator Dγ into

Dγζ2
k(i,j)(x, y) = Dγ1ζ1

i (x)Dγ2ζ1
j (y), i, j = 0, . . . , n + 1

and taking into consideration

N2
k(i,j)(P

2v1) = N2
k(i,j)(v1),

we obtain

DγP2v1 = 0 ⇒
n+1∑

i=0

n+1∑

j=0

N2
k(i,j)(v1)Dγ1ζ1

i (x)Dγ2ζ1
j (y) = 0

⇒
n+1∑

i=|γ1|

n+1∑

j=|γ2|
N2

k(i,j)(v1)Dγ1ζ1
i (x)Dγ2ζ1

j (y) = 0

because of D`ζ1
i = 0 for ` > i. From the linear independence of the basis functions and their

derivatives we conclude

N2
k(i,j)(v1) = 0, i = |γ1|, . . . , n + 1, j = |γ2|, . . . , n + 1.

Therefore, we have that

DγP2v1 = 0 ⇒ Dγv1 =
n∑

i=0

n∑

j=0

N2
k(i,j)(v1)Dγ1ψ1

i (x)Dγ2ψ1
j (y) = 0,

and

‖DγP2v1‖0,T = 0 = ‖Dγv1‖0,K1 , ∀v1 ∈ Q̃1.

The mapping v1 7→ ‖DγP2v1‖0,T is consequently a norm on the factor space Q1 \ Q̃1. The
equivalence of norms in finite dimensional spaces yields

‖DγP2v1‖0,T ≤ C‖Dγv1‖0,T = C‖Dγv1‖0,K1 , ∀v1 ∈ Q1 \ Q̃1.

In a similar manner we get

‖DγP2vi‖0,T ≤ C‖Dγvi‖0,Ki , i = 2, 3, 4.

Thus

‖DγP2v‖20,T ≤ 4
4∑

i=1

‖DγP2vi‖20,T ≤ C

4∑

i=1

‖Dγvi‖20,Ki
= C‖Dγv‖20,T . ¤
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Theorem 3.3 (Anisotropic error estimates) Let γ be a multi-index with |γ| = m ≤ l ≤
n+2. If v ∈ Hγ(T ) with Dγv ∈ H l−m(T ), then the interpolation error of the recovery operator
P2 can be estimated by

‖Dγ(v −P2v)‖0,T ≤ C[Dγv]l−m,T

where [.]l−m,T denotes the seminorm in H l−m(T ) including only pure derivatives.

Proof. In order to apply [2, Lemma 2.14], we define d=dim(DγQn+1(M)) linear functionals
Fk fulfilling

Fk ∈ (H l−m(M))′, k = 1, . . . , d (3.4)

Fk(Dγ(u− Iu)) = 0, k = 1, . . . , d (3.5)

{w ∈ Qn+1(M) : Fk(Dγw) = 0, k = 1, . . . , d} ⇒ Dγw = 0. (3.6)

For the given differential operator Dγ = Dγ1
x Dγ2

y , let Jγ = Jγ1
x Jγ2

y be an integrational operator,
defined by

DγJγ = (Dγ1
x Jγ1

x )(Dγ2
y Jγ2

y ) = id.

Note that

JγDγv = (Jγ1
x Dγ1

x )(Jγ2
y Dγ2

y )v = (Jγ1
x Dγ1

x )(v + f1(x)pγ2−1(y))

= v + f1(x)pγ2−1(y) + f2(y)pγ1−1(x) (3.7)

with arbitrary functions f1, f2 ∈ C(IM ) and polynomials pi ∈ Pi(IM ).
Furthermore, we need an index set of those basis functions that do not vanish under Dγ .

Using (3.2) we have
Dγζ2

k(i,j) = Dγ1
x ζ1

i (x)Dγ2
y ζ1

j (y).

With ζ1
i being a polynomial of degree i we can define the set by

Dγζ2
k(i,j) 6≡ 0 ⇔ (i, j) ∈ I := {(l,m) ∈ (0, . . . , n + 1)2 : γ1 ≤ l ≤ n + 1, γ2 ≤ m ≤ n + 1}.

Note that I has exactly d components. We formally define the d linear functionals to be given
by

Fi,j(v) := N2
k(i,j)(J

γv), (i, j) ∈ I. (3.8)

Integrating by parts we will see that the Fi,j are uniquely defined, linear and continuous on
L1(M) such that (3.4) is satisfied. We illustrate this in the one-dimensional case.

Due to (2.4) it is enough to show that v → RiJ
γ1v and v → LiJ

γ1v are linear and continuous
for i ≥ γ1. This can be shown using the formula of Rodriquez for Legendre polynomials of order
i on (−1, 1)

Li(s) =
1

2ii!
di

dsi
((s2 − 1)i).

Then with ηi(t) = Li(2t− 1) we have for i ≥ γ1

Ri(Jγ1v) =
∫ 1

0

Li(2t− 1)(Jγ1v)(t) dt =
1
i!

∫ 1

0

di

dti
(
(t(t− 1))i

)
(Jγ1v)(t) dt

=
(−1)γ1

i!

∫ 1

0

di−γ1

dti−γ1

(
(t(t− 1))i

) (
dγ1

dtγ1
Jγ1v

)
(t) dt

=
(−1)γ1

i!

∫ 1

0

di−γ1

dti−γ1

(
(t(t− 1))i

)
v(t) dt.



704 S. FRANZ, L. TOBISKA AND H. ZARIN

Thus RiJ
γ1 is linear and continuous on L1(IR). Note that the argument relies on the fact that

we can integrate by parts and the factor Di−γ1
t (t(t − 1))i vanishes at the boundaries of the

integral for 0 ≤ γ1 − 1 ≤ i. In the 2d case the d linear functionals Fi,j can also be defined
directly as sums of weighted mean values over the subdomains K1, . . . ,K4 such that

Fi,j(Dγv) = N2
k(i,j)(v) ∀(i, j) ∈ I, ∀v ∈ L1(M) with Dγv ∈ L1(M). (3.9)

For example, if γ = (1, 0), then

F1,0(v) = −
∫ +1

−1

∫ +1

0

x(x− 1)v(x, y) dxdy −
∫ +1

−1

∫ 0

−1

x(x + 1)v(x, y) dxdy

and

F1,0(D(1,0)v) = N2
k(1,0)(v) ∀v ∈ L1(M) with D(1,0)v ∈ L1(M).

For the formally defined functionals (3.8) we have (3.9) by (3.7) and Remark 2.2.
Now we are ready to prove (3.5). We have

Fi,j(Dγ(v −P2v)) = N2
k(i,j)(v)−N2

k(i,j)(P
2v) = 0 for all (i, j) ∈ I

due to (3.9) and the interpolation property.
Now let v =

∑(n+2)2

k=1 vkζ2
k ∈ Qn+1(M) be an arbitrary polynomial in Qn+1(M). Then we

have with (3.9)

Fi,j(Dγv) = N2
k(i,j)(v) = vk(i,j) for all (i, j) ∈ I.

Therefore, (3.6) holds with

{Fi,j(Dγv) = 0, (i, j) ∈ I} ⇒ Dγv =
∑

(i,j)∈I

vk(i,j)︸ ︷︷ ︸
=0

Dγζ2
k(i,j) +

∑

(i,j)6∈I

vk(i,j) Dγζ2
k(i,j)︸ ︷︷ ︸

=0

= 0.

With [2, Lemma 2.14] we are done. ¤

Remark 3.4. Stability and error estimates for the 1d case considered in Section 2 can be de-
rived similarly. Moreover, using the ideas presented in this section, recovery can be constructed
to any space dimension. This is different from the case when consistency of the recovery with
respect to a continuous interpolant is required [1].

Remark 3.5. The recovery operator presented operates on a highly structured tensor-product
mesh. The idea of using locally defined momentum-degrees of freedom and combining them in
an appropriate way can also be applied to unstructured meshes. Nevertheless, in this case the
analysis becomes much more complicated and we are not aware of any supercloseness result on
unstructured meshes.

4. Application: Recovery of Qdisc
1 -functions

In this section we apply our recovery operator to the supercloseness results of [12]. The
model problem therein is the singularly perturbed equation

−ε∆u + b · ∇u + cu = f, in Ω = (0, 1)× (0, 1) (4.1a)

u = 0, on Γ = ∂Ω (4.1b)
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with a small perturbation parameter 0 < ε ¿ 1 and sufficiently smooth data b, c and f . If
c2
0 = c− 1

2∇ · b ≥ γ0 > 0 then a unique solution u ∈ H1
0 (Ω) of (4.1) exists.

Let us assume b ≥ (β1, β2) > 0. Then, u exhibits exponential boundary layers at x = 1
and y = 1. In order to construct layer-adapted meshes and prove uniform convergence it is
convenient to have a solution decomposition. Under a certain compatibility conditions on the
data, the following assumption is satisfied, see [8, Theorem 5.1].

Assumption 4.1. Assume that the solution u of (4.1) can be decomposed as

u = S + E1 + E2 + E3

where for all (x, y) ∈ Ω and 0 ≤ i + j ≤ 2 we have the pointwise estimates
∣∣∂i

x∂j
yS(x, y)

∣∣ ≤ C,
∣∣∂i

x∂j
yE1(x, y)

∣∣ ≤ Cε−ie−β1(1−x)/ε,
∣∣∂i

x∂j
yE2(x, y)

∣∣ ≤ Cε−ie−β2(1−y)/ε,
∣∣∂i

x∂j
yE3(x, y)

∣∣ ≤ Cε−(i+j)e−β1(1−x)/εe−β2(1−y)/ε,





(4.2)

and for 0 ≤ i + j ≤ 3 the L2 bounds
∥∥∂i

x∂j
yS

∥∥
0,Ω

≤ C,
∥∥∂i

x∂j
yE1

∥∥
0,Ω

≤ Cε−i+1/2,
∥∥∂i

x∂j
yE2

∥∥
0,Ω

≤ Cε−j+1/2,
∥∥∂i

x∂j
yE3

∥∥
0,Ω

≤ Cε−i−j+1.

}
(4.3)

For convenience of the reader, we now recall the properties of the recovery operator in the case
of bilinears.

Lemma 4.2. Let M be a given macroelement with width hM and height kM and T the mesh
consisting of the four rectangles of M . Then for bilinears on M , the recovery operator P2 :
L1(M) → Q2(M) defined in (3.3) has the following properties.

1. consistency:
P2u = P2πu for all u ∈ L1(M), with the local L2-projection πu ∈ Qdisc

1 (T )

2. stability:
‖P2uN‖0,T ≤ ‖uN‖0,T ,
‖∇(P2uN )‖0,T ≤ ‖∇(uN )‖0,T , for all uN ∈ Qdisc

1 (T )

3. anisotropic error-estimates:

‖P2u− u‖0,T ≤ C
(
h3

M‖uxxx‖0,T + k3
M‖uyyy‖0,T

)
,

‖(P2u− u)x‖0,T ≤ C
(
h2

M‖uxxx‖0,T + k2
M‖uxyy‖0,T

)
,

‖(P2u− u)y‖0,T ≤ C
(
h2

M‖uxxy‖0,T + k2
M‖uyyy‖0,T

)
for all u ∈ H3(M).

4.1. Content of [12] and Supercloseness

In order to resolve the layer-structure, let T (Ω) denote a Shishkin mesh over Ω with tran-
sition points

λx = min
{

1
2
,

α

β1
ε ln N

}
and λy = min

{
1
2
,

α

β2
ε ln N

}
.

Here α is a user-chosen parameter specified later and N the number of cells in each direction.
Usually, ε is very small and it is appropriate to assume λx < 1/2 and λy < 1/2. Moreover, let
T (D) be the part of the mesh, that covers D ⊂ Ω.
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Denote by Ωc := (0, 1− λx)× (0, 1− λy) and Ωf := Ω \ Ωc the parts of Ω, where the mesh
is coarse (large isotropic rectangles) resp. fine (anisotropic rectangles with at least one small
side).

The standard Galerkin method on a Shishkin mesh with α ≥ 5/2 is superconvergent in a
discrete weighted H1-norm [17] but results into linear systems that are hard to solve. Therefore,
stabilisation methods are applied. In [12] the non-symmetric version of discontinuous Galerkin
(dG) on Ωc is used to stabilise. In the layer region, i.e. in Ωf , the mesh is fine enough and
no stabilisation is needed. In order to review the method and its properties, we give some
notations from [12].

Let us define the broken Sobolev space over D ⊂ Ω

H1(D, T (D)) = {v ∈ L2(D) : v|K ∈ H1(K), ∀K ∈ T (D)}.

For an element K ∈ T , let ∂K denote the union of all open edges of K and µK the unit outward
normal vector. We also define the inflow and outflow parts of ∂K by

∂−K = {(x, y) ∈ ∂K : b(x, y) · µK(x, y) < 0},
∂+K = {(x, y) ∈ ∂K : b(x, y) · µK(x, y) ≥ 0},

respectively.
For our notations, assume v ∈ H1(Ω, T ). Let E be the set of all edges of T , and Eint ⊂ E

the set of all inner edges. For each e ∈ Eint there are indices i and j, such that i > j, and
K := Ki and K ′ := Kj share the interface e. On e ∈ Eint, we define the jump across e, the
mean value on e and the unit outward normal vector by

[v]e = v|∂K∩e − v|∂K′∩e, 〈v〉e =
1
2
(v|∂K∩e + v|∂K′∩e) and ν = µK = −µK′

respectively. For e ∈ ∂K ∩ Γ set

[v]e = 〈v〉e = v and ν = µK .

For any element K ∈ T , we denote by v+
K the inner trace of v|K on ∂K. If ∂−K \ Γ 6= ∅ then

there is a K ′ ∈ T such that ∂−K = ∂+K′ . In this case, we define the outer trace by v−K = v+
K′

and the orientated jump of v across ∂−K \ Γ by

bvcK = v+
K − v−K .

In order to simplify the notation, we omit the indices in the terms [v]e, 〈v〉e and bvcK .
Our ansatz space will be

V :=
{
v ∈ H1(Ω, T (Ω)) : H1(Ωc, T (Ωc)), v|Ωf

∈ C(Ωf ), v|Γ∩∂Ωf
= 0

}
.

This space is slightly different than the one used in [12], where V = H1(Ω, T (Ω)) with zero
boundary conditions on the whole boundary Γ. The local interpolation in Ωc will be the local
L2-projection into the discontinuous polynomial space without restrictions to the boundary
values. Therefore, we include the boundary conditions weakly in the bilinear form and not in
the ansatz space.
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Let ΓT = ∂Ωc ∩ ∂Ωf . Then the bilinear form reads

a(w, v) :=
∑

K⊂Ω

(
(ε∇w,∇v)K + (b · ∇w + cw, v)K

)

−
∑

K⊂Ωc

(∫

∂−K∩∂Ωc

(b · µK)w+v+ ds +
∫

∂−K\∂Ωc

(b · µK)bwcv+ ds

)

−
∑

K⊂Ωf

∫

∂−K∩ΓT

(b · µK)bwcv+ ds

+
∑

e⊂∂Ωc

ε

∫

e

(
[w](∇v · ν)− (∇w · ν)[v]

)
ds +

∑

e⊂Ωc

∫

e

σe[w][v] ds

+
∑

e⊂Ωc,int

ε

∫

e

(
[w]〈∇v · ν〉 − 〈∇w · ν〉[v]

)
ds.

Herein (w, v)D denotes the usual L2-scalar product over D ⊂ Ω and Ωc,int the set containing
all inner edges e ∈ Eint that belong to Ωc \ ∂Ωc. The penalization parameter σe is used for
interior jumps and violation of boundary conditions.

Thus, in Ωf the standard Galerkin bilinear form is used and in Ωc the discontinuous Galerkin
bilinear form in the non-symmetric version.

The conforming piecewise bilinear finite element space V N ⊂ V is

V N :=
{
v ∈ L2(Ω) ∩ C(Ωf ) : v|Γ∩∂Ωf

= 0, v|K ∈ Q1(K), ∀K ∈ T }

and the discrete problem reads: Find uN ∈ V N such that

a(uN , vN ) =
∑

K∈T
(f, vN )K , for all vN ∈ V N . (4.4)

Using

‖w‖2e :=
∫

e

|b · µK |w2 ds, for all e ⊂ ∂K

we define the dG-norm

|||w|||2dG := a(w,w) =
∑

K⊂Ω

(
ε‖∇w‖20,K + ‖c0w‖20,K

)
+

∑

e⊂Ωc

∫

e

σe[w]2 ds

+
1
2

∑

K⊂Ωc

(
‖w+‖2∂−K∩∂Ωc

+ ‖w+ − w−‖2∂−K\∂Ωc

)

+
1
2

∑

K⊂Ωf

‖w+ − w−‖2∂−K∩ΓT

and the energy norm

|||w|||2ε :=
∑

K⊂Ω

(
ε‖∇w‖20,K + ‖c0w‖20,K

)
.

Because of the different discretizations on Ωc and Ωf , respectively, we use a mixed local
interpolation operator Πu, defined by

(Πu)|K =

{
πu, K ⊂ Ωc,

uI , K ⊂ Ωf ,
(4.5)
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Fig. 4.1. Macro mesh M constructed from T

with the local L2-projection πu and the nodal bilinear interpolation uI into V N .
With Ω∗c,int := Ωc,int ∩ ([0, (1− λx)(1− 2/N)]× [0, (1− λy)(1− 2/N)]) denoting the set of

all inner edges having no points on ∂Ωc ∩ ∂Ωf , the main Theorem of [12] now states

Theorem 4.3. Let u and uN be the solutions of the continuous problem (4.1) and the discrete
problem (4.4), respectively.

With Assumption 4.1, ε1/2 ln2 N ≤ C, α ≥ 5/2 and

σe =

{
εN, e ⊂ Ω∗c,int

1, e ⊂ Ωc,int \ Ω∗c,int

we have
∣∣∣∣∣∣Πu− uN

∣∣∣∣∣∣
dG
≤ C(ε1/2N−1 + N−3/2). (4.6)

Remark 4.4. The minor changes in applying weak enforcement of the boundary conditions in
the coarse region give rise to changes in the estimates on the convective part [12, Eqs.(16),(17)],
but resulting in the same bounds.

The third sum in the bilinear form allows us to use differences over the transition line in the
dG-norm instead of sums. In the supercloseness analysis this additional term can be estimated
with second order by Cauchy-Schwarz inequalities and estimates of the interpolation/projection
error.

4.2. Recovery

For recovery let N be divisible by 4. We build a macro mesh based on disjoint macrorectan-
gles M , each consisting of 2 by 2 neighbouring rectangles of T . Moreover, the transition lines
(1− λx)× [0, 1] and [0, 1]× (1− λy) shall not be crossed, see Figure 4.1.

Similarly to the local interpolation operator (4.5), the recovery operator P is defined locally
by

(Pu)|M :=

{
T−1

M ◦P2(TM (u|M )), M ⊂ Ωc,

Pc(u|M ), M ⊂ Ωf

with the recovery operator P2 from (3.3), TM the mapping from M to the reference macro and
the nodal biquadratic interpolation Pc(u|M ) used in [13].
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Lemma 4.5 (Interpolation error) Under Assumption 4.1 and α ≥ 5/2 we have

|||Pu− u|||ε ≤ C(εN−3/2 + N−2 ln2 N). (4.7)

Proof. The recovery operator on Ωf is the one used in [13]. Thus [13, Lemma 5.5] can be
applied and to obtain

|||Pcu− u|||ε,Ωf
≤ CN−2 ln2 N (4.8)

for the layer region, although Assumption 4.1 is weaker then [13, Assumption 5.1]. A closer
look at the proof of [13, Lemma 5.5] reveals Assumption 4.1 to be sufficient.

In Ωc we bound the different parts of u separately. Application of Theorem 3.3, the trans-
formation TK and the fact that the maximal mesh size is smaller than 2N−1 gives

∣∣∣∣∣∣P2S − S
∣∣∣∣∣∣

ε,Ωc
≤ C(ε1/2N−2 + N−3). (4.9)

For the layers parts, let E be any of E1, E2 or E3. We apply the triangle inequality and obtain
∣∣∣∣∣∣P2E − E

∣∣∣∣∣∣
ε,Ωc

≤
∣∣∣∣∣∣P2E

∣∣∣∣∣∣
ε,Ωc

+ |||E|||ε,Ωc
.

The second term is bounded by Assumption 4.1 with

|||E|||ε,Ωc
≤ CN−α. (4.10)

To estimate ‖P2E1‖0,Ωc , let M = [x2i, x2(i+1)]× [y2j , y2(j+1)] with i, j = 0, . . . , N/4− 1. Then
∫

M

(P2E1)2 dx dy

=
∫

M

( 2∑
r,s=0

N2
k(r,s)(E1)

meas (M)
ζ2
k(r,s)

)2

dxdy ≤ C

∫

M

( 2∑
r,s=0

N2
k(r,s)(E1)

meas (M)

)2

dxdy

≤C

∫

M

( 2∑
r,s=0

‖E1‖L∞(M)

)2

dxdy ≤ C

∫

M

e−2β1(1−x2(i+1))/ε dxdy.

Thus,

‖P2E1‖20,Ωc
=

∫ 1−λy

0

N/4−1∑

i=0

∫ x2(i+1)

x2i

(P2E1)2 dxdy

≤ C

∫ 1−λy

0

N/4−1∑

i=0

∫ x2(i+1)

x2i

e−2β1(1−x2(i+1))/ε dxdy.

We bound the integrals in the sum for i < N/4− 1 and i = N/4− 1 differently.

i < N/4− 1 : e−2β1(1−x2(i+1))/ε ≤ e2β1(xN/2−xN/2−2)/εe−2β1(1−x)/ε, with x ∈ [x2i, x2(i+1)]

i = N/4− 1 : e−2β1(1−x2(i+1))/ε = e−2β1λx/ε = N−2α

Thus, we have

‖P2E1‖20,Ωc
≤ C

(
e2β1(xN/2−xN/2−2)/ε

∫ xN/2−2

0

e−2β1(1−x)/ε dx + N−1N−2α

)

≤ C(εN−2α + N−(2α+1)). (4.11)
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Similar results are obtained for ‖P2E2‖20,Ωc
and ‖P2E3‖20,Ωc

. Combining them with (4.9) and
(4.10) we get

‖P2u− u‖0,Ωc
≤ C(ε1/2N−2 + N−3 + N−α). (4.12)

For the derivatives of P2E we use locally an inverse inequality

‖∇(P2E)‖0,M ≤ CN‖P2E‖0,M

and apply (4.11) to get

ε1/2‖∇(P2E)‖0,Ωc
≤ Cε1/2N‖P2E‖0,Ωc

≤ C(εN−α+1 + ε1/2N−α+1/2). (4.13)

Combining (4.8)–(4.10), (4.12), and (4.13) with α ≥ 5/2 we are done. ¤

Theorem 4.6 (Superconvergence) Under the assumptions of Theorem 4.3 and Lemma 4.5,
the postprocessed numerical solution and the solution of (4.1) satisfy

∣∣∣∣∣∣u−PuN
∣∣∣∣∣∣

ε
≤ C(ε1/2N−1 + N−3/2).

Proof. With the triangle inequality and Lemma 4.2 we get
∣∣∣∣∣∣u−PuN

∣∣∣∣∣∣
ε
≤ |||u−Pu|||ε + C

∣∣∣∣∣∣Πu− uN
∣∣∣∣∣∣

ε
.

The first term is bounded by the interpolation error of Lemma 4.5 and the second by the
supercloseness property of Theorem 4.3 and the energy norm being part of the dG-norm. ¤

4.3. Numerical example

We consider two test problems, given by

Problem I

−ε∆u + (3− x)ux + (3 + (1− y)3)uy + u = f in Ω = (0, 1)2

u = 0 on ∂Ω

with given right hand side f , such that

u = cos((1− x)π/2)(1− exp(−2(1− x)/ε))y3(1− exp(−3(1− y)/ε))

is the exact solution and

Problem II

−ε∆u + (1 + x)ux + (21− y)uy + (1 + xy)u = f in Ω = (0, 1)2

u = 0 on ∂Ω

with given right hand side f , such that

u = sin2 x(1− exp(−2(1− x)/ε))y(1 + sin(4πy)/2)(1− exp(−20(1− y)/ε))
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Table 4.1: Errors for test problem I, ε = 10−8

N
∣∣∣∣∣∣u− uN

∣∣∣∣∣∣
dG

EOC
∣∣∣∣∣∣Πu− uN

∣∣∣∣∣∣
dG

EOC dGt5(Πu− uN ) EOC
∣∣∣∣∣∣u−PuN

∣∣∣∣∣∣
ε

EOC

32 1.739e-01 0.72 2.426e-02 1.45 7.334e-03 1.44 2.740e-02 1.58

64 1.056e-01 0.77 8.907e-03 1.53 2.707e-03 1.47 9.172e-03 1.61

128 6.189e-02 0.81 3.077e-03 1.59 9.778e-04 1.48 3.004e-03 1.63

256 3.542e-02 0.83 1.023e-03 1.62 3.494e-04 1.49 9.705e-04 1.65

512 1.994e-02 0.85 3.321e-04 1.64 1.242e-04 1.50 3.089e-04 1.67

1024 1.108e-02 0.86 1.067e-04 1.64 4.403e-05 1.50 9.724e-05 1.67

2048 6.093e-03 3.430e-05 1.559e-05 3.057e-05

Table 4.2: Errors for test problem II, ε = 10−8

N
∣∣∣∣∣∣u− uN

∣∣∣∣∣∣
dG

EOC
∣∣∣∣∣∣Πu− uN

∣∣∣∣∣∣
dG

EOC dGt5(Πu− uN ) EOC
∣∣∣∣∣∣u−PuN

∣∣∣∣∣∣
ε

EOC

32 2.374e-01 0.80 9.571e-02 1.42 8.953e-02 1.41 3.546e-02 1.60

64 1.361e-01 0.80 3.572e-02 1.48 3.380e-02 1.47 1.168e-02 1.63

128 7.814e-02 0.82 1.278e-02 1.50 1.220e-02 1.49 3.787e-03 1.64

256 4.438e-02 0.83 4.515e-03 1.51 4.344e-03 1.50 1.215e-03 1.66

512 2.491e-02 0.85 1.588e-03 1.51 1.540e-03 1.50 3.845e-04 1.68

1024 1.382e-02 0.86 5.584e-04 1.51 5.451e-04 1.50 1.203e-04 1.68

2048 7.600e-03 1.964e-04 1.928e-04 3.760e-05

is the exact solution.
The parameter ε is chosen to be 10−8—sufficiently small to bring out the singularly per-

turbed nature of the test problem. The Shishkin parameter is α = 3.
Tables 4.1 and 4.2 show the errors for the numerical test problems. For each column with

errors the estimated orders of convergence corresponding to

EN = CN−EOC

are given. We clearly see convergence in the dG-norm of order N−1 ln N in the first column
of both tables. Theorem 4.3 predicts the rates in the second column for

∣∣∣∣∣∣Πu− uN
∣∣∣∣∣∣

dG
to be

3/2. In Table 4.1 we see a better rate, but a closer look at the components of the dG-norm
reveals the fifth part

dGt5(w) :=

( ∑

K⊂Ωc

‖w+ − w−‖2∂−K\∂Ωc

)1/2

to be only of order 3/2, as can be seen in the third column. The second test problem was
selected, such that this part is dominating the energy-norm. Thus, in Table 4.2 the predicted
rate 3/2 in the second column can be seen.

Nevertheless, the errors in the energy norm of the postprocessed solution given in the last
column indicate superconvergence of order N−2 ln2 N , although Theorem 4.6 predicts only order
3/2 due to the supercloseness of Theorem 4.3.
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